Green Tea Polyphenol Epigallocatechin Gallate Interactions with Copper-Serum Albumin
Abstract
:1. Introduction
2. Results
2.1. Interactions Between Cu(II) and BSA
2.2. Interactions Between EGCg and BSA
2.3. Interactions Between EGCg and Cu(II)
2.4. Interactions Between BSA, Cu(II) and EGCg (NTS Site)
2.5. Interactions Between BSA, Cu(II) and EGCg (MBS Site)
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. UV–Visible Spectroscopy
4.3. Fluorescence Spectroscopy
4.4. EPR Spectroscopy
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouysegu, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. 2011, 50, 586–621. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, A.E. Fifty years of polyphenol-protein complexes. Rec. Adv. Polyphen. Res. 2012, 3, 71–97. [Google Scholar]
- Zhang, L.; Guan, Q.; Jiang, J.; Khan, M. Tannin complexation with metal ions and its implication on human health, environment and industry: An overview. Int. J. Biol. Macromol. 2023, 253, 127485. [Google Scholar] [CrossRef] [PubMed]
- de Araujo, F.F.; Farias, D.D.; Neri-Numa, I.A.; Pastore, G.M. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 2021, 338, 127535. [Google Scholar] [CrossRef]
- Pastoriza, S.; Mesias, M.; Cabrera, C.; Rufian-Henares, J.A. Healthy properties of green and white teas: An update. Food Funct. 2017, 8, 2650–2662. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, R.; Gung, B.W.; Tindall, S.; Gonzalez, J.M.; Halvorson, J.J.; Hagerman, A.E. Polyphenol-aluminum complex formation: Implications for aluminum tolerance in plants. J. Agric. Food Chem. 2016, 64, 3025–3033. [Google Scholar] [CrossRef]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Remesy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef]
- Li, M.; Hagerman, A.E. Interactions between plasma proteins and naturally occurring polyphenols. Curr. Drug Metab. 2013, 14, 432–445. [Google Scholar] [CrossRef]
- Green, R.J.; Murphy, A.S.; Schulz, B.; Watkins, B.A.; Ferruzzi, M.G. Common tea formulations modulate in vitro digestive recovery of green tea catechins. Mol. Nutr. Food Res. 2007, 51, 1152–1162. [Google Scholar] [CrossRef]
- Cai, T.; Bu, L.J.; Wu, Y.T.; Zhou, S.Q.; Shi, Z. Accelerated degradation of bisphenol A induced by the interaction of EGCG and Cu(II) in Cu(II)/EGCG/peroxymonosulfate process. Chem. Eng. J. 2020, 395, 125134. [Google Scholar] [CrossRef]
- Mira, L.; Fernandez, M.T.; Santos, M.; Rocha, R.; Florencio, M.H.; Jennings, K.R. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radical Res. 2002, 36, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Pirker, K.F.; Baratto, M.C.; Basosi, R.; Goodman, B.A. Influence of pH on the speciation of copper(II) in reactions with the green tea polyphenols, epigallocatechin gallate and gallic acid. J. Inorg. Biochem. 2012, 112, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Tisato, F.; Marzano, C.; Porchia, M.; Pellei, M.; Santini, C. Copper in diseases and treatments, and copper-based anticancer strategies. Med. Res. Rev. 2010, 30, 708–749. [Google Scholar] [CrossRef] [PubMed]
- Cannas, D.; Loi, E.; Serra, M.; Firinu, D.; Valera, P.; Zavattari, P. Relevance of essential trace elements in nutrition and drinking water for human health and autoimmune disease risk. Nutrients 2020, 12, 2074. [Google Scholar] [CrossRef] [PubMed]
- Mehri, A. Trace elements in human nutrition (II)—An update. Int. J. Prev. Med. 2020, 11, 2. [Google Scholar] [CrossRef]
- Fukai, T.; Ushio-Fukai, M.; Kaplan, J.H. Copper transporters and copper chaperones: Roles in cardiovascular physiology and disease. Am. J. Physiol.-Cell Physiol. 2018, 315, C186–C201. [Google Scholar] [CrossRef]
- Mulligan, C.; Bronstein, J.M. Wilson disease: An overview and approach to management. Neurol. Clin. 2020, 38, 417–432. [Google Scholar] [CrossRef]
- Jing, M.Y.; Liu, R.T.; Yan, W.B.; Tan, X.J.; Chen, Y.D. Investigations on the effects of Cu2+ on the structure and function of human serum albumin. Luminescence 2016, 31, 557–564. [Google Scholar] [CrossRef]
- Fanali, G.; di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human serum albumin: From bench to bedside. Mol. Asp. Med. 2012, 33, 209–290. [Google Scholar] [CrossRef]
- Carter, D.C.; Ho, J.X. Structure of serum albumin. Adv. Protein Chem. 1994, 45, 153–203. [Google Scholar]
- Peters, T.; Blumenstock, F.A. Copper-binding properties of bovine serum albumin and its amino-terminal peptide fragment. J. Biol. Chem. 1967, 242, 1574–1578. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Morris, H.; Mazur, M.; Telser, J.; McInnes, E.J.L.; Mabbs, F.E. High-affinity binding site for copper(II) in human and dog serum albumins (an EPR study). J. Phys. Chem. B 1999, 103, 5591–5597. [Google Scholar] [CrossRef]
- Bal, W.; Sokolowska, M.; Kurowska, E.; Faller, P. Binding of transition metal ions to albumin: Sites, affinities and rates. Biochim. Biophys. Acta 2013, 1830, 5444–5455. [Google Scholar] [CrossRef] [PubMed]
- Sokolowska, M.; Pawlas, K.; Bal, W. Effect of common buffers and heterocyclic ligands on the binding of Cu(II) at the multimetal binding site in human serum albumin. Bioinog. Chem. App. 2010, 2010, 725153. [Google Scholar] [CrossRef]
- Stewart, A.J.; Blindauer, C.A.; Berezenko, S.; Sleep, D.; Sadler, P.J. Interdomain zinc site on human albumin. Proc. Natl. Acad. Sci. USA 2003, 100, 3701–3706. [Google Scholar] [CrossRef]
- Mrkalic, E.; Jelic, R.; Stojanovic, S.; Sovrlic, M. Interaction between olanzapine and human serum albumin and effect of metal ions, caffeine and flavonoids on the binding: A spectroscopic study. Spectrochim. Acta A 2021, 249, 119295. [Google Scholar] [CrossRef]
- He, X.M.; Carter, D.C. Atomic structure and chemistry of human serum albumin. Nature 1992, 358, 209–215. [Google Scholar] [CrossRef]
- Li, M.; Hagerman, A.E. Role of the flavan-3-ol and galloyl moieties in the interaction of (-)-epigallocatechin gallate with serum albumin. J. Agric. Food Chem. 2014, 62, 3768–3775. [Google Scholar] [CrossRef]
- Eaton, J.D.; Williamson, M.P. Multi-site binding of epigallocatechin gallate to human serum albumin measured by NMR and isothermal titration calorimetry. Biosci. Rep. 2017, 37, BSR20170209. [Google Scholar] [CrossRef]
- Bertucci, C.; Domenici, E. Reversible and covalent binding of drugs to human serum albumin: Methodological approaches and physiological relevance. Curr. Med. Chem. 2002, 9, 1463–1481. [Google Scholar] [CrossRef]
- Massai, L.; Pratesi, A.; Gailer, J.; Marzo, T.; Messori, L. The cisplatin/serum albumin system: A reappraisal. Inorg. Chim. Acta 2019, 495, 118983. [Google Scholar] [CrossRef]
- Selvaraj, S.; Krishnaswamy, S.; Devashya, V.; Sethuraman, S.; Krishnan, U.M. Flavonoid-metal ion complexes: A novel class of therapeutic agents. Med. Res. Rev. 2014, 34, 677–702. [Google Scholar] [CrossRef]
- Li, D.J.; Zhu, M.; Xu, C.; Ji, B.M. Characterization of the baicalein-bovine serum albumin complex without or with Cu2+ or Fe3+ by spectroscopic approaches. Eur. J. Med. Chem. 2011, 46, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, Y.; Wang, Y. Interaction between an (-)-epigallocatechin-3-gallate-copper complex and bovine serum albumin: Fluorescence, circular dichroism, HPLC, and docking studies. Food Chem. 2019, 301, 125294. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Guan, Q.; Tang, L.; Jiang, J.; Sun, K.; Manirafasha, E.; Zhang, M. Effect of Cu2+ and Al3+ on the interaction of chlorogenic acid and caffeic acid with serum albumin. Food Chem. 2023, 410, 135406. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Huang, L.; Li, R.; Zhang, Z.; Chen, J.; Tang, H. Multispectroscopic and computational evaluation of the binding of flavonoids with bovine serum albumin in the presence of Cu2+. Food Chem. 2022, 385, 132656. [Google Scholar] [CrossRef]
- Breslow, E. Comparison of cupric ion-binding sites in myoglobin derivatives and serum albumin. J. Biol. Chem. 1964, 239, 3252–3259. [Google Scholar] [CrossRef]
- Bennett, B.; Kowalski, J.M. EPR methods for biological Cu(II): L-band CW and NARS. Methods Enzymol. 2015, 563, 341–361. [Google Scholar] [CrossRef]
- Plotnikova, O.A.; Mel’nikov, A.G.; Mel’nikov, G.V.; Gubina, T.I. Quenching of tryptophan fluorescence of bovine serum albumin under the effect of ions of heavy metals. Opt. Spectrosc. 2016, 120, 65–69. [Google Scholar] [CrossRef]
- Pandey, N.K.; Ghosh, S.; Nagy, N.V.; Dasgupta, S. Fibrillation of human serum albumin shows nonspecific coordination on stoichiometric increment of copper(II). J. Biomol. Struct. Dyn. 2014, 32, 1366–1378. [Google Scholar] [CrossRef]
- Sun, X.W.; Ferguson, H.N.; Hagerman, A.E. Conformation and aggregation of human serum albumin in the presence of green tea polyphenol (EGCg) and/or palmitic acid. Biomolecules 2019, 9, 705. [Google Scholar] [CrossRef] [PubMed]
- Skrt, M.; Benedik, E.; Podlipnik, C.; Ulrih, N.P. Interactions of different polyphenols with bovine serum albumin using fluorescence quenching and molecular docking. Food Chem. 2012, 135, 2418–2424. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, A.E.; Dean, R.T.; Davies, M.J. Radical chemistry of epigallocatechin gallate and its relevance to protein damage. Arch. Biochem. Biophys. 2003, 414, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Mila, I.; Expert, D.; Marmolle, F.; Albrecht, A.; Hurrell, R.; Huneau, J.; Tome, D. Polyphenols, metal ion complexation and biological consequences. In Plant Polyphenols 2. Chemistry, Biology, Pharmacology, Ecology; Kluwer Academic/Plenum Publishers: New York, NY, USA, 1999; pp. 545–553. [Google Scholar]
- Kasprzak, M.M.; Erxleben, A.; Ochocki, J. Properties and applications of flavonoid metal complexes. RSC Adv. 2015, 5, 45853–45877. [Google Scholar] [CrossRef]
- Chan, S.; Kantham, S.; Rao, V.M.; Palanivelu, M.K.; Pham, H.L.; Shaw, P.N.; McGeary, R.P.; Ross, B.P. Metal chelation, radical scavenging and inhibition of A beta(42) fibrillation by food constituents in relation to Alzheimer’s disease. Food Chem. 2016, 199, 185–194. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, W.B.; Jiang, X.H. Reaction kinetics of degradation and epimerization of epigallocatechin gallate (EGCG) in aqueous system over a wide temperature range. J. Agric. Food Chem. 2008, 56, 2694–2701. [Google Scholar] [CrossRef]
- Solomon, E.I.; Hare, J.W.; Gray, H.B. Spectroscopic studies and a structural model for blue copper centers in proteins. Proc. Natl. Acad. Sci. USA 1976, 73, 1389–1393. [Google Scholar] [CrossRef]
- Ainscough, E.W.; Bingham, A.G.; Brodie, A.M.; Husbands, J.M.; Plowman, J.E. Small molecule analogs for the specific metal-binding site of lactoferrin. Part 2. Phenolato-complexes of copper(ii) and the nature of the charge-transfer transition in the visible region. J. Chem. Soc. Dalton 1981, 1981, 1701–1707. [Google Scholar] [CrossRef]
- Yasuda, M.; Matsuda, C.; Ohshiro, A.; Inouye, K.; Tabata, M. Effects of metal ions (Cu2+, Fe2+ and Fe3+) on HPLC analysis of catechins. Food Chem. 2012, 133, 518–525. [Google Scholar] [CrossRef]
- Severino, J.F.; Goodman, B.A.; Reichenauer, T.G.; Pirker, K.F. Is there a redox reaction between Cu(II) and gallic acid? Free Radical Res. 2011, 45, 123–132. [Google Scholar] [CrossRef]
- Sendzik, M.; Pushie, M.J.; Stefaniak, E.; Haas, K.L. Structure and affinity of Cu(I) bound to human serum albumin. Inorg. Chem. 2017, 56, 15057–15065. [Google Scholar] [CrossRef]
- Yin, J.J.; Fu, P.P.; Lutterodt, H.; Zhou, Y.T.; Antholine, W.E.; Wamer, W. Dual role of selected antioxidants found in dietary supplements: Crossover between anti- and pro-oxidant activities in the presence of copper. J. Agric. Food Chem. 2012, 60, 2554–2561. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Lu, N.; Pi, X.; Jin, Z.; Tian, R. Bovine serum albumin as a potential carrier for the protection of bioactive quercetin and inhibition of Cu(II) toxicity. Chem. Res. Toxicol. 2022, 35, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lu, N.; Tian, R. Serum albumin acted as an effective carrier to improve the stability of bioactive flavonoid. Amino Acids 2023, 55, 1879–1890. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.; Kennett, M.; Sang, S.; Reuhl, K.; Ju, J.; Yang, C. Hepatotoxicity of high oral dose (-)-epigallocatechin-3-gallate in mice. Food Chem. Toxicol. 2010, 48, 409–416. [Google Scholar] [CrossRef]
- Bu, L.J.; Bi, C.; Shi, Z.; Zhou, S.Q. Significant enhancement on ferrous/persulfate oxidation with epigallocatechin-3-gallate: Simultaneous chelating and reducing. Chem. Eng. J. 2017, 321, 642–650. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Riedl, K.M.; Jones, G.A.; Sovik, K.N.; Ritchard, N.T.; Hartzfeld, P.W.; Riechel, T.L. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agric. Food Chem. 1998, 46, 1887–1892. [Google Scholar] [CrossRef]
- Galati, G.; Lin, A.; Sultan, A.; O’Brien, P. Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins. Free Radical Biol. Med. 2006, 40, 570–580. [Google Scholar] [CrossRef]
- Farhan, M.; Rizvi, A.; Ahmad, A.; Aatif, M.; Alam, M.W.; Hadi, S.M. Structure of some green tea catechins and the availability of intracellular copper influence their ability to cause selective oxidative DNA damage in malignant cells. Biomedicines 2022, 10, 664. [Google Scholar] [CrossRef]
- Kaleri, N.; Sun, K.; Wang, L.; Li, J.; Zhang, W.; Chen, X.; Li, X. Dietary copper reduces the hepatotoxicity of (-)-epigallocatechin-3-gallate in mice. Molecules 2018, 23, 38. [Google Scholar] [CrossRef]
- Ullmann, U.; Haller, J.; Decourt, J.; Girault, N.; Girault, J.; Richard-Caubron, A.; Pineau, B.; Weber, P. A single ascending dose study of epigallocatechin gallate in healthy volunteers. J. Int. Med. Res. 2003, 31, 88–101. [Google Scholar] [CrossRef]
- Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipic, M.; Frutos, M.; Galtier, P.; Gott, D.; Gundert-Remy, U.; et al. Scientific opinion on the safety of green tea catechins. EFSA J. 2018, 16, e05239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shi, S.; Sun, X.; Xiong, X.; Peng, M. The effect of Cu2+ on interaction between flavonoids with different C-ring substituents and bovine serum albumin: Structure-affinity relationship aspect. J. Inorg. Biochem. 2011, 105, 1529–1537. [Google Scholar] [CrossRef] [PubMed]
- Bakun, P.; Mlynarczyk, D.; Koczorowski, T.; Cerbin-Koczorowska, M.; Piwowarczyk, L.; Kolasinski, E.; Stawny, M.; Kuzminska, J.; Jelinska, A.; Goslinski, T. Tea-break with epigallocatechin gallate derivatives—Powerful polyphenols of great potential for medicine. Eur. J. Med. Chem. 2023, 261, 115820. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.T.; Lee, C.Y.; Huang, M.T. Phenolic Compounds in Food and Their Effects on Health I and II; American Chemical Society: Washington, DC, USA, 1992. [Google Scholar]
- Mittal, R.; Mishra, R.; Uddin, R.; Bhargav, R.; Kumar, N. Epigallocatechin gallate (EGCg) formulations: Unlocking potential in nutraceutical and pharmaceutical sectors. Nat. Prod. J. 2025, 15, e060524229716. [Google Scholar] [CrossRef]
- Albani, J.R. Principles and Applications of Fluorescence Spectroscopy; Blackwell Scientific: Oxford, UK, 2008. [Google Scholar]
g Tensor | Hyperfine Coupling (MHz) | |
---|---|---|
NTS | 2.03, 2.17 | 8.44, 612 |
MBS | 2.04, 2.05, 2.27 | 40, 12, 495 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, M.; Zhang, L.; Killeen, R.; Onugwu, K.E.; McCarrick, R.M.; Hagerman, A.E. Green Tea Polyphenol Epigallocatechin Gallate Interactions with Copper-Serum Albumin. Molecules 2025, 30, 320. https://doi.org/10.3390/molecules30020320
Fu M, Zhang L, Killeen R, Onugwu KE, McCarrick RM, Hagerman AE. Green Tea Polyphenol Epigallocatechin Gallate Interactions with Copper-Serum Albumin. Molecules. 2025; 30(2):320. https://doi.org/10.3390/molecules30020320
Chicago/Turabian StyleFu, Meiling, Liangliang Zhang, Rick Killeen, Kenneth E. Onugwu, Robert M. McCarrick, and Ann E. Hagerman. 2025. "Green Tea Polyphenol Epigallocatechin Gallate Interactions with Copper-Serum Albumin" Molecules 30, no. 2: 320. https://doi.org/10.3390/molecules30020320
APA StyleFu, M., Zhang, L., Killeen, R., Onugwu, K. E., McCarrick, R. M., & Hagerman, A. E. (2025). Green Tea Polyphenol Epigallocatechin Gallate Interactions with Copper-Serum Albumin. Molecules, 30(2), 320. https://doi.org/10.3390/molecules30020320