Changes in the Content of Dietary Fiber, Flavonoids, and Phenolic Acids in the Morphological Parts of Fagopyrum tataricum (L.) Gaertn Under Drought Stress
Abstract
1. Introduction
2. Results
2.1. Chemical Characteristics of the Samples
2.2. Total Phenolic Compounds and Antioxidative Activity
2.3. Individual Antioxidative Compounds (HPLC–MS)
2.4. Physiological Plant Parameters Under Water Drought Stress
3. Discussion
4. Materials and Methods
4.1. Material
4.2. Reagents
4.3. Chemical Composition
4.4. Selected Phenolic Substances- HPLC–MS Chromatography
4.5. Identification of Unknown Compounds by LC-MS
4.6. DPPH Analysis
4.7. Ferrous Ion-Chelating Activity
4.8. Total Phenolic Compounds (TPC)
4.9. Physiological State of Plants
4.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jha, R.; Zhang, K.; He, Y.; Mendler-Drienyovszki, N.; Magyar-Tábori, K.; Quinet, M.; Germ, M.; Kreft, I.; Meglič, V.; Ikeda, K.; et al. Global Nutritional Challenges and Opportunities: Buckwheat, a Potential Bridge between Nutrient Deficiency and Food Security. Trends Food Sci. Technol. 2024, 145, 104365. [Google Scholar] [CrossRef]
- Guo, X.-D.; Ma, Y.-J.; Parry, J.; Gao, J.-M.; Yu, L.-L.; Wang, M. Phenolics Content and Antioxidant Activity of Tartary Buckwheat from Different Locations. Molecules 2011, 16, 9850–9867. [Google Scholar] [CrossRef] [PubMed]
- Mansur, A.R.; Lee, S.G.; Lee, B.-H.; Han, S.G.; Choi, S.-W.; Song, W.-J.; Nam, T.G. Phenolic Compounds in Common Buckwheat Sprouts: Composition, Isolation, Analysis and Bioactivities. Food Sci. Biotechnol. 2022, 31, 935–956. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Lei, J.; Li, J.; Wang, J.; Hu, J.-L.; Zheng, X.-Q.; Hu, Y.-C.; Zou, L.; Wu, D.-T. Structural Properties and Biological Activities of Soluble Dietary Fibers Rich in Pectic-Polysaccharides from Different Buckwheat Green Leaves. Int. J. Biol. Macromol. 2023, 253, 126686. [Google Scholar] [CrossRef]
- Wu, D.-T.; Wang, J.; Li, J.; Hu, J.-L.; Yan, H.; Zhao, J.; Zou, L.; Hu, Y.-C. Physicochemical Properties and Biological Functions of Soluble Dietary Fibers Isolated from Common and Tartary Buckwheat Sprouts. LWT 2023, 183, 114944. [Google Scholar] [CrossRef]
- Dziedzic, K.; Górecka, D.; Szwengiel, A.; Sulewska, H.; Kreft, I.; Gujska, E.; Walkowiak, J. The Content of Dietary Fibre and Polyphenols in Morphological Parts of Buckwheat (Fagopyrum tataricum). Plant Foods Hum. Nutr. 2018, 73, 82–88. [Google Scholar] [CrossRef]
- Fedoros, E.I.; Baldueva, I.A.; Perminova, I.V.; Badun, G.A.; Chernysheva, M.G.; Grozdova, I.D.; Melik-Nubarov, N.S.; Danilova, A.B.; Nekhaeva, T.L.; Kuznetsova, A.I.; et al. Exploring Bioactivity Potential of Polyphenolic Water-Soluble Lignin Derivative. Environ. Res. 2020, 191, 110049. [Google Scholar] [CrossRef]
- Sarangi, P.K.; Srivastava, R.K.; Vivekanand, V.; Goksen, G.; Sahoo, U.K.; Thakur, T.K.; Debeaufort, F.; Uysal-Unalan, I.; Pugazhendhi, A. Recovery of Green Phenolic Compounds from Lignin-Based Source: Role of Ferulic Acid Esterase towards Waste Valorization and Bioeconomic Perspectives. Environ. Res. 2024, 256, 119218. [Google Scholar] [CrossRef]
- Li, K.; Zhong, W.; Li, P.; Ren, J.; Jiang, K.; Wu, W. Recent Advances in Lignin Antioxidant: Antioxidant Mechanism, Evaluation Methods, Influence Factors and Various Applications. Int. J. Biol. Macromol. 2023, 251, 125992. [Google Scholar] [CrossRef]
- Martín-García, B.; Pasini, F.; Verardo, V.; Gómez-Caravaca, A.M.; Marconi, E.; Caboni, M.F. Distribution of Free and Bound Phenolic Compounds in Buckwheat Milling Fractions. Foods 2019, 8, 670. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, J.; Mao, Y.; Liu, L.; Li, C.; Wu, H.; Zhao, H.; Wu, Q. Tartary Buckwheat Rutin: Accumulation, Metabolic Pathways, Regulation Mechanisms, and Biofortification Strategies. Plant Physiol. Biochem. 2024, 208, 108503. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.-H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Liu, Y.; Yue, Y.; Qin, Y.; Li, Z. Dietary Tartary Buckwheat Intake Attenuates Insulin Resistance and Improves Lipid Profiles in Patients with Type 2 Diabetes: A Randomized Controlled Trial. Nutr. Res. 2016, 36, 1392–1401. [Google Scholar] [CrossRef] [PubMed]
- Xiang, D.; Ma, C.; Song, Y.; Wu, Q.; Wu, X.; Sun, Y.; Zhao, G.; Wan, Y. Post-Anthesis Photosynthetic Properties Provide Insights into Yield Potential of Tartary Buckwheat Cultivars. Agronomy 2019, 9, 149. [Google Scholar] [CrossRef]
- Zhou, Y.; She, X.; Chen, Z.; Wei, Y.; Xiao, Y.; Zhou, X. Tartary Buckwheat (Fagopyrum tataricum (L.) Gaertn) Protein-Derived Antioxidant Peptides: Mechanisms of Action and Structure-Activity Relationship in Caco-2 Cell Models. Food Sci. Hum. Wellness 2022, 11, 1580–1590. [Google Scholar] [CrossRef]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Ma, H. Effects of Pretreatment and Type of Hydrolysis on the Composition, Antioxidant Potential and HepG2 Cytotoxicity of Bound Polyphenols from Tartary Buckwheat (Fagopyrum tataricum L. Gaerth) Hulls. Food Res. Int. 2021, 142, 110187. [Google Scholar] [CrossRef]
- Peng, W.; Dong, Y.; Wang, J.; Wang, S.; Wang, N. Effects of Exogenous Solution Treatment on Germination, Antioxidation and Flavonoid Biosynthesis of Tartary Buckwheat (Fagopyrum tataricum (L.) Gaertn.). Food Biosci. 2023, 56, 103367. [Google Scholar] [CrossRef]
- Song, J.; Wang, Y.; Li, F.; Hu, Y.; Yang, H. Effect of Saline Soil and Amino Acids on Quality and Yield of Field Tartary Buckwheat. Land. Degrad. Dev. 2021, 32, 2554–2562. [Google Scholar] [CrossRef]
- Mani, Z.A.; Khorram-Manesh, A.; Goniewicz, K. Global Health Emergencies of Extreme Drought Events: Historical Impacts and Future Preparedness. Atmosphere 2024, 15, 1137. [Google Scholar] [CrossRef]
- Rezaei, E.E.; Webber, H.; Asseng, S.; Boote, K.; Durand, J.L.; Ewert, F.; Martre, P.; MacCarthy, D.S. Climate Change Impacts on Crop Yields. Nat. Rev. Earth Environ. 2023, 4, 831–846. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Ma, B.; Gao, Q.; Du, H.; Han, Y.; Li, Y.; Cao, Y.; Qi, M.; Zhu, Y.; et al. The Tartary Buckwheat Genome Provides Insights into Rutin Biosynthesis and Abiotic Stress Tolerance. Mol. Plant 2017, 10, 1224–1237. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, Q.; Rong, Y.; Tang, B.; Zhu, L.; Ren, R.; Shi, T.; Chen, Q. Transcriptome Analysis Revealed Gene Regulatory Network Involved in PEG-Induced Drought Stress in Tartary Buckwheat (Fagopyrum tararicum). PeerJ 2021, 9, e11136. [Google Scholar] [CrossRef] [PubMed]
- Aubert, L.; Konrádová, D.; Barris, S.; Quinet, M. Different Drought Resistance Mechanisms between Two Buckwheat Species Fagopyrum esculentum and Fagopyrum tataricum. Physiol. Plant. 2021, 172, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Aubert, L.; Quinet, M. Comparison of Heat and Drought Stress Responses among Twelve Tartary Buckwheat (Fagopyrum tataricum) Varieties. Plants 2022, 11, 1517. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, Q.; Wu, H.; Wang, A.; Wang, X.; Li, C.; Zhao, H.; Wu, Q. FtNAC31, a Tartary Buckwheat NAC Transcription Factor, Enhances Salt and Drought Tolerance in Transgenic Arabidopsis. Plant Physiol. Biochem. 2022, 191, 20–33. [Google Scholar] [CrossRef]
- Meng, H.-L.; Sun, P.-Y.; Wang, J.-R.; Sun, X.-Q.; Zheng, C.-Z.; Fan, T.; Chen, Q.-F.; Li, H.-Y. Comparative Physiological, Transcriptomic, and WGCNA Analyses Reveal the Key Genes and Regulatory Pathways Associated with Drought Tolerance in Tartary Buckwheat. Front. Plant Sci. 2022, 13, 985088. [Google Scholar] [CrossRef]
- Hossain, M.S.; Li, J.; Sikdar, A.; Hasanuzzaman, M.; Uzizerimana, F.; Muhammad, I.; Yuan, Y.; Zhang, C.; Wang, C.; Feng, B. Exogenous Melatonin Modulates the Physiological and Biochemical Mechanisms of Drought Tolerance in Tartary Buckwheat (Fagopyrum tataricum (L.) Gaertn). Molecules 2020, 25, 2828. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, Q.; Qi, A.; Li, S.; Hu, Y.; Hu, Z.; Guo, L.; Liang, C.; Li, W.; Liu, C.; et al. Morphological, Physiological, and Photosynthetic Differences of Tartary Buckwheat Induced by Post-Anthesis Drought. Plants 2024, 13, 2161. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Drought Stress Enhances Nutritional and Bioactive Compounds, Phenolic Acids and Antioxidant Capacity of Amaranthus Leafy Vegetable. BMC Plant Biol. 2018, 18, 258. [Google Scholar] [CrossRef]
- Luthar, Z.; Golob, A.; Germ, M.; Vombergar, B.; Kreft, I. Tartary Buckwheat in Human Nutrition. Plants 2021, 10, 700. [Google Scholar] [CrossRef]
- Sinkovič, L.; Kokalj Sinkovič, D.; Meglič, V. Milling Fractions Composition of Common (Fagopyrum Esculentum Moench) and Tartary (Fagopyrum tataricum (L.) Gaertn.) Buckwheat. Food Chem. 2021, 365, 130459. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Oberoi, S.; Kaur, A. Phenolic Composition, Antioxidant Activity and Health Benefits of Tartary (Fagopyrum tataricum Gaerth) and Common (F. esculentum Moench) Buckwheat Grains: A Review. Food Chem. Adv. 2024, 5, 100820. [Google Scholar] [CrossRef]
- Abid, M.; Ali, S.; Qi, L.K.; Zahoor, R.; Tian, Z.; Jiang, D.; Snider, J.L.; Dai, T. Physiological and Biochemical Changes during Drought and Recovery Periods at Tillering and Jointing Stages in Wheat (Triticum aestivum L.). Sci. Rep. 2018, 8, 4615. [Google Scholar] [CrossRef] [PubMed]
- Rakszegi, M.; Darkó, É.; Lovegrove, A.; Molnár, I.; Láng, L.; Bedő, Z.; Molnár-Láng, M.; Shewry, P. Drought Stress Affects the Protein and Dietary Fiber Content of Wholemeal Wheat Flour in Wheat/Aegilops Addition Lines. PLoS ONE 2019, 14, e0211892. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Min, J.; Tang, Z.; Yang, X.; Huang, K.; Huang, X. Slight Drought during Flowering Period Can Improve Tartary Buckwheat Yield by Regulating Carbon and Nitrogen Metabolism. Sci. Rep. 2024, 14, 9774. [Google Scholar] [CrossRef]
- Dziedzic, K.; Kurek, S.; Podolska, G.; Drzymała-Czyż, S.; Mildner-Szkudlarz, S.; Sun, W.; Walkowiak, J. The Lipid-Soluble Bioactive Substances of Fagopyrum Esculentum Varieties under Different Tillage and Nitrogen Fertilisation. Foods 2022, 11, 3801. [Google Scholar] [CrossRef]
- Yin, L.; Xu, J.; Zhang, L.; Liu, D.; Zhang, C.; Liu, T.; Wang, S.; Deng, X. Altered Fatty Acid Composition Confers Improved Drought Acclimation in Maize. Plant Physiol. Biochem. 2024, 206, 108274. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, M.; Hu, H.; Tu, Y.; Gao, P.; Li, T.; Zhang, X.; Teng, J.; Wang, L. Comparative Study on Chemical Composition, Functional Properties of Dietary Fibers Prepared from Four China Cereal Brans. Int. J. Biol. Macromol. 2024, 257, 128510. [Google Scholar] [CrossRef]
- Iqbal, S.; Tirpanalan-Staben, Ö.; Franke, K. Modification of Dietary Fibers to Valorize the By-Products of Cereal, Fruit and Vegetable Industry—A Review on Treatment Methods. Plants 2022, 11, 3466. [Google Scholar] [CrossRef]
- Haghpanah, M.; Hashemipetroudi, S.; Arzani, A.; Araniti, F. Drought Tolerance in Plants: Physiological and Molecular Responses. Plants 2024, 13, 2962. [Google Scholar] [CrossRef]
- Laxa, M.; Liebthal, M.; Telman, W.; Chibani, K.; Dietz, K.-J. The Role of the Plant Antioxidant System in Drought Tolerance. Antioxidants 2019, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Shinozaki, K.; Yamaguchi-Shinozaki, K. Gene Networks Involved in Drought Stress Response and Tolerance. J. Exp. Bot. 2006, 58, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Xiang, D.B.; Peng, L.X.; Zhao, J.L.; Zou, L.; Zhao, G.; Song, C. Effect of Drought Stress on Yield, Chlorophyll Contents and Photosynthesis in Tartary Buckwheat (Fagopyrum Tataricum). J. Food Agric. Environ 2013, 11, 1358–1363. [Google Scholar]
- Ullah, A.; Al-Rajhi, R.S.; Al-Sadi, A.M.; Farooq, M. Wheat Genotypes with Higher Intercellular CO2 Concentration, Rate of Photosynthesis, and Antioxidant Potential Can Better Tolerate Drought Stress. J. Soil Sci. Plant Nutr. 2021, 21, 2378–2391. [Google Scholar] [CrossRef]
- ISO 20483:2013; Cereals and pulses—Determination of the nitrogen content and calculation of the crude protein content—Kjeldahl method. ISO: Geneva, Switzerland, 2013.
- AOAC Official Method 991.43. Total, Soluble, and Insoluble Dietary Fibre in Foods. Available online: https://acnfp.food.gov.uk/sites/default/files/mnt/drupal_data/sources/files/multimedia/pdfs/annexg.pdf (accessed on 7 January 2025).
- AACC Method 30-10.01. Crude Fat in Flour, Bread, and Baked Cereal Products Not Containing Fruit. Available online: https://www.cerealsgrains.org/resources/Methods/Pages/30CrudeFat.aspx (accessed on 7 January 2025).
- Biesaga, M.; Pyrzyńska, K. Stability of Bioactive Polyphenols from Honey during Different Extraction Methods. Food Chem. 2013, 136, 46–54. [Google Scholar] [CrossRef]
- Shen, H.; Dührkop, K.; Böcker, S.; Rousu, J. Metabolite Identification through Multiple Kernel Learning on Fragmentation Trees. Bioinformatics 2014, 30, i157–i164. [Google Scholar] [CrossRef]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef]
- Dührkop, K.; Shen, H.; Meusel, M.; Rousu, J.; Böcker, S. Searching Molecular Structure Databases with Tandem Mass Spectra Using CSI:FingerID. Proc. Natl. Acad. Sci. USA 2015, 112, 12580–12585. [Google Scholar] [CrossRef]
- Dührkop, K.; Nothias, L.-F.; Fleischauer, M.; Reher, R.; Ludwig, M.; Hoffmann, M.A.; Petras, D.; Gerwick, W.H.; Rousu, J.; Dorrestein, P.C.; et al. Systematic Classification of Unknown Metabolites Using High-Resolution Fragmentation Mass Spectra. Nat. Biotechnol. 2021, 39, 462–471. [Google Scholar] [CrossRef]
- Djoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.; Bolton, E.; et al. ClassyFire: Automated Chemical Classification with a Comprehensive, Computable Taxonomy. J. Cheminform. 2016, 8, 61. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A Procedure to Measure the Antiradical Efficiency of Polyphenols. J. Sci. Food Agric. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, Y.; Qian, Z.; Shen, X. The Mechanism of Fe2+-Initiated Lipid Peroxidation in Liposomes: The Dual Function of Ferrous Ions, the Roles of the Pre-Existing Lipid Peroxides and the Lipid Peroxyl Radical. Biochem. J. 2000, 352, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, W. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Washington, DC, USA, 1970. [Google Scholar]
- Sulewska, H.; Ratajczak, K.; Niewiadomska, A.; Panasiewicz, K. The Use of Microorganisms as Bio-Fertilizers in the Cultivation of White Lupine. Open Chem. 2019, 17, 813–822. [Google Scholar] [CrossRef]
DM | Protein | Lipids | IDF | SDF | TDF | ||
---|---|---|---|---|---|---|---|
Leaves | S | 91.3 b | 9.78 c | 1.74 c | 47.98 d | 0.42 e | 48.4 d |
N | 91.18 b | 12.89 b | 2.44 ab | 48.71 d | 0.42 e | 49.13 d | |
Stems | S | 93.01 a | 2.86 f | 0.47 d | 73.19 a | 3.46 b | 76.65 a |
N | 93.43 a | 5.08 e | 0.57 d | 72.16 a | 4.04 a | 76.20 a | |
Seeds | S | 89.62 c | 11.89 b | 2.15 b | 15.27 e | 0.09 f | 15.36 e |
N | 88.91 c | 16.11 a | 2.58 a | 15.59 e | 0.03 f | 15.62 e | |
Husk | S | 91.05 b | 8.23 d | 2.22 ab | 61.21 b | 2.34 d | 63.55 b |
N | 90.84 b | 8.59 d | 2.23 ab | 52.16 c | 2.53 c | 54.69 c |
DPPH * (mg/g d.m. of Extract) | Ferrous Ion-Chelating Activity ** (mg/g d.m. of Extract) | TPC *** (mg/g of d.m. Extract) | Total Phenolics (mg/100 g of d.m. Product) | ||
---|---|---|---|---|---|
Leaves | S | 208.03 b | 3.51 fg | 296.18 a | 266.33 c |
N | 257.21 a | 2.17 g | 152.76 b | 309.32 a | |
Stems | S | 27.45 e | 10.49 e | 58.40 d | 113.56 g |
N | 28.31 e | 7.83 ef | 65.57 c | 126.64 f | |
Seeds | S | 22.69 f | 57.89 d | 28.94 f | 233.54 e |
N | 22.21 f | 81.22 c | 31.19 e | 246.24 d | |
Husk | S | 43.59 d | 210.48 b | 43.3 g | 247.96 d |
N | 53.21 c | 439.44 a | 43.65 g | 276.77 b |
Water Treatment | During Drought Stress | After Regeneration | ||
---|---|---|---|---|
Non-Stressed | Stressed | Non-Stressed | Stressed | |
1 Fv/Fm | 0.841 a | 0.823 b | 0.746 a | 0.775 a |
ETR | 13.67 b | 43.40 a | 12.20 a | 10.64 a |
Yield | 0.27 a | 0.30 a | 0.24 a | 0.21 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziedzic, K.; Ariyarathna, P.; Szwengiel, A.; Hęś, M.; Ratajczak, K.; Górecka, D.; Sulewska, H.; Walkowiak, J. Changes in the Content of Dietary Fiber, Flavonoids, and Phenolic Acids in the Morphological Parts of Fagopyrum tataricum (L.) Gaertn Under Drought Stress. Molecules 2025, 30, 270. https://doi.org/10.3390/molecules30020270
Dziedzic K, Ariyarathna P, Szwengiel A, Hęś M, Ratajczak K, Górecka D, Sulewska H, Walkowiak J. Changes in the Content of Dietary Fiber, Flavonoids, and Phenolic Acids in the Morphological Parts of Fagopyrum tataricum (L.) Gaertn Under Drought Stress. Molecules. 2025; 30(2):270. https://doi.org/10.3390/molecules30020270
Chicago/Turabian StyleDziedzic, Krzysztof, Pathumi Ariyarathna, Artur Szwengiel, Marzanna Hęś, Karolina Ratajczak, Danuta Górecka, Hanna Sulewska, and Jarosław Walkowiak. 2025. "Changes in the Content of Dietary Fiber, Flavonoids, and Phenolic Acids in the Morphological Parts of Fagopyrum tataricum (L.) Gaertn Under Drought Stress" Molecules 30, no. 2: 270. https://doi.org/10.3390/molecules30020270
APA StyleDziedzic, K., Ariyarathna, P., Szwengiel, A., Hęś, M., Ratajczak, K., Górecka, D., Sulewska, H., & Walkowiak, J. (2025). Changes in the Content of Dietary Fiber, Flavonoids, and Phenolic Acids in the Morphological Parts of Fagopyrum tataricum (L.) Gaertn Under Drought Stress. Molecules, 30(2), 270. https://doi.org/10.3390/molecules30020270