Progress in the Study of Extraction Methods and Pharmacological Effects of Traditional Chinese Medicine-Derived Carbon Dots
Abstract
1. Introduction
2. Synthesis of Carbon Dots
2.1. Top-Down Approach
2.2. Bottom-Up Approach
2.2.1. Hydrothermal Method
2.2.2. High-Temperature Pyrolysis
2.2.3. Microwave-Assisted Method
2.2.4. Solvothermal Method
2.2.5. Other Methods
3. Effects of Processing on Carbon Dots and Their Pharmacological Research
3.1. Enhanced Original Efficacy
3.1.1. Phellodendri Cortex (Huangbo)
The Influence of the Preparation Process on the Carbon Dots of Phellodendri Cortex
Pharmacological Activity of Phellodendri Cortex Carbon Dots
3.1.2. Panax Notoginseng (Sanqi)
The Impact of the Preparation on the Carbon Dots of Panax Notoginseng
Pharmacological Activity of Panax Notoginseng Carbon Dots
3.1.3. Rhubarb (Dahuang)
The Influence of the Preparation on the Carbon Dots of Rhubarb
The Pharmacological Activity of Rhubarb Carbon Dots
3.1.4. Schizonepetae Herba (Jingjie)
The Influence of Processing on Schizonepetae Herba Carbon Dots
Pharmacological Activity of Schizonepetae Herba Carbon Dots
3.1.5. Salvia Miltiorrhiza (Danshen)
The Influence of Processing on Salvia Miltiorrhiza Carbon Dots
Pharmacological Activity of Salvia Miltiorrhiza Carbon Dots
3.2. Synergistic Effects at Multiple Sites and Multiple Targets
3.2.1. Licorice (Gancao)
The Influence of the Processing on the Carbon Dots of Licorice
The Pharmacological Activity of Licorice Carbon Dots
3.3. Improve Bioavailability
3.3.1. Moutan Cortex (Mudanpi)
The Influence of Processing on Moutan Cortex Carbon Dots
Pharmacological Activity of Moutan Cortex Carbon Dots
3.3.2. Scutellariae Radix (Huangqin)
The Influence of Processing on Scutellariae Radix Carbon Dots
Pharmacological Activity of Scutellariae Radix Carbon Dots
3.4. New Drug Efficacy
3.4.1. Aurantii Fructus Immaturus (Zhishi)
The Influence of Processing on Aurantii Fructus Immaturus Carbon Dots
Pharmacological Activity of Aurantii Fructus Immaturus Carbon Dots
3.4.2. Ginger (Shengjiang)
The Influence of Processing on Ginger Carbon Dots
The Pharmacological Activity of Ginger Carbon Dots
3.4.3. Artemisiae Argyi Folium (Aiye)
The Influence of Processing on Artemisia Argyi Folium Carbon Dots
Pharmacological Activity of Artemisia Argyi Folium Carbon Dots
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Am. Chem. Soc. 2004, 26, 12736–12737. [Google Scholar] [CrossRef]
- Sun, Y.P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Lin, Q.; Chang, H.T. Recent Advances and Sensing Applications of Carbon Dots. Small Methods 2020, 4, 1900387. [Google Scholar] [CrossRef]
- Zou, M.; Ch, Y.Q. Application of carbon dots in biological diagnosis and treatment. Mater. Eng. 2020, 48, 59–68. [Google Scholar]
- Huang, S.S.; Wang, X.; LV, L.W.; Gu, Y.Q. Synthesis of highly biocompatible nitrogen-doped carbon dots and their application in bioimaging. Biomed. Eng. Lab. China Pharm. Univ. 2017, 48, 184–195. [Google Scholar]
- Tang, J.; Kong, B.; Wu, H.; Xu, M.; Wang, Y.C.; Wang, Y.L.; Zhao, D.Y.; Zheng, G.F. Carbon Nanodots Featuring Efficient FRET for Real-Time Monitoring of Drug Delivery and Two Photon Imaging. Advanced Materials. 2013, 25, 6569–6574. [Google Scholar] [CrossRef]
- Sturabotti, E.; Camilli, A.; Leonelli, F.; Vetica, F. Carbon Dots as Bioactive Antifungal Nanomaterials. ChemMedChem 2024, 19, e202400463. [Google Scholar] [CrossRef]
- Tang, J.; Hu, J.; Bai, X.; Wang, Y.; Cai, J.; Zhang, Z.; Geng, B.; Pan, D.; Shen, L. Near-Infrared Carbon Dots With Antibacterial and Osteogenic Activities for Sonodynamic Therapy of Infected Bone Defects. Small 2024, 20, e2404900. [Google Scholar] [CrossRef]
- Wang, H.; Sun, S.; Zhao, Y.; Wang, P.; Zhou, Y.; Sun, H.; Yang, J.; Cheng, K.; Li, S.; Lin, H. Carbon Dots with Integrated Photothermal Antibacterial and Heat-Enhanced Antioxidant Properties for Diabetic Wound Healing. Small 2024, 20, e2403160. [Google Scholar] [CrossRef] [PubMed]
- Ghirardello, M.; Ramos-Soriano, J.; Galan, M.C. Carbon Dots as an Emergent Class of Antimicrobial Agents. Nanomaterials 2021, 11, 1877. [Google Scholar] [CrossRef]
- Chen, J.; Li, T.; Lin, C.; Hou, Y.; Cheng, S.; Gao, B. Green synthesis of red-emitting carbon dots for bioimaging, sensing, and antibacterial applications. Acta Part A Mol. Biomol. Spectrosc. 2025, 328, 125458. [Google Scholar] [CrossRef] [PubMed]
- Pirsaheb, M.; Mohammadi, S.; Salimi, A. Current advances of carbon dots based biosensors for tumor marker detection, cancer cells analysis and bioimaging. Trends Anal. Chem. 2019, 115, 83–99. [Google Scholar] [CrossRef]
- Romero, M.P.; Lagos, K.J.; Cuadrado, C.F.; Garzón-Romero, C.C.; Salazar, M.; Solorzano, G.; Gardener, J.; González, M.; Rivera, M. Antibacterial and Antitumor Application of Carbon Dots Based on Natural Products for Photodynamic/Photothermal Effects. Int. J. Nanomed. 2025, 20, 7893–7914. [Google Scholar] [CrossRef]
- Das, J.; Singh, T.A.; Lalruatsangi, R.; Sil, P.C. Synthesis of nanohybrid consisting of taurine derived carbon dots and nanoceria for anticancer applications. Toxicol. Rep. 2024, 13, 101794. [Google Scholar] [CrossRef]
- Nallasamy, P.; Kannan, P.; Selvaraj, M.; Assiri, M.A.; Natarajan, S. Natural biomass-derived carbon quantum dots: A path to antioxidant, anticancer, antibiofilm, and bacterial bioimaging potential. Microchim. Acta 2025, 192, 286. [Google Scholar] [CrossRef]
- Li, M.; Xie, Z.; Zheng, M. Viscosity-activated carbon dots for noninvasive disease diagnosis, therapeutic efficacy assessment and anticancer drug screening. Biosens. Bioelectron. 2024, 263, 116576. [Google Scholar] [CrossRef]
- Roy, K.; Saikia, B.K.; Konwar, R. Exploring the role of carbon quantum dots as countermeasure for SARS-CoV-2 virus. Virology 2025, 603, 110339. [Google Scholar] [CrossRef]
- Ferreira, B.C.L.B.; Hannard, M.; Lozano-Garcia, M.; Aston, L.; Tejeda, G.; Domena, J.B.; Bernard, B.; Chen, J.; Bartoli, M.; Tondin, A.R.; et al. Investigating the Significances of Thiol Functionalities in SARS-CoV-2 Using Carbon Dots for Viral Inhibition. ACS Appl. Mater. Interfaces 2024, 16, 58439–58451. [Google Scholar] [CrossRef] [PubMed]
- Innocenzi, P.; De Forni, D.; Lori, F. Antiviral Activity of Carbon Dots: Strategies and Mechanisms of Action. Small Struct. 2025, 6, 2400401. [Google Scholar] [CrossRef]
- Tripathy, D.; Mishra, S.K.; Sahu, S.; Katiyar, A.; Kumar, N.; Mishra, T.; Dash, S.L.; Joshi, M.D.; Dixit, P.K.; Sarangi, M.K. Carbon dots as smart biosensing and imaging materials delving with antimicrobial, antifungal, and antiviral potentials against infectious pathogens. J. Chin. Chem. Soc. 2025, 72, 163–185. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, L.; Xu, P.; Yang, J.; Song, P.; Li, L.; Li, Y.; Zhang, Y.; Wu, S. Advancements of carbon dots: From the perspective of medicinal chemistry. Eur. J. Med. Chem. 2024, 280, 116931. [Google Scholar] [CrossRef]
- Yang, C.; Song, Y.; Luo, M.; Wang, Q.; Zhang, Y.; Cen, J.; Du, G.; Shi, J. Exosomes-encapsulated biomimetic polydopamine carbon dots with dual-targeting effect alleviate motor and non-motor symptoms of Parkinson’s disease via anti-neuroinflammation. Int. J. Biol. Macromol. 2025, 296, 139724. [Google Scholar] [CrossRef] [PubMed]
- Wegner, K.D.; Resch-Genger, U. The 2023 Nobel Prize in Chemistry: Quantum dots. Anal. Bioanal. Chem. 2024, 416, 3283–3293. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, S.; Wang, Y.; Tong, M.; Sun, H.; Dong, M.; Lu, Y.; Niu, W.; Wang, L. Yam carbon dots promote bone defect repair by modulating histone demethylase 4B. Int. J. Nanomed. 2024, 19, 10415–10434. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.Q. Preparation and Characterization of Poria Cocos Polysaccharide-Derived Carbon Dots and Its Study in Ion Detection and Cell Dynamics. Ph.D. Thesis, Anhui University of Traditional Chinese Medicine, Hefei, China, 2021. [Google Scholar]
- Deng, X.; Huang, X.M. Hydrothermal synthesis of fluorescent carbon nanodots from Chuanfoshan. Appl. Chem. Eng. 2016, 45, 1089–1091. [Google Scholar]
- Chen, Z.; Zhu, Y.D. Study on the cytotoxicity of water-soluble carbon dots of Scutellaria baicalensis charcoal and its effect on the solubility of baicalin and baicalein. Shizhen Guomian Guomao 2023, 34, 1623–1626. [Google Scholar]
- Wang, Y.; Kong, H.; Liu, X.; Luo, J.; Xiong, W.; Zhu, Y.; Zhang, Y.; Zhang, Y.; Zhao, Y.; Qu, H. Novel carbon dots derived from Cirsii Japonici Herba Carbonisata and their haemostatic effect. J. Biomed. Nanotechnol. 2018, 14, 1635–1644. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, W.; Yu, A.; Kuang, H.; Wang, M. Hemostatic bioactivity and mechanism of novel Rubia cordifolia L.-derived carbon dots. Nanoscale Adv. 2024, 6, 6229–6238. [Google Scholar] [CrossRef]
- Tian, R.; Guo, Y.; Luo, F.; Yang, T.; Zhou, Z.; Wang, Z.; Xie, Y. Green synthesis of multifunctional carbon dots from Crataegi Fructus for pH sensing, cell imaging and hemostatic effects. J. Photochem. Photobiol. A Chem. 2023, 438, 114531. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Q.; Wang, X.; Sun, F.; Fan, Y.; Liu, X.; Li, H.; Deng, Z. Hemostatic action of lotus leaf charcoal is probably due to transformation of flavonol aglycons from flavonol glucosides in traditional Chinese medicine. J. Ethnopharmacol. 2019, 249, 112364. [Google Scholar] [CrossRef]
- Yan, X.; Zhao, Y.; Luo, J.; Xiong, W.; Liu, X.; Cheng, J.; Wang, Y.; Zhang, M.; Qu, H. Hemostatic bioactivity of novel Pollen Typhae Carbonisata-derived carbon quantum dots. Nanobiotechnology 2017, 15, 60. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Shen, L.; Xie, H.; Huang, Q.; Zhao, D.; Huang, X.; Chen, X.; Li, J. Synthesis of Carbon Dots with Hemostatic Effects Using Traditional Chinese Medicine as a Biomass Carbon Source. ACS Omega 2023, 8, 3176–3183. [Google Scholar] [CrossRef]
- Xiong, W.; Zhao, Y.; Cheng, J.J.; Zhang, M.L.; Sun, Z.W.; Luo, J.; Zhu, Y.F.; Zhang, Y.X.; Kong, H.; Qu, H.H. Novel carbon dots derived from Dryopteridis Crassirhizomatis Rhizoma Carbonisatum and their hemostatic effect. Chin. Herb. Med. 2019, 50, 1388–1394. [Google Scholar]
- Huang, Q.Q.; Bao, Q.Q.; Wu, C.Y.; Hu, M.R.; Chen, Y.N.; Wang, L.; Chen, W.D. Preparation, characterization and antitumor activity of gamboge carbon quantum dots. Cent. South Pharm. 2021, 19, 604–610. [Google Scholar]
- Lv, R.Y.; Li, G.R.; Lu, S.T.; Wang, T. Synthesis of Multi-Functional Carbon Quantum Dots for Targeted Antitumor Therapy. J. Fluoresc. 2021, 31, 339–348. [Google Scholar] [CrossRef]
- Feng, X.X.; Li, J.X.; Jiang, H.J.; Wang, Z.H.; Feng, T.T. Photothermal therapy of lung cancer cells with nitrogen-doped curcumin carbon dots. Micro-Nano Electron. Technol. 2024, 61, 56–65. [Google Scholar]
- Guo, S.; Tong, J.; Liu, Y.; Qin, D.; Yan, J.; Peng, H.; Sun, L.; Jing, X.; Wu, X.; Li, B. Synthesis of Eucommia ulmoides-derived carbon dots for anti-inflammatory and accelerated wound healing. Int. Immunopharmacol. 2024, 143 Pt 3, 113606. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Y.; Kong, H.; Cheng, J.; Zhang, M.; Sun, Z.; Wang, S.; Liu, J.; Qu, H.; Zhao, Y. Novel mulberry silkworm cocoon-derived carbon dots and their anti-inflammatory properties. Artif. Cells Nanomed. Biotechnol. 2020, 48, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, M.; Cheng, J.; Zhang, Y.; Luo, J.; Liu, Y.; Kong, H.; Qu, H.; Zhao, Y. Effect of Lonicerae japonicae Flos Carbonisata-Derived Carbon Dots on Rat Models of Fever and Hypothermia Induced by Lipopolysaccharide. Int. J. Nanomed. 2020, 15, 4139–4149. [Google Scholar] [CrossRef]
- Li, P.; Sun, L.; Xue, S.; Qu, D.; An, L.; Wang, X.; Sun, Z. Recent advances of carbon dots as new antimicrobial agents. Smartmat 2022, 13, 226–248. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, X.; Zhang, R.; Huang, X.; Xiao, X. Facile One-pot Synthesis of Multifunctional Protamine Sulfate-derived Carbon Dots for Antibacterial and Fluorescent Imaging Applications of Bacteria. New J. Chem. 2021, 45, 1010–1019. [Google Scholar] [CrossRef]
- Vibhute, A.; Patil, T.; Malavekar, D.; Patil, S.; Lee, S.; Tiwari, A.P. Green Synthesis of Fluorescent Carbon Dots from Annona squamosa Leaves: Optical and Structural Properties with Bactericidal, Anti-inflammatory, Anti-angiogenesis Applications. J. Fluoresc. 2023, 33, 1619–1629. [Google Scholar] [CrossRef]
- Miao, H.; Wang, P.; Wu, J.; Li, X.; Du, Y.; Yan, H.; You, Q.; Dong, W.; Li, L. Highly efficient and broad-spectrum antibacterial carbon dots combat antibiotic resistance. Talanta 2025, 281, 126926. [Google Scholar] [CrossRef]
- Wu, L.; Gao, Y.; Zhao, C.; Huang, D.; Chen, W.; Lin, X.; Liu, A.; Lin, L. Synthesis of curcumin-quaternized carbon quantum dots with enhanced broad-spectrum antibacterial activity for promoting infected wound healing. Biomater. Adv. 2022, 133, 112608. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Li, L.; Liu, J.; Yu, L.; Li, H.; Cheng, F.; Yi, X.; He, J.; Li, B. Green Synthesis of Fluorescent Carbon Dots from Gynostemma for Bioimaging and Antioxidant in Zebrafish. ACS Appl. Mater. Interfaces 2019, 11, 9832–9840. [Google Scholar] [CrossRef]
- Shahid, S.; Mohiyuddin, S.; Packirisamy, G. Synthesis of multi-color fluorescent carbon dots from mint leaves: A robust bioimaging agent with potential antioxidant activity. Nanosci. Nanotechnol. 2020, 20, 6305–6316. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Cheng, G.; Gao, Y.; Cui, L.; Zhao, Y.; Zhang, Y.; Tian, Y.; Zhao, Y.; Zhang, Y.; Qu, H.; et al. Green synthetic natural carbon dots derived from Fuligo Plantae with inhibitory effect against alcoholic gastric ulcer. Front. Mol. Biosci. 2023, 10, 1223621. [Google Scholar] [CrossRef]
- Hu, J.; Luo, J.; Zhang, M.; Wu, J.; Zhang, Y.; Kong, H.; Qu, H.; Cheng, G.; Zhao, Y. Protective Effects of Radix Sophorae Flavescentis Carbonisata-Based Carbon Dots Against Ethanol-Induced Acute Gastric Ulcer in Rats: Anti-Inflammatory and Antioxidant Activities. Int. J. Nanomed. 2021, 16, 2461–2475. [Google Scholar] [CrossRef] [PubMed]
- Fibriani, A.; Taharuddin, A.A.P.; Stephanie, R.; Yamahoki, N.; Laurelia, J.; Wisnuwardhani, P.H.; Agustiyanti, D.F.; Angelina, M.; Rubiyana, Y.; Ningrum, R.A.; et al. Curcumin-derived carbon-dots as a potential COVID-19 antiviral drug. Heliyon 2023, 9, e20089. [Google Scholar] [CrossRef]
- Chen, H.H.; Lin, C.J.; Anand, A.; Lin, H.J.; Lin, H.Y.; Mao, J.Y.; Wang, P.H.; Tseng, Y.J.; Tzou, W.S.; Huang, C.C.; et al. Development of antiviral carbon quantum dots that target the Japanese encephalitis virus envelope protein. J. Biol. Chem. 2022, 298, 101957. [Google Scholar] [CrossRef]
- Ting, D.; Dong, N.; Fang, L.; Lu, J.; Bi, J.; Xiao, S.; Han, H. Correction to Multisite Inhibitors for Enteric Coronavirus: Antiviral Cationic Carbon Dots Based on Curcumin. ACS Appl. Nano Mater. 2020, 3, 4913. [Google Scholar] [CrossRef]
- Bottini, M.; Balasubramanian, C.; Dawson, M.I.; Bergamaschi, A.; Bellucci, S.; Mustelin, T. Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc- produced single-walled carbon nanotubes. J. Phys. Chem. B 2005, 110, 831–836. [Google Scholar] [CrossRef]
- Zhou, J.; Booker, C.; Li, R.; Zhou, X.; Sham, T.K.; Sun, X.; Ding, Z. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 2007, 129, 744–745. [Google Scholar] [CrossRef]
- Hu, S.L.; Niu, K.Y.; Sun, J.; Yang, J.; Zhao, N.Q.; Du, X.W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. Mmaterials Chem. 2009, 19, 484–488. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, H.; Wu, W.; Zhou, L.; Dai, Z.; Dong, S. A facile hydrothermal method to synthesize fluorescent carbon dots for detecting iron. Mater. Express 2020, 10, 1135–1140. [Google Scholar] [CrossRef]
- Zhao, H.L.; Chen, W.; Li, M.; Deng, X.; Huang, X.M. one-step hydrothermal synthesis of photoluminescent carbon dots with radix vladimiriae and their optical properties. Chem. Res. 2023, 34, 58–63. [Google Scholar]
- Dong, Y.; Chen, Y.; You, X.; Lin, W.; Lu, C.H.; Yang, H.H.; Chi, Y. High photoluminescent carbon based dots with tunable emission color from orange to green. Nanoscale 2017, 9, 1028–1032. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Y.; Guo, T.; Yang, T.; Chen, M.; Wang, J. Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. Biosens. Bioelectron. 2016, 85, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Dager, A.; Uchida, T.; Maekawa, T.; Tachibana, M. Synthesis and characterization of mono-disperse carbon quantum dots from fennel seeds: Photoluminescence analysis using machine learning. Sci. Rep. 2019, 9, 14004. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Y.; Zhang, M.; Kong, H.; Wang, S.; Cheng, J.; Qu, H.; Zhao, Y. Novel Carbon Dots Derived from Puerariae lobatae Radix and Their Anti-Gout Effects. Molecules 2019, 24, 4152. [Google Scholar] [CrossRef]
- Tsai, H.W.; Tampubolon, N.F.; Wu, T.; Wu, M.Y.; Lin, Y.W. Characterization of carbon dots from fructus gardeniae (Zhi-zi) and gardenia charcoal (black Zhi-zi) via microwave-assisted extraction. J. Food Drug Anal. 2024, 32, 371–381. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Communications 2009, 34, 5118–5120. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.H.; Xu, X.M.; Sun, G.H.; Guo, M.X. Preparation and characterization of carbon dots using Tibetan medicine Rhodiola rosea as carbon source. J. Biol. 2025, 42, 16–23. [Google Scholar]
- Li, J.; Jiang, H.; Feng, X.; Mo, X.; Chen, L. Rapid detection of sunset yellow in beverages using fluorescent probes of carbon dots from Folium nelumbinis. China Food Addit. 2025, 3, 182–189. [Google Scholar]
- Liu, R.; Wu, D.; Liu, S.; Koynov, K.; Knoll, W.; Li, Q. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem. 2009, 48, 4598–4601. [Google Scholar] [CrossRef]
- Liao, H.; Ran, Y.; Zhong, J.; Li, J.; Li, M.; Yang, H. Panax notoginseng powder -assisted preparation of carbon-quantum-dots/BiOCl with enriched oxygen vacancies and boosted photocatalytic performance. Environ. Res. 2022, 215 Pt 2, 114366. [Google Scholar] [CrossRef]
- Peng, H.; JTravas-Sejdic, J. Simple Aqueous Solution Route to Luminescent Carbogenic Dots from Carbohydrates. Chem. Mater. 2009, 21, 5563–5565. [Google Scholar] [CrossRef]
- Bulat, T.; Zmejkoski, D.; Marković, Z.; Satzinger, M.; Kovač, J.; Strobl, B.; Milivojević, D.; Marković, B.T. Employing carbon quantum dots to combat cytomegalovirus. Mater. Chem. Phys. 2024, 311, 128495. [Google Scholar] [CrossRef]
- Li, X.N.; Tian, H.; Zeng, Y.Y.; He, X. Research Progress in Processing History and Pharmacological Effect of Huangbo (Phellodendri Chinensis Cortex). J. Liaoning Univ. Tradit. Chin. Med. 2024, 26, 194–199. [Google Scholar]
- Pharmacopoeia Committee of the Ministry of Health of the People’s Republic of China. Pharmacopoeia of the People’s Republic of China (a); People’s Health Publishing House: Beijing, China, 2020. [Google Scholar]
- Li, L.X.; Qiao, B.; Li, Y.B.; Zhang, L.Y.; Wang, Y.M.; Jin, J.; Zhang, X.X. Changes of chemical constituents in Phellodendri Chinensis Cortex before and after charing based on RPLC/Q-TOF-MS technology. Chin. Herb. Med. 2012, 43, 1314–1319. [Google Scholar]
- Xu, Y.L.; Xu, J.J.; Zhang, J. Determination of berberine hydrochloride in different concoctions of Phellodendron Bark by HPLC. Chin. J. Tradit. Chin. Med. 2021, 39, 133–135. [Google Scholar]
- Dai, Q.; Hu, Y.; Lei, L.; Luo, X. Research progress on literature research, chemical constituents and pharmacological effects of cortex phellodendri processed products. Asia-Pac. Tradit. Med. 2020, 16, 205–208. [Google Scholar]
- Liu, X.; Wang, Y.; Yan, X.; Zhang, M.; Zhang, Y.; Cheng, J.; Lu, F.; Qu, H.; Wang, Q.; Zhao, Y. Novel Phellodendri Cortex (Huang Bo)-derived carbon dots and their hemostatic effect. Nanomedicine 2018, 13, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Cheng, J.; Sun, Z.; Kong, H.; Zhang, Y.; Wang, S.; Wang, X.; Zhao, Y.; Qu, H. Protective Effects of Carbon Dots Derived from Phellodendri Chinensis Cortex Carbonisata against Deinagkistrodon acutus Venom-Induced Acute Kidney Injury. Nanoscale Res. Lett. 2019, 14, 377. [Google Scholar] [CrossRef]
- Zhang, M.; Cheng, J.; Hu, J.; Luo, J.; Zhang, Y.; Lu, F.; Kong, H.; Qu, H.; Zhao, Y. Green Phellodendri Chinensis Cortex-based carbon dots for ameliorating imiquimod-induced psoriasis-like inflammation in mice. Nanobiotechnology 2021, 19, 105. [Google Scholar] [CrossRef]
- An, C.; Chen, M.; Yang, C.Z.; Meng, J.; Zhuang, Y.X. Herbal evidence and name combing of “Jin Buwai”. Chin. Mater. Medica 2019, 42, 2449–2452. [Google Scholar]
- Li, G.; Chen, J.; Li, Z.K.; Wu, W.; Yang, H.J. Analysis of patent data of Panax notoginseng and enlightenment of industrial development. J. Tradit. Chin. Med. 2020, 45, 1011–1022. [Google Scholar]
- Liu, R.F.; Yue, X.; Zhou, P.; Yang, X.Y.; Qu, Y. Processed Panax Notoginseng Research Progress Based on Clinical Application History of Panax Notoginseng. J. Chengdu Univ. Tradit. Chin. Med. 2023, 46, 67–74. [Google Scholar]
- Gao, Y.Z.; Zou, J.B.; Yang, M.; Li, F.O.; Lei, X.; Wen, W.J.; Liu, H.Z.; Lu, H.; Zhang, Y.; Wang, F. Historical Evolution and Modern Research Progress of Processing of Notoginseng Radix et Rhizoma. Chin. J. Exp. Formulas 2023, 29, 212–220. [Google Scholar]
- Yu, H.S.; Zhang, L.J.; Song, X.B.; Liu, Y.X.; Zhang, J.; Cao, M.; Kang, L.P.; Kang, T.G.; Ma, B.P. Chemical constituents from processed rhizomes of Panax notoginseng. Chin. J. Tradit. Chin. Med. 2013, 38, 3910–3917. [Google Scholar]
- Du, Q.Q.; Yang, C. Analysis of volatile components in Panax ginseng artifacts by HS-GC-MS. Pharm. Res. 2023, 42, 567–573. [Google Scholar]
- Zheng, X.; Qin, K.; He, L.; Ding, Y.; Luo, Q.; Zhang, C.; Cui, X.; Tan, Y.; Li, L.; Wei, Y. Novel fluorescent nitrogen-doped carbon dots derived from Panax notoginseng for bioimaging and high selectivity detection of Cr6+. Analyst 2020, 146, 911–919. [Google Scholar] [CrossRef]
- Zheng, X.D. Preparation of Carbon Dots of Three Yunnan Local Herbs and Their Properties. Ph.D. Thesis, Kunming University of Science and Technology, Kunming, China, 2021. [Google Scholar]
- Cai, X.J.; Xu, H.X.; Lin, S.H.; Yu, N.C. Separation and identification of the new chemical constituents from rhubarb charcoal and its formation rule. Chin. J. Hosp. Pharm. 2018, 38(22), 2336–2339. [Google Scholar]
- Wei, J.C.; Qin, Z.J.; Ou, H.S.; Xie, Z.; Chen, Y.; Pan, Z.Z.; Li, J.Z.; Chen, Z.J.; Feng, Y.Y. Comparative Study on the Contents of Total Flavonoids in Three Processed Rhubarb Products. J. Liaoning Univ. Tradit. Chin. Med. 2019, 21, 66–68. [Google Scholar]
- Guo, D.Y.; Wang, M.; Tang, Z.S.; Cui, C.L. Experimental study on the changes of chemical composition and hemostatic effect of Rhubarb before and after frying with charcoal. Shizhen Guomian Guomao 2010, 21, 3152–3153. [Google Scholar]
- Li, L.; Xiao, Y.Q. Study on the change rule of substance base of Rheum palmatum before and after concocting. Chin. J. Tradit. Chin. Med. 2012, 27, 803–813. [Google Scholar]
- Zhang, Y.F.; Zhao, J.; Zhao, Y.S.; Bai, X.; Chen, Y.M.; Liu, Y.H.; Zhang, Y.; Kong, H.; Qu, H.H.; Zhao, Y. The Rhei radix rhizoma-based carbon dots ameliorates dextran sodium sulphate-induced ulcerative colitis in mice. Artif. Cells Nanomed. Biotechnol. 2023, 51, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.X. Study on the changes of fingerprints and contents of major components of Cynanchum officinale before and after concocting. Chin. Pharm. 2020, 23, 2168–2173. [Google Scholar]
- Chu, Z.C.; Wang, S.Y.; Yi, J.P.; Yan, S.H. A preliminary study on the trend of compositional changes in the fried charcoal of Thuja rubra. Shizhen Guomao Guomao 2019, 30, 1886–1888. [Google Scholar]
- Ding, X.Y. Differential Studies on the Chemical Composition and Anti-Inflammatory and Hemostatic Activities of Thunb and Thunb Charcoal. Ph.D. Thesis, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China, 2023. [Google Scholar]
- Zhao, Y.S.; Li, W.Y.; Cao, T.Y.; Zhao, Y.; Qu, H.H. Overview of the Hemostatic Material Basis of Charcoal Drugs. Introd. Tradit. Chin. Med. 2021, 27, 56–60. [Google Scholar]
- Zhang, M.; Zhao, Y.; Cheng, J.; Liu, X.; Wang, Y.; Yan, X.; Zhang, Y.; Lu, F.; Wang, Q.; Qu, H. Novel carbon dots derived from Schizonepetae Herba Carbonisata and investigation of their haemostatic efficacy. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1562–1571. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Lu, F.; Cheng, J.; Zhang, M.; Zhang, Y.; Xiong, W.; Zhao, Y.; Qu, H. Haemostatic bioactivity of novel Schizonepetae Spica Carbonisata-derived carbon dots via platelet counts elevation. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. S3), S308–S317. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.H. Effects of different concoctions on salvinorin B in Salvia miltiorrhiza herbs. Chin. J. Exp. Formulas 2012, 18, 103–105. [Google Scholar]
- Cheng, L.F.; Cui, X.J. Comparison of tanshinone IIA content in different concoctions of Salvia miltiorrhiza. Chin. Mod. Tradit. Med. 2009, 11, 41–43. [Google Scholar]
- Wang, P.Q.; Kong, X.M.; Kang, W.Y. Study on the antioxidant activity of raw and concocted products of Salvia miltiorrhiza. Nat. Prod. Res. Dev. 2014, 26, 1132–1135, 1042. [Google Scholar]
- Li, Y.J.; Li, W.; Yang, X.; Kang, Y.Y.; Zhang, H.R.; Liu, Y.L.; Lei, B.F. Salvia Miltiorrhiza-Derived Carbon Dots as Scavengers of Reactive Oxygen Species for Reducing Oxidative Damage of Plants. ACS Appl. Nano Mater. 2021, 4, 113–120. [Google Scholar] [CrossRef]
- Guo, Y.H.; Chen, R.; Cao, T.Y.; Dong, L.Y.; Wu, T.; Zhang, Y.; Kong, H.; Zhao, Y.; Qu, H.H. Discovery of Nano-components of Salvia Miltiorrhiza Carbonisatum and Their Protective Effect on Liver Injury Induced by Hyperbilirubinemia in Mice. Chin. Med. Introd. 2023, 29, 6–11,18. [Google Scholar]
- Liu, G.S.; Zhang, R.X.; Zhang, W. Translation and Interpretation of Shennong Ben Cao Jing; Shanghai Science and Technology Press: Shanghai, China, 2018; Volume 80. [Google Scholar]
- Li, B.; Wang, H.M.; Liu, S.Z. Research progress of self-assembly technology of Chinese medicine soup. Northwest J. Pharm. 2025, 40, 225–234. [Google Scholar]
- Li, B.C.; Wang, J.S.; Li, Y.; Shang, L.; Zhao, Y. Processing Technology and Quality Standard of Charred Glycyrrhizae Radix et Rhizoma. Mod Chin Med. 2022, 24, 510–514. [Google Scholar]
- Zhang, Y.; Chen, Y.M.; Bai, X.; Cheng, G.L.; Cao, T.Y.; Dong, L.Y.; Zhao, J.; Zhang, Y.; Qu, H.H.; Kong, H.; et al. Glycyrrhizae radix et Rhizoma-Derived Carbon Dots and Their Effect on Menopause Syndrome in Ovariectomized Mice. Molecules 2023, 28, 1830. [Google Scholar] [CrossRef]
- Liu, C.Y.; Liu, Y.H.; Wu, J.S.; Zhao, Y.F.; Zhong, Q.; Kong, H.; Qu, H.H. Protective effect of licorice carbonisata nano components on stress-induced gastric ulcer in rats. Cent. South Pharm. 2021, 19, 581–586. [Google Scholar]
- Liu, Y.H.; Zhang, M.L.; Chen, J.J.; Zhang, Y.; Kong, H.; Zhao, Y.; Qu, H.H. Novel Carbon Dots Derived from Glycyrrhizae Radix et Rhizoma and Their Anti-Gastric Ulcer Effect. Molecules 2021, 26, 1512. [Google Scholar] [CrossRef]
- Bing, Y.; Zou, X.; Yang, X.; Yang, X.; Sheng, J.; Qu, Z. Mechanism elucidation and biochemometric-based screening of substances in Schisandra chinensis leaves for alcoholic liver injury. Phytomedicine 2025, 142, 156757. [Google Scholar] [CrossRef]
- Li, Z.Y.; Li, B.H.; Liu, M.M.; Yang, Y.; Tian, J.Z.; Cui, Q.H. Effects of Glycyrrhiza uralensis on Inhibiting Five Viruses and Screening of its Active Anti-RSV Fraction. Chin. Tradit. Pat. Med. 2022, 44, 2503–2509. [Google Scholar]
- Tong, T.; Hu, H.; Zhou, J.; Deng, S.; Zhang, X.; Tang, W.; Fang, L.; Xiao, S.; Liang, J. Glycyrrhizic-Acid-Based Carbon Dots with High Antiviral Activity by Multisite Inhibition Mechanis. Small 2020, 16, 1906206. [Google Scholar] [CrossRef]
- Wang, C.E. Changes in flavonoid content of peony bark before and after frying charcoal. Chin. Tradit. Med. Sci. Technol. 2017, 24, 306–307. [Google Scholar]
- Jiang, G.R.; Liu, S.W.; Chen, W.M.; He, L.L. Effects of different concoctions on the content of active ingredients in Mudanpi. Clin. Ration. Use Med. 2017, 10, 15–16. [Google Scholar]
- Ding, A.W.; Guo, R.; Xu, J.R.; Rong, J.H. Determination of danpi phenol in danpi charcoal by high performance liquid chromatography. Chin. J. Tradit. Chin. Med. 1996, 21, 23–24. [Google Scholar]
- Li, X.; Zhang, L.; Ding, A.W. Pharmacodynamic screening study on the hemostatic active sites of Danshi charcoal. Chin. Pat. Med. 2010, 32, 129–130. [Google Scholar]
- Kong, C.; Wang, K.; Sun, L.; Zhao, H.; Wang, T.; Zhou, W.; Wu, D.; Xu, F. Novel Carbon Dots Derived from Moutan Cortex Significantly Improve the Solubility and Bioavailability of Mangiferin. Nanomedicine 2024, 19, 3611–3622. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Hu, J.; Liu, Y.H.; Bai, X.; Chen, Y.M.; Li, Y.R.; Zhao, Y.F.; Kong, H.; Zhao, Y.; Qu, H.H. The effect of Moutan cortex carbonisata nano-components on the blood-cooling and hemostatic. Acta Pharm. Sin. 2021, 56, 2093–2101. [Google Scholar]
- Bing, Y.; Li, Z.; Liu, L.; Wang, D.; Liu, K.; Li, J.; Li, S.; Qu, Z.; Zou, X. Preliminary exploration of the antidepressant mechanism of Bupleurum scorzonerifolium-Scutellaria baicalensis and its core SSa-Baicalin combination. J. Ethnopharmacol. 2025, 13, 120426. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Z.; Wu, S.; Zhang, T.; Zhao, S.; Bing, Y.; Liu, K.; Sun, S.; Qu, Z.; Zou, X. A comprehensive review of the botany, traditional uses, phytochemistry, pharmacology, processing and quality evaluation of Bupleurum scorzonerifolium Willd. J. Ethnopharmacol. 2025, 354, 120475. [Google Scholar] [CrossRef]
- Li, Y.K.; Cao, L.H.; Chen, Z. Changes in chemical constituents of Scutellaria baicalensis before and after charcoal frying based on HPLC fingerprinting and UPLC-Q Exactive Focus MS/MS. Chin. Herb. Med. 2024, 55, 8425–8434. [Google Scholar]
- Huang, Q.; Meng, J.; Wu, D.L.; Gu, X.Z.; Ma, Y.L.; Yao, L.; Liu, H.; Zhang, C. Comparison of tannin content and charcoal adsorption of Scutellaria baicalensis before and after charcoal frying. Chin. J. Exp. Formulas 2013, 19, 82–84. [Google Scholar]
- Zhang, M.L.; Cheng, J.J.; Luo, J.; Li, C.; Hou, T.; Zhao, Y.; Wang, Y.; Qu., H.; Kong, H. Protective effects of Scutellariae Radix Carbonisata-derived carbon dots on blood-heat and hemorrhage rats. Front. Pharmacol. 2023, 14, 1118550. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.J.; Liu, B.; Lin, J.H. Preparation and characterization of baicalin carbon dots and their inhibitory effects on the proliferation of canine mammary tumor cells. Anim. Husb. Vet. Med. 2023, 55, 117–121. [Google Scholar]
- Wang, W.K.; Liu, H.N.; Lei, D. Effects of different concoctions on the contents of naringin and neohesperidin in Citrus aurantium. J. Jiangxi Coll. Tradit. Chin. Med. 2007, 19, 50–51. [Google Scholar]
- Ou, Y.R. Study on the Contents of Synephrine in Raw Fructus Aurantii Immaturus and Its Processed Products. China Pharm. 2005, 16, 75–77. [Google Scholar]
- Wang, M.J.; Chen, R.; Zhou, L. Effects of the degree of charring of Citrus aurantium on analgesic and antidepressant efficacy. J. Tradit. Chin. Med. 2023, 51, 26–29. [Google Scholar]
- Wang, S.; Zhang, Y.; Kong, H.; Zhang, M.; Cheng, J.; Wang, X.; Lu, F.; Qu, H.; Zhao, Y. Antihyperuricemic and anti-gouty arthritis activities of Aurantii fructus immaturus carbonisata-derived carbon dots. Nanomedicine 2019, 14, 2925–2939. [Google Scholar] [CrossRef]
- Li, X.; Dai, E.; Li, M.; Kong, R.; Yuan, J.; Li, T.; Wang, S.; Zhang, Y.; Kong, H.; Zhao, Y. Aurantii fructus immaturus carbonisata-derived carbon dots and their anti-depression effect. Front. Mol. Biosci. 2024, 10, 1334083. [Google Scholar] [CrossRef]
- Qu, Z.Y.; Li, H.; Qiang, F.; Liu, K.; Wu, S.; Li, J.; Zou, X. Regulation of inflammation by Chaihu-Shugan-San: Targeting the IL-17/NF-κB pathway to combat breast cancer-related depression. Phytomedicine 2025, 143, 156836. [Google Scholar] [CrossRef]
- Sun, M.; Yang, Y.P.; Li, C.J. Preliminary study on the chemical composition of ginger charcoal. Chin. Herb. Med. 2016, 39, 307–311. [Google Scholar]
- Li, J.; Wang, Z.M.; Gao, H.M. Effects of concoction on volatile components in ginger and its different concoctions. Chin. J. Exp. Formulas 2012, 18, 77–81. [Google Scholar]
- Li, T.Y.; Liu, W.H.; Liang, N.; Zhang, Q.; Wang, X.H. Evaluation of curcumin and its antioxidant activity in ginger and its different concoctions. Food Ind. 2016, 12, 180–183. [Google Scholar]
- Zhang, M.; Cheng, J.; Zhang, Y.; Kong, H.; Wang, S.; Luo, J.; Qu, H.; Zhao, Y. Green synthesis of Zingiberis rhizoma-based carbon dots attenuates chemical and thermal stimulus pain in mice. Nanomedicine 2020, 15, 851–869. [Google Scholar] [CrossRef]
- Li, C.L.; Ou, C.M.; Huang, C.C.; Wu, W.C.; Chen, Y.P.; Lin, T.E.; Ho, L.C.; Wang, C.W.; Shih, C.C.; Zhou, H.C.; et al. Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. Mater. Chem. B 2014, 2, 4564–4571. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.P.; Liu, G.Q.; Xu, H.X.; Fu, Y.H. Examination of eucalyptus oleoresin content in fried mugwort leaves and charcoal of mugwort leaves. Chin. J. Biochem. Drugs 2015, 10, 144–146. [Google Scholar]
- Gu, L.; Shao, X.T.; Wang, X.Y.; Yang, Z.Y.; Duan, M.H.; Wang, Y.; Li, Y. Study on chemical compositions of Folium Artemisiae argyi carbonisatum. J. Chang. Univ. Chin. Med. 2022, 38, 636–638. [Google Scholar]
- Li, X.N.; Lv, J.M.; Lin, H.; Zhen, A.X.; Liu, J.W.; Wang, J.T.; Wang, X.Y.; Shan, M.Y.; Li, Y.; Lin, Z. Comparative Study on Microscopic Characteristics between Artemisia argyi Folium and Its Charred Product. World Latest Med. Inf. (Electron. Version) 2018, 18. [Google Scholar] [CrossRef]
- Wang, H.B.; Zhang, M.L.; Ma, Y.R. Selective inactivation of Gram-negative bacteria by carbon dots derived from natural biomass-Artemisia argyi leaves. J. Mater. Chem. B 2020, 8, 2666–2672. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Y. Preparation of Carbon Dots from Mugwort Leaves and Its Antibacterial and Antioxidant Activities. Ph.D. Thesis, Zhengzhou University, Zhengzho, China, 2022. [Google Scholar]
- Kong, H.; Zhao, Y.; Zhu, Y.; Xiong, W.; Luo, J.; Cheng, J.; Zhang, Y.; Zhang, M.; Qu, H.; Zhao, Y. Carbon dots from Artemisiae Argyi Folium Carbonisata strengthening the anti-frostbite ability. Artif. Cells Nanomed. Biotechnol. 2020, 49, 11–19. [Google Scholar] [CrossRef] [PubMed]
Method | Operation Mode | Result |
---|---|---|
Arc discharge | The carbon electrode discharges in an inert gas and the material evaporates and condenses. | Higher purity but more impurities |
Electrochemical | The electrodes dissolve and aggregate when an electric current is passed through the electrolyte. | Metal and oxide nanomaterials with easily controllable morphology |
Laser ablation | The laser irradiates the carbon target to vaporize and condense it. | Small and well-dispersed, but associated with high equipment cost |
Method | Operation Mode | Result |
---|---|---|
Hydrothermal | In high-temperature and high-pressure aqueous solutions, reactants undergo dissolution, reaction, and crystallization to form the required materials. | Uniform particle size and high crystallinity |
High-temperature pyrolysis | Under high-temperature and inert gas conditions, the precursor undergoes decomposition reactions to form the required materials. | Higher purity |
Solvothermal | Organic solvents are used instead of water to carry out high-temperature and high-pressure reactions in a closed reactor, promoting the synthesis of substances. | Dissolve some insoluble reactants in the hydrothermal method |
Microwave-assisted carbonization | Rapid heating of reactants using microwave radiation to induce carbonization reactions. | Fast reaction speed, uniform product structure, and relatively low energy consumption |
Template method | Guide the growth of materials with the help of templates to form specific structures. | Precise control of morphology, size, and porosity |
Acid dehydration | Dehydration and condensation of reactants to form target products. | Commonly used in the synthesis of organic materials |
Avenues | Relevant Indicators | Brief Description of Mechanism of Action |
---|---|---|
Coagulation pathway | Associated with TT and FIB levels | Increase FIB levels and shorten TT |
Blood platelet | ----- | Upgrade the number of PLTs |
Ingredient | Rhubarb Charcoal |
---|---|
5-Hydroxymethylfurfural | Additional |
Total flavonoids | Minimize |
Total anthraquinone | Minimize |
Rhubarb phenol, rhubarbol, rhubarbic acid, and rhubarbin methyl ether | Minimize |
Avenues | Relevant Indicators | Brief Description of Mechanism of Action |
---|---|---|
Endogenous coagulation | APTT | Reduce APTT values |
Exogenous coagulation | PT | Lower PT |
Coagulation | TT and FIB | Increase FIB levels and shorten TT |
PLT | ----- | Boost platelet count |
Ingredient | Salvia Miltiorrhiza Charcoal | Impact on Efficacy |
---|---|---|
Salvianolic acid B | Significantly lower | Affects antioxidant, anticoagulant, etc. |
Tanshinone IIA | Impact on antimicrobial and anti-inflammatory properties |
Program | Licorice | Gly-CDs |
---|---|---|
Focus on role | Regulation of viral replication cycle, body inflammation, immunity, and oxidative stress | Multi-point virus suppression |
Anti-RSV site of activity and stage of action | n-butanol and aqueous sites, acting in the adsorption, penetration, and replication phases | / |
Anti-viral or anti-RSV specific modalities | Inhibition of related pathways attenuates inflammation; Increased IFN-β inhibits immune escape; Reduced oxidative stress | Binding viruses to inactivate, inhibit invasion, disrupt replication, activate immunity, and inhibit ROS and regulatory factors |
Anti-viral spectrum | Inhibits five viruses | Effective against a wide range of viruses |
Role advantages | / | Multi-target synergy, large surface area, multiple sites, and multivalent action |
Ingredient | Zhishi Charcoal | Impact on Efficacy |
---|---|---|
Naringin | Lower | May weaken the effect of reducing capillary permeability and anti-inflammatory |
Neohesperidin | ||
Simferin | Substantial reduction | May diminish pressor-boosting and anti-shock effects |
Ingredient | Fresh Ginger | Ginger Charcoal | Evolution |
---|---|---|---|
Phenol | None | Catechol and 1,2,4,5-tetrahydroxyphenol | Additional |
Salts | None | Dibutyl phthalate | Additional |
Volatility | Contains a variety of low-boiling-point volatile ingredients | Significant reduction in low-boiling point volatile components | Minimize |
Curcumin | Gingerone not detected; 6-gingerol, 8-gingerol, etc., in low content | Gingerone, 6-gingerol, and 8-gingerol were significantly higher than ginger | Gingerone from scratch and other ingredients increased |
Ingredient | Charred Artemisia Argyi Folium | Impact on Efficacy |
---|---|---|
Flavonoids | Addition of quercetin and eicosanoids | / |
Volatile oil (in general) | Disappearance of eucalyptus oil extract | Affects the regulation of uterine contractions, improves blood circulation, and may also affect antimicrobial capacity |
Carbon | Additional | May give new properties such as hemostasis to mugwort charcoal |
Refractory calcium oxalate clusters | Substantial reduction | Produces Ca2+, which can promote blood clotting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Zhou, J.; Ren, J.; Qu, Z.; Zhang, T. Progress in the Study of Extraction Methods and Pharmacological Effects of Traditional Chinese Medicine-Derived Carbon Dots. Molecules 2025, 30, 4015. https://doi.org/10.3390/molecules30194015
Zhou X, Zhou J, Ren J, Qu Z, Zhang T. Progress in the Study of Extraction Methods and Pharmacological Effects of Traditional Chinese Medicine-Derived Carbon Dots. Molecules. 2025; 30(19):4015. https://doi.org/10.3390/molecules30194015
Chicago/Turabian StyleZhou, Xiaohang, Junxiang Zhou, Junling Ren, Zhongyuan Qu, and Tianlei Zhang. 2025. "Progress in the Study of Extraction Methods and Pharmacological Effects of Traditional Chinese Medicine-Derived Carbon Dots" Molecules 30, no. 19: 4015. https://doi.org/10.3390/molecules30194015
APA StyleZhou, X., Zhou, J., Ren, J., Qu, Z., & Zhang, T. (2025). Progress in the Study of Extraction Methods and Pharmacological Effects of Traditional Chinese Medicine-Derived Carbon Dots. Molecules, 30(19), 4015. https://doi.org/10.3390/molecules30194015