Identification of Selective α-Glucosidase Inhibitors via Virtual Screening with Machine Learning
Abstract
1. Introduction
2. Results and Discussion
2.1. Construction of the Machine Learning Model
2.2. Validation of the Machine Learning Model
2.3. Virtual Screening of a Machine Learning-Generated Compound Library
2.4. Affinity Determination Between Selected Compounds and α-Glucosidase
2.5. Inhibition Kinetics of Potential α-Glucosidase Selective Inhibitors
2.6. Fluorescence-Based Analysis of Binding Mechanism
2.7. Computational Prediction of Binding Modes via Molecular Docking
2.8. In Vitro and In Vivo Evaluation of Starch Digestion Inhibition
3. Materials and Methods
3.1. Materials and Reagents
3.2. Machine Learning Screening
3.3. Virtual Screening
3.4. In Vitro α-Glucosidase Activity Assay
3.5. In Vitro α-Amylase Activity Assay
3.6. Analysis of Inhibition Kinetics
3.7. Fluorescence Quenching Experiment
3.8. Molecular Docking
3.9. In Vitro Starch Digestion Inhibition Assay
3.10. In Vivo Starch Digestion Inhibition Experiments
3.11. Data Processing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bello, N.A.; Pfeffer, M.A.; Skali, H.; McGill, J.B.; Rossert, J.; Olson, K.A.; Weinrauch, L.; Cooper, M.E.; de Zeeuw, D.; Rossing, P.; et al. Retinopathy and clinical outcomes in patients with type 2 diabetes mellitus, chronic kidney disease, and anemia. BMJ Open Diabetes Res. Care 2014, 2, e000011. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Royall, P.; Gaisford, S.; Williams, G.; Edwards, C.; Warren, F.; Flanagan, B.; Ellis, P.; Butterworth, P. Structural and enzyme kinetic studies of retrograded starch: Inhibition of α-amylase and consequences for intestinal digestion of starch. Carbohydr. Polym. 2017, 164, 154–161. [Google Scholar] [CrossRef]
- Butterworth, P.; Warren, F.; Ellis, P. Human α-amylase and starch digestion: An interesting marriage. Starch-Starke 2011, 63, 395–405. [Google Scholar] [CrossRef]
- Patil, P.; Mandal, S.; Tomar, S.; Anand, S. Food protein-derived bioactive peptides in management of type 2 diabetes. Eur. J. Nutr. 2015, 54, 863–880. [Google Scholar] [CrossRef]
- Krentz, A.; Bailey, C. Oral antidiabetic agents—Current role in type 2 diabetes mellitus. Drugs 2005, 65, 385–411. [Google Scholar] [CrossRef]
- Shahidpour, S.; Panahi, F.; Yousefi, R.; Nourisefat, M.; Nabipoor, M.; Khalafi-Nezhad, A. Design and synthesis of new antidiabetic α-glucosidase and α-amylase inhibitors based on pyrimidine-fused heterocycles. Med. Chem. Res. 2015, 24, 3086–3096. [Google Scholar] [CrossRef]
- Kumar, R.; Sinha, V. Newer insights into the drug delivery approaches of α-glucosidase inhibitors. Expert Opin. Drug Deliv. 2012, 9, 403–416. [Google Scholar] [CrossRef]
- Lim, J.; Zhang, X.; Ferruzzi, M.; Hamaker, B. Starch digested product analysis by HPAEC reveals structural specificity of flavonoids in the inhibition of mammalian α-amylase and α-glucosidases. Food Chem. 2019, 288, 413–421. [Google Scholar] [CrossRef]
- Li, K.; Yao, F.; Xue, Q.; Fan, H.; Yang, L.; Li, X.; Sun, L.; Liu, Y. Inhibitory effects against α-glucosidase and α-amylase of the flavonoids-rich extract from Scutellaria baicalensis shoots and interpretation of structure-activity relationship of its eight flavonoids by a refined assign-score method. Chem. Cent. J. 2018, 12, 82. [Google Scholar] [CrossRef]
- Ferreira, R.; Oliva, G.; Andricopulo, A. Integrating virtual and high-throughput screening: Opportunities and challenges in drug research and development. Química Nova 2011, 34, 1770–1778. [Google Scholar] [CrossRef]
- Chen, S.; Shen, C.; Li, W.; Fan, Y.; Yang, D.; Wang, Y.; Feng, R.; Li, G.; Zhong, Z. Recent advances in bioactivity-guided drug screening strategies for pre-clinical and clinical drug discovery. TrAC Trends Anal. Chem. 2024, 181, 118042. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, L.; Li, X.; Yang, J.; Rao, X.; Hu, Y.; Xi, J.; Tao, L.; Wang, J.; Du, L.; et al. The role of artificial intelligence in drug screening, drug design, and clinical trials. Front. Pharmacol. 2024, 15, 1459954. [Google Scholar] [CrossRef]
- Yuen, V.; Coleman, J.; Withers, S.; Andersen, R.; Brayer, G.; Mustafa, S.; McNeill, J. Glucose lowering effect of montbretin A in Zucker Diabetic Fatty rats. Mol. Cell. Biochem. 2016, 411, 373–381. [Google Scholar] [CrossRef]
- Lim, J.; Ferruzzi, M.G.; Hamaker, B.R. Structural requirements of flavonoids for the selective inhibition of alpha-amylase versus alpha-glucosidase. Food Chem. 2022, 370, 130981. [Google Scholar] [CrossRef]
- Sun, H.; Wang, D.; Song, X.; Zhang, Y.; Ding, W.; Peng, X.; Zhang, X.; Li, Y.; Ma, Y.; Wang, R.; et al. Natural prenylchalconaringenins and prenylnaringenins as antidiabetic agents: α-glucosidase and α-amylase inhibition and in vivo antihyperglycemic and antihyperlipidemic effects. J. Agric. Food Chem. 2017, 65, 1574–1581. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Yang, W.; Liu, L.; Peng, Z.; He, Y.; Wang, G. Design, synthesis, biological evaluation, and docking study of chromone-based phenylhydrazone and benzoylhydrazone derivatives as antidiabetic agents targeting alpha -glucosidase. Bioorganic Chem. 2023, 132, 106384. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Li, Y.-J.; Shao, J.; Fu, C.; Li, Y.-S.; Cui, Z.-N. 2,5-Disubstituted furan derivatives containing imidazole, triazole or tetrazole moiety as potent alpha-glucosidase inhibitors. Bioorganic Chem. 2023, 131, 106298. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Mateus, N.; De Freitas, V. Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary α-amylase (HSA) by fluorescence quenching. J. Agric. Food Chem. 2007, 55, 6726–6735. [Google Scholar] [CrossRef]
- Fei, Q.Q.; Gao, Y.; Zhang, X.; Sun, Y.; Hu, B.; Zhou, L.; Jabbar, S.; Zeng, X.X. Effects of oolong tea polyphenols, EGCG, and EGCG3″Me on pancreatic α-amylase activity in vitro. J. Agric. Food Chem. 2014, 62, 9507–9514. [Google Scholar] [CrossRef]
- Tu, J.; Adhikari, B.; Brennan, M.A.; Bai, W.; Cheng, P.; Brennan, C.S. Shiitake polysaccharides acted as a non-competitive inhibitor to α-glucosidase and inhibited glucose transport of digested starch from Caco-2 cells monolayer. Food Res. Int. 2023, 173, 113268. [Google Scholar] [CrossRef]
- Ni, M.; Hu, X.; Gong, D.; Zhang, G. Inhibitory mechanism of vitexin on alpha-glucosidase and its synergy with acarbose. Food Hydrocoll. 2020, 105, 105824. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, X.; Xu, F.; Gu, C.; Zhu, K.; Zhang, Y.; Wu, G.; Wang, P.; Tan, L. Effects of hydroxylation at C3’ on the B ring and diglycosylation at C3 on the C ring on flavonols inhibition of α-glucosidase activity. Food Chem. 2023, 406, 135057. [Google Scholar] [CrossRef]
- Liang, F.Q.; Meng, K.Y.; Pu, X.R.; Cao, Y.B.; Shi, Y.M.; Shi, J.Y. Deciphering the binding behavior and interaction mechanism of apigenin and α-glucosidase based on multi-spectroscopic and molecular simulation studies. Int. J. Biol. Macromol. 2024, 264, 130535. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Z.; Li, H.; Tang, H. Exploring the effect of a series of flavonoids on tyrosinase using integrated enzyme kinetics, multispectroscopic, and molecular modelling analyses. Int. J. Biol. Macromol. 2023, 252, 126451. [Google Scholar] [CrossRef] [PubMed]
- Sim, L.; Quezada-Calvillo, R.; Sterchi, E.E.; Nichois, B.L.; Rose, D.R. Human intestinal maltase-glucoamylase: Crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J. Mol. Biol. 2008, 375, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.B.; Li, W.Y.; Zhang, J.F.; Bao, X.Y.; Feng, H.T.; Sun, J.Q.; Liu, X.B.; Sun, L.J. Milk casein hydrolysate peptides regulate starch digestion through inhibition of α-glucosidase: An insight into the active oligopeptide screening, enzyme inhibition behaviors, and oligopeptide-enzyme binding interactions. Food Hydrocoll. 2024, 152, 109926. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhou, W.; Fan, Y.; Zhao, J.; Zhu, L.; Lu, S.; Lu, T.; Chen, Y.; Liu, H. A combined drug discovery strategy based on machine learning and molecular docking. Chem. Biol. Drug Des. 2019, 93, 685–699. [Google Scholar] [CrossRef]
- Guo, F.Y.; An, J.; Wang, M.L.; Zhang, W.B.; Chen, C.; Mao, X.Y.; Liu, S.Y.; Wang, P.J.; Ren, F.Z. Inhibitory mechanism of quercimeritrin as a novel α-glucosidase selective inhibitor. Foods 2023, 12, 3415. [Google Scholar] [CrossRef]
- Xu, Y.; Rashwan, A.; Ge, Z.; Li, Y.; Ge, H.; Li, J.; Xie, J.; Liu, S.; Fang, J.; Cheng, K.; et al. Identification of a novel a-glucosidase inhibitor from Melastoma dodecandrum Lour. fruits and its effect on regulating postprandial blood glucose. Food Chem. 2023, 399, 133999. [Google Scholar]
- Zhu, S.; Li, J.; Li, W.; Li, S.; Yang, X.; Liu, X.; Sun, L. Enzymic catalyzing affinity to substrate affects inhibitor-enzyme binding interactions: Inhibition behaviors of EGCG against starch digestion by individual and co-existing α-amylase and amyloglucosidase. Food Chem. 2022, 388, 133047. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, J.; Yu, J.; Chen, X.; Zhang, S.; Cai, Y.; Li, L. A new functionality study of vanillin as the inhibitor for α-glucosidase and its inhibition kinetic mechanism. Food Chem. 2021, 353, 129448. [Google Scholar] [CrossRef]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50. [Google Scholar]
- Shi, J.L.; Zeng, K.X.; Guo, D.L.; Wang, P.J.; Zhang, S.C.; Ren, F.Z.; Liu, S.Y. Insights into the relation between multi-scale structure and in-vitro digestibility of type 3 resistant starches prepared from wrinkled pea starches. Food Hydrocoll. 2023, 144, 109056. [Google Scholar] [CrossRef]
Number | α-Glucosidase IC50 (μM) | α-Amylase IC50 (μM) |
---|---|---|
K802 | 74.67 ± 4.10 | >500 |
K411 | 67.85 ± 2.18 | >500 |
K413 | 66.30 ± 7.17 | >500 |
K052 | 23.03 ± 3.27 | >500 |
Acarbose | 562.22 ± 20.74 | 28.23 ± 2.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, F.; Shi, J.; Jin, W.; Zhang, F.; Chen, H.; Zhang, W.; Zhang, Y.; Chong, C.; Ren, F.; Wang, P.; et al. Identification of Selective α-Glucosidase Inhibitors via Virtual Screening with Machine Learning. Molecules 2025, 30, 3996. https://doi.org/10.3390/molecules30193996
Guo F, Shi J, Jin W, Zhang F, Chen H, Zhang W, Zhang Y, Chong C, Ren F, Wang P, et al. Identification of Selective α-Glucosidase Inhibitors via Virtual Screening with Machine Learning. Molecules. 2025; 30(19):3996. https://doi.org/10.3390/molecules30193996
Chicago/Turabian StyleGuo, Fengyu, Jiali Shi, Wenhua Jin, Feng Zhang, Hao Chen, Weibo Zhang, Yan Zhang, Chen Chong, Fazheng Ren, Pengjie Wang, and et al. 2025. "Identification of Selective α-Glucosidase Inhibitors via Virtual Screening with Machine Learning" Molecules 30, no. 19: 3996. https://doi.org/10.3390/molecules30193996
APA StyleGuo, F., Shi, J., Jin, W., Zhang, F., Chen, H., Zhang, W., Zhang, Y., Chong, C., Ren, F., Wang, P., & Liu, P. (2025). Identification of Selective α-Glucosidase Inhibitors via Virtual Screening with Machine Learning. Molecules, 30(19), 3996. https://doi.org/10.3390/molecules30193996