Interface Engineering of ZnO-Decorated ZnFe2O4 for Enhanced CO2 Reduction Performance
Abstract
1. Introduction
2. Results and Discussion
2.1. Interface Structure Construction and Physicochemical Properties
2.2. Photoelectric Characteristics and Charge Separation Effect
2.3. Photocatalytic Performance
2.4. Mechanism of Photocatalytic CO2 Reduction
3. Experimental Section
3.1. Materials
3.2. Preparation of ZnFe2O4 and ZnO Microspheres via Solvothermal Method
3.3. Preparation of ZnO/ZnFe2O4 Composite via Sodium Hydroxide-Assisted Method
3.4. Catalysts Characterization
3.5. Photocatalytic CO2 Reduction Reaction
4. Conclusions
- (1)
- Interfacial Optimization of Crystalline Structure: XRD and TEM analyses indicate that the presence of ZnO promotes the growth of ZnFe2O4 crystallites, increasing the average grain size from 10.7 nm to 32.6 nm. This is accompanied by a sharpening of the (311) diffraction peak, suggesting improved crystallinity [36]. Lattice parameter analysis reveals interfacial tensile strain (a reduction in the lattice constant *a* from 8.452 Å in pure ZnFe2O4), further supported by a Raman blue shift in the A1g mode (+36 cm−1).
- (2)
- The opposite XPS binding energy shifts of Zn 2p (−1.4 eV) and Fe 2p (+0.8 eV) suggest an interfacial electron transfer from ZnFe2O4 to ZnO, leading to an increased electron density around Zn and a decreased density around Fe. Mott–Schottky analysis confirms that the conduction band potential of ZnO is −0.75 eV while that of ZnFe2O4 is −0.96 eV, which is consistent with the formation of a Type-II heterojunction. Additionally, the oxygen vacancy concentration increases to 25.3% (from O 1s spectra), which facilitates extended visible-light absorption.
- (3)
- Enhanced Charge Separation and Transport: The built-in electric field formed at the Type-II heterojunction interface promotes directional migration of photogenerated electrons, resulting in a two-fold increase in photocurrent intensity (Figure 4e) and a 15.1% reduction in PL intensity (Figure 4f). Electrochemical impedance spectroscopy (EIS) shows reduced charge transfer resistance, collectively contributing to suppressed electron–hole recombination and prolonged carrier lifetime.
- (4)
- Synergistic Effects of Interface Engineering: The ZnO/ZnFe2O4 system overcomes the inherent limitations of the individual components (e.g., rapid charge recombination in ZnFe2O4 and narrow light response of ZnO). Through the Type-II band alignment, the composite achieves synergistic broad visible-light absorption (Eg = 2.12 eV) and strong reduction capacity (ECB = −0.96 eV), leading to a dramatic improvement in CO2 photoreduction performance. After 6 h of visible-light irradiation, the production rates of CH4 and CO increased by 3.3 and 4.9 times, respectively, compared to pure ZnFe2O4.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.N.; Xu, M.Y.; Zhou, W.Q.; Song, X.H.; Liu, X.; Zhang, J.S.; Chen, S.T.; Huo, P.W. Fabricated ZnO@ZnIn2S4 S-scheme heterojunction photocatalyst for enhanced electron-transfer and CO2 reduction. J. Colloid Interface Sci. 2023, 650, 1762–1772. [Google Scholar] [CrossRef]
- Saira; Janna, F.; Le-Hussain, F. Effectiveness of modified CO2 injection at improving oil recovery and CO2 storage—Review and simulations. Energy Rep. 2020, 6, 1922–1941. [Google Scholar] [CrossRef]
- Li, R.F.; Dai, Z.H.; Huang, T.Y.; Zhang, Q.Q.; Zhou, X.F.; Peng, Z.L.; Liu, Z.T.; Fang, Y.P. In site constructed B-CdS/Cd Schottky junctions for efficiet photocatalytic CO2 reduction under visible light. Surf. Interfaces 2024, 45, 103926. [Google Scholar] [CrossRef]
- Liu, X.J.; Fan, X.F.; Wu, J.; Zhuge, Z.H.; Li, L.; Fan, J.C.; Shen, S.L.; Tang, Z.H.; Gong, Y.Y.; Xue, Y.H.; et al. CdS-based Schottky junctions for efficient visible light photocatalytichydrogen evolution. J. Colloid Interface Sci. 2024, 673, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Cheng, B.; Fan, J.J.; Yu, J.G.; Liu, G. Near-infrared absorbing 2D/3D ZnIn2S4/N-doped graphene photocatalyst for highly efficient CO2 capture and photocatalytic reduction. Sci. China Mater. 2020, 63, 552–565. [Google Scholar] [CrossRef]
- Jiang, J.W.; Zou, X.X.; Mei, Z.Y.; Cai, S.; An, Q.; Fu, Y.; Wang, H.; Liu, T.T.; Guo, H. Understanding rich oxygen vacant hollow CeO2@MoSe2 heterojunction for accelerating photocatalytic CO2 reduction. J. Colloid Interface Sci. 2022, 611, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.Q.; Labidi, A.; Luo, T.; Gao, T.; Nuraje, N.; Zvereva, I.; Wang, C.Y. In situ fabrication of TiO2 nanoparticles/2D porphyrin metal-organic frameworks for enhancing the photoreduction of CO2 to CO. J. Mater. Chem. A 2025, 13, 11389–11395. [Google Scholar] [CrossRef]
- Deng, H.Z.; Xu, F.Y.; Cheng, B.; Yu, J.G.; Ho, W.K. Photocatalytic CO2 reduction of C/ZnO nanofibers enhanced by an Ni-NiS cocatalyst. Nanoscale 2020, 12, 7206–7213. [Google Scholar] [CrossRef]
- Tang, Z.L.; He, W.J.; Wang, Y.L.; Wei, Y.C.; Yu, X.L.; Xiong, J.; Wang, X.; Zhang, X.; Zhao, Z.; Liu, J. Ternary heterojunction in rGO-coated Ag/Cu2O catalysts for boosting selective photocatalytic CO2 reduction into CH4. Appl. Catal. B Environ. Energy 2022, 311, 121371. [Google Scholar] [CrossRef]
- Yan, Y.L.; Fang, Q.J.; Pan, J.K.; Yang, J.; Zhang, L.L.; Zhang, W.; Zhuang, G.L.; Zhong, X.; Deng, S.W.; Wang, J.G. Efficient photocatalytic reduction of CO2 using Fe-based covalent triazine frameworks decorated with in situ grown ZnFe2O4 nanoparticles. Chem. Eng. J. 2020, 408, 127358. [Google Scholar] [CrossRef]
- Yang, T.; Yu, Q.M.; Wang, H.M. Photocatalytic Reduction of CO2 to CH3OH Coupling with the Oxidation of Amine to Imine. Catal. Lett. 2018, 148, 2382–2390. [Google Scholar] [CrossRef]
- Long, R.; Li, Y.; Liu, Y.; Chen, S.G.; Zheng, X.S.; Gao, C.; He, C.H.; Chen, N.S.; Qi, Z.M.; Song, L.; et al. Isolation of Cu Atoms in Pd Lattice: Forming Highly Selective Sites for Photocatalytic Conversion of CO2 to CH4. J. Am. Chem. Soc. 2017, 139, 4486–4492. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.G.; Huang, Z.X.; Gao, X.P.; Hong, X.; Zhu, J.F.; Wang, G.M.; Wu, Y.E.; Zeng, J.; Zheng, X.S. Synergy between Palladium Single Atoms and Nanoparticles via Hydrogen Spillover for Enhancing CO2 Photoreduction to CH4. Adv. Mater. 2022, 34, 2200057. [Google Scholar] [CrossRef] [PubMed]
- Rameshbabu, R.; Kumar, N.; Karthigeyan, A.; Neppolian, B. Visible light photocatalytic activities of ZnFe2O4/ZnO nanoparticles for the degradation of organic pollutants. Mater. Chem. Phys. 2016, 181, 106–115. [Google Scholar] [CrossRef]
- Tong, G.X.; Du, F.F.; Wu, W.H.; Wu, R.N.; Liu, F.T.; Liang, Y. Enhanced reactive oxygen species (ROS) yields and antibacterial activity of spongy ZnO/ZnFe2O4 hybrid micro-hexahedra selectively synthesized through a versatile glucose-engineered co-precipitation/annealing process. J. Mater. Chem. B 2013, 1, 2647–2657. [Google Scholar] [CrossRef]
- Renukadevi, S.; Jeyakumari, A.P. Rational design of ZnFe2O4/g-C3N4 heterostructures composites for high efficient visible-light photocatalysis for degradation of aqueous organic pollutants. Inorg. Chem. Commun. 2020, 118, 108047. [Google Scholar] [CrossRef]
- Deng, H.Z.; Fei, X.G.; Yang, Y.; Fan, J.J.; Yu, J.G.; Cheng, B.; Zhang, L.Y. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity. Chem. Eng. J. 2021, 409, 127377. [Google Scholar] [CrossRef]
- Harini, G.; Syed, A.; Rahiman, M.K.; Bahkali, A.H.; Elgorban, A.M.; Varma, R.S.; Khan, S.S. Enhanced photodegradation of rifampicin and co-trimoxazole by ZnO/ZnMn2O4/ZnS-PVA and its genotoxicity studies on Allium cepa. Chemosphere 2022, 308, 136238. [Google Scholar] [CrossRef]
- Yasmeen, H.; Zada, A.; Ali, S.; Khan, I.; Ali, W.; Khan, W.; Khan, M.; Anwar, N.; Ali, A.; Huerta-Flores, A.M.; et al. Visible light-excited surface plasmon resonance charge transfer significantly improves the photocatalytic activities of ZnO semiconductor for pollutants degradation. J. Chin. Chem. Soc. 2020, 67, 1611–1617. [Google Scholar] [CrossRef]
- Sun, H.; Lee, S.Y.; Park, S.J. Bimetallic CuPd alloy nanoparticles decorated ZnO nanosheets with enhanced photocatalytic degradation of methyl orange dye. J. Colloid Interface Sci. 2022, 629, 87–96. [Google Scholar] [CrossRef]
- Elamin, N.; Modwi, A.; Aissa, M.A.B.; Taha, K.K.; Al-Duaij, O.K.; Yousef, T.A. Fabrication of Cr–ZnO photocatalyst by starch-assisted sol–gel method for photodegradation of congo red under visible light. J. Mater. Sci. Mater. Electron. 2021, 32, 2234–2248. [Google Scholar] [CrossRef]
- Yilmaz, G.; Dindar, B. Non-metal doped ZnO photocatalyst prepared by sonication-assisted Sol-gel method and use for dye degradation. Inorg. Chem. Commun. 2023, 157, 111320. [Google Scholar] [CrossRef]
- Jiang, H.Y.; Chen, Y.J.; Li, L.; Liu, H.; Ren, C.; Liu, X.; Tian, G.H. Hierarchical ZnO nanorod/ZnFe2O4 nanosheet core/shell nanoarray decorated with PbS quantum dots for efficient photoelectrochemical water splitting. J. Alloys Compd. 2020, 828, 154449. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, S.; Li, X.L.; Huang, Y.H.; Wang, Z.P.; Han, Y.D.; Wu, J.B.; Meng, H.; Zhang, X. Synthesis, characterization, and photocatalytic degradation properties of ZnO/ZnFe2O4 magnetic heterostructures. New J. Chem. 2017, 41, 15433–15438. [Google Scholar] [CrossRef]
- Chakraborty, M.; Roy, D.; Sharma, A.; Thangavel, R. Post-treatment with ZnFe2O4 nanoparticles to improve photoelectrochemical performance of ZnO nanorods based photoelectrodes. Sol. Energy Mater. Sol. Cells 2019, 200, 109975. [Google Scholar] [CrossRef]
- Xiao, J.; Yang, W.Y.; Gao, S.; Sun, C.X.; Li, Q. Fabrication of ultrafine ZnFe2O4 nanoparticles for efficient photocatalytic reduction CO2 under visible light illumination. J. Mater. Sci. Technol. 2018, 34, 2331–2336. [Google Scholar] [CrossRef]
- Liu, X.; Ge, J.; Li, S.; Yang, H.; Tian, H.; Liu, H.; Li, Y.; Zheng, X.; Tian, Y.; Cui, X.; et al. Activating dynamic Zn-ZnO interface with controllable oxygen vacancy in CO2 electroreduction for boosting CO production. Green Chem. 2025, 27, 6133–6144. [Google Scholar] [CrossRef]
- Xiao, Z.; Wan, Z.Y.; Zhang, J.J.; Jiang, J.N.; Li, D.M.; Shen, J.N.; Dai, W.X.; Li, Y.; Wang, X.X.; Zhang, Z.Z. Interstitial Zinc Defects Enriched ZnO Tuning O2 Adsorption and Conversion Pathway for Superior Photocatalytic CH4 Oxygenation. ACS Catal. 2024, 14, 9104–9114. [Google Scholar] [CrossRef]
- Madhusudan, P.; Wang, Y.; Chandrashekar, B.N.; Wang, W.J.; Wang, J.W.; Miao, J.; Shi, R.; Liang, Y.X.; Mi, G.J.; Cheng, C. Nature inspired ZnO/ZnS nanobranch-like composites, decorated with Cu(OH)2 clusters for enhanced visible-light photocatalytic hydrogen evolution. Appl. Catal. B Environ. Energy 2019, 253, 379–390. [Google Scholar] [CrossRef]
- Wageh, S.; Al-Ghamdi, A.A.; Jafer, R.; Li, X.; Zhang, P. A new heterojunction in photocatalysis: S-scheme heterojunction. Chin. J. Catal. 2021, 42, 667–669. [Google Scholar] [CrossRef]
- Zheng, J.H.; Lei, Z. Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability. Appl. Catal. B Environ. Energy 2018, 237, 1–8. [Google Scholar] [CrossRef]
- Pan, M.H.; Zheng, L.L.; Cai, C.Y.; Wang, W.W. Z-Scheme ZnO/ZnAl2O4 Heterojunction with Synergistic Effects for Enhanced Photocatalytic CO2 Reduction. Molecules 2025, 30, 2626. [Google Scholar] [CrossRef]
- Lan, R.M.; Hu, Z.F.; Liu, H.R.; Shen, K.; Wang, H.; Hou, T.T.; Li, Y.W. Passivating Lattice Oxygen in ZnO Nanocrystals to Reduce its Interactions with the Key Intermediates for a Selective Photocatalytic Methane Oxidation to Methanol. Angew. Chem. Int. Ed. 2025, 64, e202425186. [Google Scholar] [CrossRef]
- Lai, K.Z.; Sun, Y.X.; Li, N.; Gao, Y.Q.; Li, H.; Ge, L.; Ma, T.Y. Photocatalytic CO2-to-CH4 Conversion with Ultrahigh Selectivity of 95.93% on S-Vacancy Modulated Spatial In2S3/In2O3 Heterojunction. Adv. Funct. Mater. 2024, 34, 2409031. [Google Scholar] [CrossRef]
- Cui, Y.F.; Zhou, W.H.; Yang, H.; Ma, Y.Q.; Zheng, G.H.; Zhu, C.H.; Wang, M.L.; Chen, B. Largely Promoted C–H Activation in Methane with O2 via d-Orbital Hybridization Induced by CuOx Supported on ZnO. ACS Catal. 2025, 15, 1607–1615. [Google Scholar] [CrossRef]
- Zheng, X.H.; Li, B.; Huang, R.; Jiang, W.P.; Shen, L.J.; Lei, G.C.; Wang, S.P.; Zhan, Y.Y.; Jiang, L.L. Asymmetric Oxygen Vacancy-Promoted Synthesis of Aminoarenes from Nitroarenes Using Waste H2S as a “Hydrogen Donor”. ACS Catal. 2024, 14, 10245–10259. [Google Scholar] [CrossRef]
Samples | Crystal Size (nm) | Crystal Parameter (Å) | Standard Card | ||
---|---|---|---|---|---|
a | b | c | |||
ZnO | 1.2 | 3.250 | 3.250 | 5.207 | JCPDS No. 36-1451 |
ZnFe2O4 | 10.7 | 8.466 | 8.466 | 8.466 | JCPDS No. 79-1105 |
ZnO/ZnFe2O4 | 32.6 | 3.250 | 3.250 | 5.207 | JCPDS No. 89-7102 |
Samples | O Atomic/% | Atomic/% | ||||
---|---|---|---|---|---|---|
Olatt | Oads | Ow | Zn | Fe | O | |
ZnFe2O4 | 66.2 | 21.3 | 12.5 | 23.8 | 40.2 | 36.0 |
ZnO/ZnFe2O4 | 68.6 | 25.3 | 6.1 | 36.4 | 16.4 | 47.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, C.; Sun, Y.; Xiao, Y.; Zheng, W.; Pan, M.; Wang, W. Interface Engineering of ZnO-Decorated ZnFe2O4 for Enhanced CO2 Reduction Performance. Molecules 2025, 30, 3980. https://doi.org/10.3390/molecules30193980
Cai C, Sun Y, Xiao Y, Zheng W, Pan M, Wang W. Interface Engineering of ZnO-Decorated ZnFe2O4 for Enhanced CO2 Reduction Performance. Molecules. 2025; 30(19):3980. https://doi.org/10.3390/molecules30193980
Chicago/Turabian StyleCai, Congyu, Yufeng Sun, Yulan Xiao, Weiye Zheng, Minhui Pan, and Weiwei Wang. 2025. "Interface Engineering of ZnO-Decorated ZnFe2O4 for Enhanced CO2 Reduction Performance" Molecules 30, no. 19: 3980. https://doi.org/10.3390/molecules30193980
APA StyleCai, C., Sun, Y., Xiao, Y., Zheng, W., Pan, M., & Wang, W. (2025). Interface Engineering of ZnO-Decorated ZnFe2O4 for Enhanced CO2 Reduction Performance. Molecules, 30(19), 3980. https://doi.org/10.3390/molecules30193980