Synthesis of Imidazolium Salts Linked to a t-Butylcalix[4]arene Framework and the Isolation of Interesting By-Products
Abstract
1. Introduction
2. Results
2.1. Synthesis of 25,27-Bis(alkoxy)imidazolium t-Butylcalix[4]arenes
2.2. Synthesis and Structure of Compound 2
2.3. Synthesis of Mono-Substituted Calix[4]arenes
2.4. Synthesis of Mono- and Bis-ω-alkoxyimidazolium-Substituted Calix[4]arenes
2.5. Single Crystal X-Ray Diffraction of Compound 6a
2.6. Reaction of the Mono-Imidazolium Compound 5a with Nickelocene
3. Materials and Methods
3.1. General
3.2. Syntheses and Spectroscopic Data of 5,11,17,23-Tetra-t-butyl-26,28-dihydroxy-25,27-bis(2-bromoethoxy)calix[4]arene 1a, and 2
3.3. Synthesis and Spectroscopic Data of 5,11,17,23-Tetra-t-butyl-26,28-dihydroxy-25,27-bis(6-bromohexoxy)calix[4]-arene, 1c
3.4. Synthesis and Spectroscopic Data of 5,11,17,23-Tetra-t-butyl-26,27,28-trihydroxy-25(2-bromoethoxy)calix[4]arene, 3a
3.5. Synthesis and Spectroscopic Data of 5,11,17,23-Tetra-t-butyl-26,27,28-trihydroxy-25(4-bromobutoxy)calix[4]arene, 3b
3.6. Synthesis and Spectroscopic Data of 5,11,17,23-Tetra-tert-butyl-26,27,28-trihydroxy-25(6-bromohexoxy)calix[4]arene, 3c
3.7. Synthesis and Spectroscopic Data of 5,11,17,23-Tetra-t-butyl-26,28-dihydroxy-25,27-bis(6-N-(2, 4, 6-trimethylphenyl)imidazoliumhexoxy)calix[4]arene Dibromide, 4c
3.8. Synthesis and Spectroscopic Data of, 5,11,17,23-Tetra-t-butyl-26,28-dihydroxy-25,27-bis (6-N-(1-methylimidazolium)hexoxy)calix[4]arene Dibromide, 4d
3.9. Synthesis and Spectroscopic Data of 5,11,17,23-Tetra-t-butyl-26,27,28-trihydroxy-25-2-(N-2,4,6-trimethyl-phenyl)imidazolium)ethoxycalix[4]arene Bromide, 5a
3.10. Synthesis and Spectroscopic Data of 5,11,17,23-Tetra-t-butyl-26,27,28-trihydroxy-25-4-N-(2,4,6-trimethylphenyl)imidazolium-butoxycalix[4]arene, 5b
3.11. Synthesis of the Hexafluorophosphate and Tetrafluoroborate Salts of 5b, 5,11,17,23-Tetra-t-butyl-26,27,28-trihydroxy-25-(4-N-(2,4,6-trimethylphenyl)imidazoliumbutoxy)-calix[4]arene Hexafluorophosphate (5bP) and Tetrafluoroborate (5bB)
3.12. Synthesis and Spectroscopic Data of 5,11,17,23-Tetra-t-butyl-26,27,28-trihydroxy-25(6-(2,4,6-trimethylphenyl)imidazolium-hexoxy)calix[4]arene Bromide, 5c
3.13. Synthesis and Spectroscopic Data of 5,11,17,23-Tetra-t-butyl-26,27,28-trihydroxy-25-(4-(2,6-diisopropylphenyl)imidazolium-butoxy)calix[4]arene Bromide, 5d
3.14. Synthesis and Spectroscopic Data of 7, Bromo-(η5-cyclopentadienyl) {5,11,17,23-Terta-tert-butyl-25-(2-(2,4,6-trimethylphenyl)imidazole-2-ylidiene-ethyloxy)-26,27,28-trihydroxycalix[4]-arene)nickel
3.15. Single Crystal X-Ray Diffraction Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avello, M.G.; Golling, S.; Truong-Phuoc, L.; Vidal, L.; Romero, T.; Papaefthimiou, V.; Gruber, N.; Chetcuti, M.J.; Leroux, F.R.; Donnard, M.; et al. (NHC-olefin)-nickel(0) nanoparticles as catalysts for the (Z)-selective semi-hydrogenation of alkynes and ynamides. Chem. Commun. 2023, 59, 1537–1540. [Google Scholar] [CrossRef]
- Ulm, F.; Djukic, J.-P.; Chetcuti, M.J.; Ritleng, V. Hydroboration of alkenes catalysed by a nickel N-heterocyclic carbene complex: Reaction and mechanistic aspects. Chem. Eur. J. 2020, 26, 8916–8925. [Google Scholar] [CrossRef]
- Ulm, F.; Shahane, S.; Truong-Phuoc, L.; Romero, T.; Papaefthimiou, V.; Chessé, M.; Chetcuti, M.J.; Pham-Huu, C.; Michon, C.; Ritleng, V. Half-Sandwich Nickel(II) NHC-Picolyl Complexes as Catalysts for the Hydrosilylation of Carbonyl Compounds: Evidence for NHC-Nickel Nanoparticles under Harsh Reaction Conditions. Eur. J. Inorg. Chem. 2021, 30, 3074–3082. [Google Scholar] [CrossRef]
- Avello, M.G.; Blas Martinez, J.; Romero, T.; Papaefthimiou, V.; Chetcuti, M.J.; Ritleng, V.; Pham-Huu, C.; Oelschlaeger, C.; Michon, C. Ni-NHC nanoparticles in micelles as an effective and reusable catalyst for hydrogenations and reductive-aminations in water. ACS Sustain. Chem. Eng. 2024, 12, 10739–10751. [Google Scholar] [CrossRef]
- Aloui, L.; Adibi, R.; Chetcuti, M.J. Synthesis and characterization of nickel-N-heterocyclic carbenes linked to a calix[6]arene platform and their applications in Suzuki Miyaura cross- coupling catalysis. Inorganica Chim. Acta 2020, 505, 119494. [Google Scholar] [CrossRef]
- Abernethy, C.D.; Cowley, A.H.; Jones, R.A. Reactions of Nickelocene with 1,3-dimesitylimidazolium chloride. J. Organomet. Chem. 2000, 596, 3–5. [Google Scholar] [CrossRef]
- Mironova, D.; Bogdanov, I.; Akhatova, A.; Sultanova, E.; Garipova, R.; Khannavov, A.; Burilov, V.; Solovieva, V.; Antipin, I. New Carboxytriazolyl Amphiphilic Derivatives of Calix[4]arenes: Aggregation and Use in CuAAC Catalysis. Int. J. Mol. Sci. 2023, 24, 16663. [Google Scholar] [CrossRef]
- Burilov, V.; Garipova, R.; Sultanova, E.; Mironova, D.; Grigoryev, I.; Solovieva, S.; Antipin, I. New Amphiphilic Imidazolium/Benzimidazolium Calix[4]arene Derivatives: Synthesis, Aggregation Behavior and Decoration of DPPC Vesicles for Suzuki Coupling in Aqueous Media. Nanomaterials 2020, 10, 1143. [Google Scholar] [CrossRef]
- Burilov, V.; Mironova, D.; Sultanova, E.; Garipova, R.; Evtugyn, V.; Solovieva, S.; Antipin, I. NHC Polymeric Particles Obtained by Self-Assembly and Click Approach of Calix[4]Arene Amphiphiles as Support for Catalytically Active Pd Nanoclusters. Molecules 2021, 26, 6864. [Google Scholar] [CrossRef]
- Fahlbusch, T.; Frank, M.; Maas, G.; Schatz, J. N-Heterocyclic Carbene Complexes of Mercury, Silver, Iridium, Platinum, Ruthenium, and Palladium Based on the Calix[4]arene Skeleton. Organometallics 2009, 28, 6183–6193. [Google Scholar] [CrossRef]
- Brenner, E.; Matt, D.; Henrion, M.; Tecia, M.; Toupet, L. Calix[4]arenes with one and two N-linked imidazolium units as precursors of N-heterocyclic carbene complexes. Coordination chemistry and use in Suzuki–Miyaura cross-coupling. Dalton Trans. 2011, 40, 9889–9898. [Google Scholar] [CrossRef]
- Gramage-Doria, R.; Armspach, D.; Matt, D. Metallated cavitands (calixarenes, resorcinarenes, cyclodextrins) with internal coordination sites. Coord. Chem. Rev. 2013, 257, 776. [Google Scholar] [CrossRef]
- Naghmouchi, H.; Abdelwahab, H.; Karmazin, L.; Chetcuti, M.J. Synthesis of Imidazolium Cations Linked to Para-t-Butylcalix[4]arene Frameworks and Their Use as Synthons for Nickel-NHC Complexes Tethered to Calix[4]arenes. Molecules 2023, 26, 5697. [Google Scholar] [CrossRef]
- Dinarès, I.; Garcia de Miguel, C.; Mesquida, N.; Alcalde, E. Bis(Imidazolium) Calix[4]Arene Receptors for Anion Binding. J. Org. Chem. 2009, 74, 482–485. [Google Scholar] [CrossRef] [PubMed]
- Fahlbusch, T.; Frank, M.; Schatz, J.; Schmaderer, H. Influence of the Number and Geometry of Binding Sites on Host–Guest Affinity: Imidazolium-Substituted Receptor Molecules for Small Inorganic Anions. Eur. J. Org. Chem. 2006, 8, 1899–1903. [Google Scholar] [CrossRef]
- Gafiatullin, B.; Akchurina, A.; Fedoseeva, A.; Sultanova, E.; Islamov, D.; Usachev, K.; Burilov, V.; Solovieva, S.; Antipin, I. PEPPSI-Type Pd(II)—NHC Complexes on the Base of p-tert-Butylthiacalix [4]arene: Synthesis and Catalytic Activities. Inorganics 2023, 11, 326. [Google Scholar] [CrossRef]
- Frank, M.; Maas, G.; Schatz, J. Calix[4]Arene-Supported N-Heterocyclic Carbene Ligands as Catalysts for Suzuki Cross-Coupling Reactions of Chlorotoluene. Eur. J. Org. Chem. 2004, 3, 607–613. [Google Scholar] [CrossRef]
- Brendgen, T.; Frank, M.; Schatz, J. The Suzuki Coupling of Aryl Chlorides in Aqueous Media Catalyzed by in Situ Generated Calix[4]Arene-Based N-Heterocyclic Carbene Ligands. Eur. J. Org. Chem. 2006, 10, 2378–2383. [Google Scholar] [CrossRef]
- Dinarès, I.; Garcia de Miguel, C.; Font-Bardia, M.; Solans, X.; Alcalde, E. Imidazolium−Calix[4]Arene Molecular Frameworks: Bis(N-Heterocyclic Carbenes) as Bidentate Ligands. Organometallics 2007, 26, 5125–5128. [Google Scholar] [CrossRef]
- Huang, L.; Jin, C.; Su, W. Highly Efficient C-N Bond Forming Reactions in Water Catalyzed by Copper(I) Iodide with Calix[4]Arene Supported Amino Acid Ionic Liquid. Chin. J. Chem. 2012, 30, 2394–2400. [Google Scholar] [CrossRef]
- Menon, S.K.; Sewani, M. Chemical Modifications of Calixarenes and their Analytic Applications. Rev. Anal. Chem. 2006, 25, 41–82. [Google Scholar] [CrossRef]
- Espagñol, E.S.; Villamil, M.M. Calixarenes: Generalities and Their Role in Improving the Solubility, Biocompatibility, Stability, Bioavailability, Detection, and Transport of Biomolecules. Biomolecules 2019, 9, 90. [Google Scholar] [CrossRef] [PubMed]
- Bullough, E.K.; Kilner, C.A.; Little, M.A.; Willans, C.E. Tetrakis(Methylimidazole) and Tetrakis(Methylimidazolium) Calix[4]Arenes: Competitive Anion Binding and Deprotonation. Org. Biomol. Chem. 2012, 10, 2824–2829. [Google Scholar] [CrossRef] [PubMed]
- Melezhyk, I.O.; Rodik, R.V.; Iavorska, N.V.; Klymchenko, A.S.; Mely, Y.; Shepelevych, V.V.; Skivka, L.; Kalchenko, V.I. Antibacterial Properties of Tetraalkylammonium and Imidazolium Tetraalkoxycalix[4]arene Derivatives. Anti-Infect. Agents 2015, 13, 87–94. [Google Scholar] [CrossRef]
- Groenen, L.C.; Ruël, B.H.M.; Casnati, A.; Verboom, W.; Pochini, A.; Ungaro, R.; Reinhoudt, D.N. Synthesis of Monoalkylated Calix[4]Arenes via Direct Alkylation. Tetrahedron 1991, 47, 8379–8384. [Google Scholar] [CrossRef]
- Alekseeva, E.A.; Mazepa, A.V.; Gren’, A.I. Synthesis and Conformational Characteristics of Benzyl-Substituted p-Tert-Butyl calixarenes. Russ. J. Gen. Chem. 2001, 71, 1786–1792. [Google Scholar] [CrossRef]
- Iwamoto, K.; Araki, K.; Shinkai, S. Syntheses of All Possible Conformational Isomers of O-Alkyl-p-t-Butylcalix[4]Arenes. Tetrahedron 1991, 47, 4325–4342. [Google Scholar] [CrossRef]
- Shu, C.-M.; Chung, W.-S.; Wu, S.-H.; Ho, Z.-C.; Lin, L.-G. Synthesis of Calix[4]Arenes with Four Different “Lower Rim” Substituents. J. Org. Chem. 1999, 64, 2673–2679. [Google Scholar] [CrossRef]
- Casnati, A.; Arduini, A.; Ghidini, E.; Pochini, A.; Ungaro, R. A General Synthesis of Calix[4]Arene Monoalkyl Ethers. Tetrahedron 1991, 47, 2221–2228. [Google Scholar] [CrossRef]
- Shang, S.; Khasnis, D.V.; Burton, J.M.; Santini, C.J.; Fan, M.; Small, A.C.; Lattman, M. From a Novel Silyl P-Tert-Butylcalix[4]Arene Triether to Mono-O-Alkyl Substitution: A Unique, Efficient, and Selective Route to Mono-O-Substituted Calix[4]Arenes. Organometallics 1994, 13, 5157–5159. [Google Scholar] [CrossRef]
- Matvieiev, Y.I.; Boyko, V.I.; Podoprigorina, A.A.; Kalchenko, V.I. Preparative Synthesis of para-Tert-Butylcalix[4]Arene Monoalkyl Ethers. J. Incl. Phenom. Macrocycl. Chem. 2008, 61, 89–92. [Google Scholar] [CrossRef]
- Gutsche, C.D.; Lin, L.-G. Calixarenes 12: The Synthesis of Functionalized Calixarenes. Tetrahedron 1986, 42, 1633–1640. [Google Scholar] [CrossRef]
- Bois, J.; Espinas, J.; Darbost, U.; Felix, C.; Duchamp, C.; Bouchu, D.; Taoufik, M.; Bonnamour, I. Easy and Selective Method for the Synthesis of Various Mono-O-Functionalized Calix[4]Arenes: De-O-Functionalization Using TiCl4. J. Org. Chem. 2010, 75, 7550–7558. [Google Scholar] [CrossRef] [PubMed]
- Spek, A.L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13. [Google Scholar] [CrossRef]
- Rall, J.M.; Lapersonne, M.; Schorpp, M.; Krossing, I. Synthesis and Characterization of a Stable Nickelocenium Dication Salt. Angew. Chem. Int. Ed. 2023, 62, e202312374. [Google Scholar] [CrossRef]
- Fritz, H.P.; Köhler, F.H. Spektroskopische Untersuchungen an organometallischen Verbindungen. 1H-KMR-Kontaktverschiebungen von Nickelocinium-Kationen. Z. Anorg. Allg. Chem. 1971, 385, 22–25. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, J.; Lou, X.; Hu, B.; Shen, M. Unexpected temperature dependence of 1H paramagnetic shift in MAS NMR of nickelocene. Magn. Reson. Lett. 2024, 4, 200119. [Google Scholar] [CrossRef]
- Tapu, D.; Dixon, D.A.; Roe, C. 13C NMR Spectroscopy of “Arduengo-Type” Carbenes and Their Derivatives. Chem. Rev. 2009, 109, 3385–3407. [Google Scholar] [CrossRef]
- Gutsche, C.D.; Iqbal, M.; Stewart, D. Calixarenes. 19. Syntheses Procedures for p-Tert-Butylcalix[4]arene. J. Org. Chem. 1986, 51, 742–745. [Google Scholar] [CrossRef]
- Arduengo, A.J., III; Krafczyk, R.; Schmutzler, R.; Craig, H.A.; Goerlich, J.R.; Marshall, W.J.; Unverzagt, M. Imidazolylidenes, imidazolinylidenes and imidazolidines. Tetrahedron 1999, 55, 14523–14534. [Google Scholar] [CrossRef]
- Hintermann, L. Expedient syntheses of the N-heterocyclic carbene precursor imidazolium salts Ipr HCl, IMes HCl and IXy HCl. Beilstein J. Org. Chem. 2007, 3, 22. [Google Scholar] [CrossRef]
- Ritleng, V.; Brenner, E.; Chetcuti, M.J. Preparation of a N-heterocyclic carbene nickel(II) complex. Synthetic experiments in current organic and organometallic chemistry. J. Chem. Educ. 2008, 85, 1646–1648. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXS-97 Program for Crystal Structure Determination. Acta Crystallogr. 1990, 46, 467–473. [Google Scholar] [CrossRef]
- M86-E01078 APEX2 User Manual; Bruker AXS Inc.: Madison, WI, USA, 2006.
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, 71, 3–8. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chetcuti, M.J.; Aroua, R.; Hamdi, A. Synthesis of Imidazolium Salts Linked to a t-Butylcalix[4]arene Framework and the Isolation of Interesting By-Products. Molecules 2025, 30, 3954. https://doi.org/10.3390/molecules30193954
Chetcuti MJ, Aroua R, Hamdi A. Synthesis of Imidazolium Salts Linked to a t-Butylcalix[4]arene Framework and the Isolation of Interesting By-Products. Molecules. 2025; 30(19):3954. https://doi.org/10.3390/molecules30193954
Chicago/Turabian StyleChetcuti, Michael J., Rahma Aroua, and Abdelwaheb Hamdi. 2025. "Synthesis of Imidazolium Salts Linked to a t-Butylcalix[4]arene Framework and the Isolation of Interesting By-Products" Molecules 30, no. 19: 3954. https://doi.org/10.3390/molecules30193954
APA StyleChetcuti, M. J., Aroua, R., & Hamdi, A. (2025). Synthesis of Imidazolium Salts Linked to a t-Butylcalix[4]arene Framework and the Isolation of Interesting By-Products. Molecules, 30(19), 3954. https://doi.org/10.3390/molecules30193954