A Review of the Progress in the Microbial Biosynthesis of Prenylated Aromatic Compounds
Abstract
1. Introduction
2. Biological Activities of PACs
2.1. Antioxidant Activity
2.2. Anticancer Activity
2.3. Anti-Inflammatory Activity
Prenylated Aromatic Compounds | Disease | Research | Activity | Reference |
Artepillin C | Colorectal cancer | Wistar rats In vivo | Anticancer | [40] |
Gastric ulcer | Rats In vivo | Antioxidant | [41] | |
SARS-CoV-2 | Vero cells and tonsil fragments In vitro | Antiviral Anti-inflammatory | [42] | |
8-Prenylnaringenin | Colon cancer | Colon cancer HCT-116 cells In vitro | Anticancer | [43] |
Osteopenia | Postmenopausal and osteopenic women In vivo | Phytoestrogen | [44] | |
7-Geranyloxycoumarin | Gastric adenocarcinoma | MKN45 cells In vitro | Anticancer | [45] |
Chronic inflammation | Male rats In vivo | Anti-inflammatory | [46] | |
Chronic obstructive pulmonary disease | Male C57BL/6 mice In vivo | Anti-inflammatory Antioxidant | [47] | |
4-Geranyl resveratrol | Inflammation | Chemical reagent detection | Anti-inflammatory | [26] |
Cancer | Human hepatoma cancer cells Human breast cancer cells In vitro | Anticancer | [5] | |
Xanthohumol | Various cancers, such as breast cancer and liver cancer | In vitro | Anticancer | [4,48] |
Neurodegenerative Diseases | In vitro and In animal models | Anti-inflammatory Antioxidant | [49] | |
Colitis | Male C57BL/6 mice In vivo | Anti-inflammatory | [50] | |
Icaritin | Hepatocellular carcinoma | Phase clinical trials | Anticancer | [7] |
Neuroinflammation | Male SD rats | Anti-inflammatory | [51] | |
Vitamin E | Lung cancer | Chemical reagent detection and Wi3-38 and A549 cells In vitro | Anticancer | [52] |
Neurodegenerative disorders | Computer simulation | Antioxidant | [53] | |
Kuwanon C | Cervical cancer | HeLa cells In vitro | Anticancer | [34] |
3. Biosynthesis of PACs
3.1. Shikimate Pathway
3.2. MEP/MVA Pathway
3.3. Prenylation Reaction
4. Strategies for Enhancing the Biosynthesis of PACs
4.1. Screening and Modification of Key Enzymes for the Synthesis of PACs
4.2. Selection of Suitable Hosts for Enhancing the Production of PACs
Microorganism | Product | OriginalStrain | Strategies | Yield | Reference |
Saccharomyces cerevisiae | δ-Tocotrienol | BY4742 | Overexpression of tHMG1 and Gppssa from Sulfolobus acidocaldarius Optimization of fermentation medium by response surface methodology | 4.10 ± 0.10 mg/L | [101] |
Tocotrienols | BY4742 | Screening of PTs Truncation of the N-terminal signal peptides of MPBQMT, TC, and γ-TMT Knockout of Aro3, Aro10, and YPL062W Expression of Aro4K229L, Aro7G141S, TyrC from Zymomonas mobilis, and CrtE03M Overexpression of Tkl1 and tHMG1 Fermentation using a cold-shock-triggered temperature control system | 320 mg/L | [70] | |
Tocotrienols | YSM5 | Knockout of MOT3 Overexpression of CrtE03M and POS5 Two-phase fermentation using olive oil Overexpression of the genes of transporters PDR11 and Yol075c | 82.68 mg/L | [102] | |
δ-Tocotrienol | BY4741 | Knockout of GAL80, ROX1, DOS2, Aro3 and Aro10 Overexpression of tHMG1, CrtE03M, POS5, Tkl1 and PDR1 Expression of Aro4K229L, Aro7G141S, and TyrC from Z.mobilis Overexpression of the coding genes of TC, HPT, and HPPD with a copy number ratio of 2:3:1 Two-phase fermentation using olive oil, 2-HP-β-Cyclodextrin derivatives | 211.56 mg/L | [103] | |
8-prenylnaringenin | W303-1A-Δcoq2 | 0.51 ± 0.0693 μg/L | [62] | ||
IMK393 | Overexpression of tHMG1 Replacing TSC13 with MdECR from Malus domesticus Expression of TAL1 from Rhodobacter capsulatus | 0.12 mg/L | [72] | ||
CENPK2-1D | Screening of PTs and N-terminal truncation Identification of key residues through multiple sequence alignment Overexpression of tHMAG1 and IDI Template-free structure prediction of tSfN8DT-1, followed by molecular docking and subsequent mutagenesis | 101.40 ± 2.55 mg/L | [69] | ||
3′-prenylnaringenin | YPH499 | Construction of naringenin synthesis pathway Screening promiscuous microbial PTs | 1.10 ± 0.0962 μg/L | [63] | |
xanthohumol | SY03 | Enhancing PT activity through enzyme mining, signal peptide truncation, and increased expression levels Knockout of ARO10 Expression of Aro4K229L and Aro7G141S Overexpression of FPPS mutant gene ERG20N127W and key rate-limiting MVA genes Downregulation of ERG20N127W expression Fusion of IDI and HlPT1LΔ1-86 | 0.14 mg/L | [75] | |
icaritin | CEN.PK2-1C | Screening of PTs and GmOMT2 Targeting GmOMT2 to mitochondria or coculturing with E. coli | 19.7mg/L | [31] | |
CEN.PK2-1D | Screening of PTs and methyltransferase, ultimately selecting EkF8PT from Epimedium koreanum and MpOMT4 from Mentha x piperita Introducing the IUP pathway and overexpressing MVA pathway genes Truncating the N-terminal of EkF8PT Expressing methylenetetrahydrofolate reductase (MTHFR) from Arabidopsis thaliana and MET13 from S.cerevisiae Performing rational design on MpOMT4 | 14.4 mg/L | [76] | ||
CEN.PK2-1D | Screening and identification of PTs from E.koreanum Overexpressing tHMG1 and IDI Truncating the N-terminal disordered region of EkF8DT3 Expressing GmOMT2 from Glycine max | 172.0 mg/L | [77] | ||
3-geranyl-4-hydroxybenzoate acid | WAT11U | Screening of PTs Expression of ERG20K197G and UbiC from E. coli Overexpression of tHMG1 | 179.29 mg/L | [79] | |
bakuchiol | BY4742 | Screening of PTs and N-terminal truncation Overexpression of ERG20F96W/N127W and tHMG1 Knockout of PDS5 and ARO10 Expression of Aro4K229L, Aro7G141S and FiTAL Fusion of ERG20F96W/N127W and PcPT07t | 9.28 mg/L | [83] | |
marmesin | BY4741 | Expressing of Aro4K229L, Aro7G141S, the genes of L-tyrosine prephenate dehydrogenase from Zymomonas mobilis, phosphoenolpyruvate synthase from E. coli, tyrosine, ammonia-lyase from Rhodosporidium toruloides and coumarin synthase (AtCOSY) from Arabidopsis thaliana Direct fusion of p-coumaroyl CoA 2′-hydroxylase from Peucedanum praeruptorum and 4-coumaroyl-CoA ligase from Petroselinum crispum Truncating the N-terminal signal peptides of PcU6DT (umbelliferone 6-dimethylallyltransferase from P. crispum), FcMS (marmesin synthase from Ficus carica), and AtCPR1 (CYP450 reductase 1 from A. thaliana) Overexpressing PcU6DT, FcMS, and AtCOSY | 27.7 mg/L | [104] | |
Escherichia coli | δ-Tocotrienol | DH5α | 15 µg/g | [71] | |
2-methyl-6-geranylgeranyl-benzoquinol(MGGBQ) | DH5α | Overexpression of IDI and DXS | 1425 µg/g | [105] | |
Licoflavanone(C3′-prenylnaringenin) | BL21 (DE3) | Screening PTs Introduction of IUP pathway Optimizing fermentation conditions | 537.8 mg/L | [106] | |
3geranyl-4-hydroxybenzoic acid (GBA) | Rosetta (DE3) | Introduction of MVA pathway | 94.30 mg/L | [78] | |
6-prenylnaringenin | BL21 (DE3) | Introduction of the IUP pathway and screening of pathway enzymes Optimization of carbon sources and biotransformation conditions | 69.9 mg/L | [73] | |
Prenylated stilbenoids | BL21 (DE3) | Optimization of fermentation conditions Replacement of promoters for genes synthesizing acetyl-CoA and malonyl-CoA | 68.4 mg/L | [98] | |
Menaquinone-8 (MK-8) | JM109 | Knockout of UbiC/A Overexpression of MenA | 290 µg/g | [86] | |
Menaquinone-7 (MK-7) | G01/ pLE2SK | Expression of HepPPS from B. subtilis Low expression of MvaE, MvaS, and MK | 8.8 mg/L | [85] | |
BW25113 | Introduction of the MVA pathway and enhanced expression of IDI Combinatorial expression of HepPPS, UbiE from B. subtilis and Men A from E. coli Replacement of the native MenFDCEB promoter with the strong inducible BAD promoter Enhancement of MK-7 synthesis through membrane engineering | 1.35 g/L | [95] | ||
Bacillus subtilis | Menaquinone-7 (MK-7) | B. subtilis 168 | Modular expression Overexpression the coding genes of MenA, DXS, DXR, YacM, YacN and GlpD. Knockout dhbB | 69.5 ± 2.8 mg/L | [61] |
B. subtilis 168 | Overexpression the coding genes of MenA, DXS, DXR and IDI | 50 mg/L | [107] | ||
B. subtilis 168 | Develop the Phr60-Rap60-Spo0A quorum sensing system and utilize this system to dynamically regulate the expression of key enzymes | 360 mg/L | [108] | ||
B. subtilis 168 | Co-expression of the cell membrane component signal transduction proteins tatAD-CD and menaquinol-cytochrome c reductase qcrA-C | 410 mg/L | [109] | ||
Menaquinone-4 (MK-4) | B. subtilis 168 | Overexpression the coding genes of MenA, MenG, and CrtE from Synechocystis sp. PCC 6803 Knockout of the hepT, which catalyzes the conversion of farnesyl diphosphate to heptaprenyl diphosphate Simultaneous overexpression the coding genes of DXS, DXR, and IspD-IspF in the MEP module under the strong promoter P43 Heterologous expression of the MVA pathway | 145 ± 2.8 mg /L | [60] | |
Other | |||||
Bacillus amyloliquefaciens | Menaquinone-7 (MK-7) | B. amyloliquefaciens Y-2 | Comparison of production capabilities between Bacillus amyloliquefaciens W21 and Y-2 strains Comparison of shake flask and static culture Overexpression of HepS | 273 ± 5.4 µg/g DCW | [110] |
Lactococcus lactis | Menaquinone | L.lactis ssp. cremoris MG1363 | Co-overexpression of PreA, MenA and Mk | 719 ± 33.0 nmol/L | [111] |
Komagataella phaffii | Artepillin C | K. phaffii CBS7435 | Expression of TAL from Herpetosiphon aurantiacus Expression of Aro4K229L and Aro7G141S Overexpression of IDI and tHMG1 | 12.5 ± 0.9 mg/L | [82] |
Yarrowia lipolytica | Artepillin C | Po1f | Overexpress the rate-limiting genes of the MVA pathway, introduce the MvaE and MvaS from Enterococcus faecalis and the MK from Methanosarcina mazei, and reduce the strength of the ERG9 promoter Overexpress the genes of TAL, ARO4K221L and ARO7G139S Construct diploid strains | 7.45 mg/L | [112] |
8-prenylnaringenin | Po1f | Overexpress the genes responsible for naringenin synthesis Overexpress the genes involved in the synthesis of acetyl-CoA and malonyl-CoA Overexpress ARO4K221L and ARO7G139S Construct diploid strains | 4.36 mg/L | [112] |
4.3. Modification of Engineered Strains to Enhance PAC Production
4.3.1. Metabolic Engineering of PAC Synthesis Pathway
4.3.2. Improving Reaction Efficiency Using a Multienzyme Assembly Strategy
4.3.3. Engineering Modifications for Product Efflux Processes
5. Conclusions and Future Perspectives
5.1. Future Perspectives
5.2. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Tang, M.; You, J.; Yang, T.; Sun, Q.; Jiang, S.; Xu, M.; Pan, X.; Rao, Z. Application of modern synthetic biology technology in aromatic amino acids and derived compounds biosynthesis. Bioresour. Technol. 2024, 406, 131050. [Google Scholar] [CrossRef]
- Gomes, D.; Rodrigues, L.R.; Rodrigues, J.L. Perspectives on the design of microbial cell factories to produce prenylflavonoids. Int. J. Food Microbiol. 2022, 367, 109588. [Google Scholar] [CrossRef]
- Harish, V.; Haque, E.; Smiech, M.; Taniguchi, H.; Jamieson, S.; Tewari, D.; Bishayee, A. Xanthohumol for Human Malignancies: Chemistry, Pharmacokinetics and Molecular Targets. Int. J. Mol. Sci. 2021, 22, 4478. [Google Scholar] [CrossRef]
- Vesaghhamedani, S.; Ebrahimzadeh, F.; Najafi, E.; Shabgah, O.G.; Askari, E.; Shabgah, A.G.; Mohammadi, H.; Jadidi-Niaragh, F.; Navashenaq, J.G. Xanthohumol: An underestimated, while potent and promising chemotherapeutic agent in cancer treatment. Prog. Biophys. Mol. Biol. 2022, 172, 3–14. [Google Scholar] [CrossRef]
- Zhou, T.; Jiang, Y.; Zeng, B.; Yang, B. The cancer preventive activity and mechanisms of prenylated resveratrol and derivatives. Curr. Res. Toxicol. 2023, 5, 100113. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Hernandez, O.D.; Figueroa-Gonzalez, G.; Quintas-Granados, L.I.; Hernandez-Parra, H.; Pena-Corona, S.I.; Cortes, H.; Kipchakbayeva, A.; Mukazhanova, Z.; Habtemariam, S.; Leyva-Gomez, G.; et al. New insights into the anticancer therapeutic potential of icaritin and its synthetic derivatives. Drug Dev. Res. 2024, 85, e22175. [Google Scholar] [CrossRef]
- Bailly, C. Molecular and cellular basis of the anticancer activity of the prenylated flavonoid icaritin in hepatocellular carcinoma. Chem. Biol. Interact. 2020, 325, 109124. [Google Scholar] [CrossRef] [PubMed]
- Yazaki, K.; Sasaki, K.; Tsurumaru, Y. Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry 2009, 70, 1739–1745. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.-W.; Wang, Q.-L.; Luo, M.; Zhu, M.-D.; Liang, H.-M.; Li, W.-J.; Cai, H.; Zhou, Z.-B.; Wang, H.; Tong, S.-Q.; et al. Phytochemistry and pharmacology of natural prenylated flavonoids. Arch. Pharmacal Res. 2023, 46, 207–272. [Google Scholar] [CrossRef]
- Zaaboul, F.; Liu, Y. Vitamin E in foodstuff: Nutritional, analytical, and food technology aspects. Compr. Rev. Food Sci. Food Saf. 2022, 21, 964–998. [Google Scholar] [CrossRef]
- Stulikova, K.; Karabin, M.; Nespor, J.; Dostalek, P. Therapeutic perspectives of 8-prenylnaringenin, a potent phytoestrogen from Hops. Molecules 2018, 23, 660. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Shi, B.; Huang, Y.; Ma, T.; Xiang, Z.; Hu, B.; Kuang, Z.; Huang, M.; Lin, X.; Tian, Z.; et al. Revolution of vitamin E production by starting from microbial fermented farnesene to isophytol. Innovation 2022, 3, 100228. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhou, L.; Tian, K.; Kumar, A.; Singh, S.; Prior, B.A.; Wang, Z. Metabolic engineering of Escherichia coli: A sustainable industrial platform for bio-based chemical production. Biotechnol. Adv. 2013, 31, 1200–1223. [Google Scholar] [CrossRef]
- Hong, K.K.; Nielsen, J. Metabolic engineering of Saccharomyces cerevisiae: A key cell factory platform for future biorefineries. Cell Mol. Life Sci. 2012, 69, 2671–2690. [Google Scholar] [CrossRef]
- Schallmey, M.; Singh, A.; Ward, O.P. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 2004, 50, 1–17. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, Q.; Wang, J.; Li, Y.; Wang, X.; Bao, Y. Vitamin E synthesis and response in plants. Front. Plant Sci. 2022, 13, 994058. [Google Scholar] [CrossRef]
- Kawamukai, M. Biosynthesis and applications of prenylquinones. Biosci. Biotechnol. Biochem. 2018, 82, 963–977. [Google Scholar] [CrossRef]
- An, T.; Feng, X.; Li, C. Prenylation: A critical step for biomanufacturing of prenylated aromatic natural products. J. Agric. Food Chem. 2023, 71, 2211–2233. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.C.; Chew, S.C.; Liew, W.C.; Nyam, K.L. Review article vitamin E: A multi-functional ingredient for health enhancement and food preservation. J. Food Meas. Charact. 2023, 17, 6144–6156. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, Y.; Yang, J.; He, J.; Sun, J.; Chen, F.; Zhang, M.; Yang, B. Prenylated flavonoids, promising nutraceuticals with impressive biological activities. Trends Food Sci. Technol. 2015, 44, 93–104. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, L.; Liu, C.; Sun, Y.; Zhang, D. New aspects of microbial vitamin K2 production by expanding the product spectrum. Microb. Cell Fact. 2021, 20, 84. [Google Scholar] [CrossRef]
- Cirilli, I.; Damiani, E.; Dludla, P.V.; Hargreaves, I.; Marcheggiani, F.; Millichap, L.E.; Orlando, P.; Silvestri, S.; Tiano, L. Role of Coenzyme Q(10) in health and disease: An update on the last 10 years (2010–2020). Antioxidants 2021, 10, 1325. [Google Scholar]
- Li, F.; Zhang, Y.; Lu, X.; Shi, J.; Gong, Q. Icariin improves the cognitive function of APP/PS1 mice via suppressing endoplasmic reticulum stress. Life Sci. 2019, 234, 116739. [Google Scholar] [CrossRef]
- Fan, J.R.; Kuang, Y.; Dong, Z.Y.; Yi, Y.; Zhou, Y.X.; Li, B.; Qiao, X.; Ye, M. Prenylated Phenolic Compounds from the Aerial Parts of Glycyrrhiza uralensis as PTP1B and alpha-Glucosidase Inhibitors. J. Nat. Prod. 2020, 83, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.K.; Kamisah, Y.; Mohamed, N.; Muhammad, N.; Masbah, N.; Fahami, N.A.M.; Mohamed, I.N.; Shuid, A.N.; Saad, Q.M.; Abdullah, A.; et al. Potential role of tocotrienols on non-communicable diseases: A review of current evidence. Nutrients 2020, 12, 259. [Google Scholar] [CrossRef] [PubMed]
- Bo, S.; Chang, S.K.; Zhou, T.; Zhu, H.; Jiang, Y.; Yang, B. Heterologous biosynthesis of prenylated resveratrol and evaluation of antioxidant activity. Food Chem. 2022, 378, 132118. [Google Scholar] [CrossRef] [PubMed]
- Boulebd, H. Structure-activity relationship of antioxidant prenylated (iso)flavonoid-type compounds: Quantum chemistry and molecular docking studies. J. Biomol. Struct. Dyn. 2022, 40, 10373–10382. [Google Scholar] [CrossRef]
- Miyazawa, T.; Burdeos, G.C.; Itaya, M.; Nakagawa, K.; Miyazawa, T. Vitamin E: Regulatory redox interactions. IUBMB Life 2019, 71, 430–441. [Google Scholar] [CrossRef]
- Santos, C.M.M.; Silva, A.M.S. The antioxidant activity of prenylflavonoids. Molecules 2020, 25, 696. [Google Scholar] [CrossRef]
- Morante-Carriel, J.; Zivkovic, S.; Najera, H.; Selles-Marchart, S.; Martinez-Marquez, A.; Martinez-Esteso, M.J.; Obrebska, A.; Samper-Herrero, A.; Bru-Martinez, R. Prenylated flavonoids of the moraceae family: A comprehensive review of their biological activities. Plants 2024, 13, 1211. [Google Scholar] [CrossRef]
- Wang, P.; Li, C.; Li, X.; Huang, W.; Wang, Y.; Wang, J.; Zhang, Y.; Yang, X.; Yan, X.; Wang, Y.; et al. Complete biosynthesis of the potential medicine icaritin by engineered Saccharomyces cerevisiae and Escherichia coli. Sci. Bull. 2021, 66, 1906–1916. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Zhang, C. Icaritin inhibits CDK2 expression and activity to interfere with tumor progression. iScience 2022, 25, 104991. [Google Scholar] [CrossRef]
- Jiao, Y.; Li, W.; Yang, W.; Wang, M.; Xing, Y.; Wang, S. Icaritin exerts anti-cancer effects through modulating pyroptosis and immune activities in hepatocellular carcinoma. Biomedicines 2024, 12, 1917. [Google Scholar] [CrossRef]
- Yuan, G.; Qian, P.; Chen, L.; He, N. Kuwanon C inhibits tumor cell proliferation and induces apoptosis by targeting mitochondria and Endoplasmic Reticulum. Int. J. Mol. Sci. 2024, 25, 8293. [Google Scholar] [CrossRef]
- Kim, M.E.; Lee, J.S. Molecular foundations of inflammatory diseases: Insights into inflammation and inflammasomes. Curr. Issues Mol. Biol. 2024, 46, 469–484. [Google Scholar] [CrossRef]
- Wu, Q.; Luo, Y.; Lu, H.; Xie, T.; Hu, Z.; Chu, Z.; Luo, F. The potential role of Vitamin E and the mechanism in the prevention and treatment of inflammatory bowel disease. Foods 2024, 13, 898. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Chen, X.; Shao, X.; Wang, Z.; Du, Y.; Zhu, C.; Du, W.; Tang, D.; Ji, S. Prenylated phenolic compounds from licorice (Glycyrrhiza uralensis) and their anti-inflammatory activity against osteoarthritis. Food Funct. 2022, 13, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.P.; Guo, J.M.; Yan, G.; Zhang, M.M.; Zhang, W.H.; Qiang, L.; Fu, Y.H. Anti-Inflammatory and antiproliferative prenylated isoflavone derivatives from the fruits of Ficus carica. J. Agric. Food Chem. 2019, 67, 4817–4823. [Google Scholar] [CrossRef]
- Tao, L.; Zhuo, Y.T.; Qiao, Z.H.; Li, J.; Tang, H.X.; Yu, Q.M.; Liu, Y.Y.; Liu, Y.P. Prenylated coumarins from the fruits of artocarpus heterophyllus with their potential anti-inflammatory and anti-HIV activities. Nat. Prod. Res. 2022, 36, 2526–2533. [Google Scholar] [CrossRef]
- Pelegrini, B.; Becker, A.; Ferreira, C.; Machado, G.; Gauer, M.; Mazarin, S.; Dembogurski, D.; Kaneshima, A.; da Silva, D.; Becker, T.C. Antineoplastic activity evaluation of brazilian brown propolis and Artepillin C in colorectal area of Wistar Rats. Asian Pac. J. Cancer Prev. 2024, 25, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.; Somensi, L.B.; da Silva, R.d.C.M.V.d.A.; Mariano, L.N.B.; Boeing, T.; Longo, B.; Perfoll, E.; de Souza, P.; Gushiken, L.F.S.; Pellizzon, C.H.; et al. Role of the antioxidant properties in the gastroprotective and gastric healing activity promoted by Brazilian green propolis and the healing efficacy of Artepillin C. Inflammopharmacology 2019, 28, 1009–1025. [Google Scholar] [CrossRef]
- Ferreira, I.R.S.; Justino, I.A.; Martins, R.B.; Souza, M.V.O.; de Lima, T.M.; de Freitas Pinheiro, A.M.; Arruda, E.; Bastos, J.K.; Marcato, P.D. Antiviral and anti-inflammatory efficacy of nanoencapsulated brazilian green propolis against SARS-CoV-2. Sci. Rep. 2025, 15, 21627. [Google Scholar] [CrossRef]
- Koosha, S.; Mohamed, Z.; Sinniah, A.; Ibrahim, Z.A.; Seyedan, A.; Alshawsh, M.A. Antiproliferative and apoptotic activities of 8-prenylnaringenin against human colon cancer cells. Life Sci. 2019, 232, 116633. [Google Scholar] [CrossRef]
- Lecomte, M.; Tomassi, D.; Rizzoli, R.; Tenon, M.; Berton, T.; Harney, S.; Fança-Berthon, P. Effect of a hop extract standardized in 8-prenylnaringenin on bone health and gut microbiome in postmenopausal women with Osteopenia: A One-Year Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2023, 15, 2688. [Google Scholar] [PubMed]
- Movaffagh, J.; Salari, H.; Merajifar, E.; hosseinian, H.G.; Shahroodi, A.; Iranshahi, M.; Rassouli, F.B. 7-geranyloxycoumarin enhanced radiotherapy effects on human gastric adenocarcinoma cells. J. Cancer Res. Ther. 2023, 19, 590–594. [Google Scholar] [PubMed]
- Joveini, S.; Yarmohammadi, F.; Iranshahi, M.; Nikpoor, A.R.; Askari, V.R.; Attaranzadeh, A.; Etemad, L.; Taherzadeh, Z. Distinct therapeutic effects of auraptene and umbelliprenin on TNF-α and IL-17 levels in a murine model of chronic inflammation. Heliyon 2024, 10, e40731. [Google Scholar] [CrossRef]
- Qi, R.; Fei, Y. Auraptene mitigates cigarette smoke and lipopolysaccharide-Induced chronic Obstructive Pulmonary Disease in Mice and BEAS-2B Cells via regulating Keap1/Nrf2/HO-1 pathway. J. Biochem. Mol. Toxicol. 2025, 39, e70253. [Google Scholar] [CrossRef] [PubMed]
- Tsionkis, G.; Andronidou, E.M.; Kontou, P.I.; Tamposis, I.A.; Tegopoulos, K.; Pergantas, P.; Grigoriou, M.E.; Skavdis, G.; Bagos, P.G.; Braliou, G.G. Humulus lupulus (Hop)-Derived chemical compounds present antiproliferative activity on various cancer cell types: A meta-regression based panoramic meta-analysis. Pharmaceuticals 2025, 18, 1139. [Google Scholar] [CrossRef]
- Długosz, A.; Błaszak, B.; Czarnecki, D.; Szulc, J. Mechanism of action and therapeutic potential of Xanthohumol in prevention of selected Neurodegenerative Diseases. Molecules 2025, 30, 694. [Google Scholar] [CrossRef]
- Han, N.; Li, J.; Li, Y.; Zhao, F.; Wang, J.; Ye, P.; Zeng, Z. Xanthohumol ameliorates dextran sodium sulfate-induced colitis in mice by inhibiting of NF-κB signaling pathways and modulating intestinal microbiota. Eur. J. Nutr. 2024, 64, 21. [Google Scholar] [CrossRef]
- Yu, Z.; Su, G.; Zhang, L.; Liu, G.; Zhou, Y.; Fang, S.; Zhang, Q.; Wang, T.; Huang, C.; Huang, Z.; et al. Icaritin inhibits neuroinflammation in a rat cerebral ischemia model by regulating microglial polarization through the GPER–ERK–NF-κB signaling pathway. Mol. Med. 2022, 28, 142. [Google Scholar]
- Abdel-Hafez, S.H.; Alexeree, S.M.I. Evaluating the anticancer properties of VAF: A novel folate-α-tocopherol conjugate against lung cancer cells. BMC Cancer 2025, 25, 1423. [Google Scholar] [CrossRef]
- Duan, Q.Q.; Su, W.M.; Gu, X.J.; Long, J.; Jiang, Z.; Yin, K.F.; Cai, W.C.; Cao, B.; Chi, L.Y.; Gao, X.; et al. Genetically predict diet-derived antioxidants and risk of Neurodegenerative Diseases among individuals of European descent: A Mendelian Randomization Study. Brain Behav. 2025, 15, e70766. [Google Scholar]
- Shende, V.V.; Bauman, K.D.; Moore, B.S. The shikimate pathway: Gateway to metabolic diversity. Nat. Prod. Rep. 2024, 41, 604–648. [Google Scholar] [CrossRef] [PubMed]
- Vranova, E.; Coman, D.; Gruissem, W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant Biol. 2013, 64, 665–700. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Quan, S.; Xiao, H. Towards efficient terpenoid biosynthesis: Manipulating IPP and DMAPP supply. Bioresour. Bioprocess. 2019, 6, 6. [Google Scholar] [CrossRef]
- Li, M.; Hou, F.; Wu, T.; Jiang, X.; Li, F.; Liu, H.; Xian, M.; Zhang, H. Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories. Nat. Prod. Rep. 2020, 37, 80–99. [Google Scholar]
- Navale, G.R.; Dharne, M.S.; Shinde, S.S. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2021, 105, 457–475. [Google Scholar] [CrossRef] [PubMed]
- de Bruijn, W.J.C.; Levisson, M.; Beekwilder, J.; van Berkel, W.J.H.; Vincken, J.P. Plant aromatic prenyltransferases: Tools for microbial cell factories. Trends Biotechnol. 2020, 38, 917–934. [Google Scholar] [CrossRef]
- Yuan, P.; Cui, S.; Liu, Y.; Li, J.; Lv, X.; Liu, L.; Du, G. Combinatorial engineering for improved menaquinone-4 biosynthesis in Bacillus subtilis. Enzyme Microb. Technol. 2020, 141, 109652. [Google Scholar]
- Yang, S.; Cao, Y.; Sun, L.; Li, C.; Lin, X.; Cai, Z.; Zhang, G.; Song, H. Modular pathway engineering of Bacillus subtilis to promote de novo biosynthesis of menaquinone-7. ACS Synth. Biol. 2019, 8, 70–81. [Google Scholar] [PubMed]
- Sasaki, K.; Tsurumaru, Y.; Yazaki, K. Prenylation of flavonoids by biotransformation of yeast expressing plant membrane-bound prenyltransferase SfN8DT-1. Biosci. Biotechnol. Biochem. 2009, 73, 759–761. [Google Scholar] [CrossRef]
- Isogai, S.; Okahashi, N.; Asama, R.; Nakamura, T.; Hasunuma, T.; Matsuda, F.; Ishii, J.; Kondo, A. Synthetic production of prenylated naringenins in yeast using promiscuous microbial prenyltransferases. Metab. Eng. Commun. 2021, 12, e00169. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.P.; Abe, I. Microbial soluble aromatic prenyltransferases for engineered biosynthesis. Synth. Syst. Biotechnol. 2021, 6, 51–62. [Google Scholar] [CrossRef]
- Cheng, W.; Li, W. Structural insights into ubiquinone biosynthesis in membranes. Science 2014, 343, 878–881. [Google Scholar] [CrossRef]
- Kong, S.; Liao, Q.; Liu, Y.; Tang, R.; Lin, L.; Li, H. Efficient and selective extraction of prenylated flavonoids from Sophora flavescens using ultrasound-assisted hydrophobic ionic liquid and characterization of extraction mechanism. Molecules 2025, 30, 500. [Google Scholar] [CrossRef] [PubMed]
- Chajra, H.; Salwinski, A.; Guillaumin, A.; Mignard, B.; Hannewald, P.; Duriot, L.; Warnault, P.; Guillet-Claude, C.; Frechet, M.; Bourgaud, F. Plant milking technology-An innovative and sustainable process to produce highly active extracts from plant roots. Molecules 2020, 25, 4162. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Smolke, C.D. Strategies for microbial synthesis of high-value phytochemicals. Nat. Chem. 2018, 10, 395–404. [Google Scholar] [CrossRef]
- Guo, C.; Lv, Y.; Li, H.; Zhou, J.; Xu, S. De novo biosynthesis of 8-prenylnaringenin in Saccharomyces cerevisiae improved by screening and engineering of prenyltransferases and precursor pathway. Syst. Microbiol. Biomanuf. 2022, 3, 647–658. [Google Scholar]
- Shen, B.; Zhou, P.; Jiao, X.; Yao, Z.; Ye, L.; Yu, H. Fermentative production of Vitamin E tocotrienols in Saccharomyces cerevisiae under cold-shock-triggered temperature control. Nat. Commun. 2020, 11, 5155. [Google Scholar] [CrossRef]
- Albermann, C.; Ghanegaonkar, S.; Lemuth, K.; Vallon, T.; Reuss, M.; Armbruster, W.; Sprenger, G.A. Biosynthesis of the vitamin E compound delta-tocotrienol in recombinant Escherichia coli cells. Chembiochem 2008, 9, 2524–2533. [Google Scholar] [CrossRef]
- Levisson, M.; Araya-Cloutier, C.; de Bruijn, W.J.C.; van der Heide, M.; Salvador Lopez, J.M.; Daran, J.M.; Vincken, J.P.; Beekwilder, J. Toward developing a yeast cellfactory for the production of prenylated flavonoids. J. Agric. Food Chem. 2019, 67, 13478–13486. [Google Scholar]
- Qiu, C.; Liu, Y.; Wu, Y.; Zhao, L.; Pei, J. Biochemical characterization of a novel prenyltransferase from Streptomyces sp. NT11 and development of a recombinant strain for the production of 6-prenylnaringenin. J. Agric. Food Chem. 2021, 69, 14231–14240. [Google Scholar] [CrossRef]
- Gomes, D.; Rodrigues, J.L.; Scrutton, N.S.; Rodrigues, L.R. De novo production of prenylnaringenin compounds by a metabolically engineered Escherichia coli. J. Biotechnol. 2025, 405, 215–228. [Google Scholar] [CrossRef]
- Yang, S.; Chen, R.; Cao, X.; Wang, G.; Zhou, Y.J. De novo biosynthesis of the hops bioactive flavonoid xanthohumol in yeast. Nat. Commun. 2024, 15, 253. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhu, S.-Y.; Zhang, C.-X.; Zhang, L.-J.; Liu, Z.-H.; Yuan, Y.-J.; Li, B.-Z. Biotransformation of kaempferol to icaritin in engineered Saccharomyces cerevisiae. J. Agric. Food Chem. 2025, 73, 13767–13780. [Google Scholar] [CrossRef]
- Gao, S.; Zeng, W.; Li, D.; Zhou, J.; Xu, S. Efficient biosynthesis of 8-prenylkaempferol from kaempferol by using flavonoid 8-dimethylallyltransferase derived from Epimedium koreanum. J. Agric. Food Chem. 2025, 73, 10449–10455. [Google Scholar] [CrossRef] [PubMed]
- He, B.B.; Bu, X.L.; Zhou, T.; Li, S.M.; Xu, M.J.; Xu, J. Combinatory biosynthesis of prenylated 4-hydroxybenzoate derivatives by overexpression of the substrate-promiscuous prenyltransferase XimB in engineered E. coli. ACS Synth. Biol. 2018, 7, 2094–2104. [Google Scholar] [CrossRef]
- Wang, S.; Wang, R.; Liu, T.; Zhan, Z.; Kang, L.; Wang, Y.; Lv, C.; Werck-Reichhart, D.; Guo, L.; Huang, L. Production of 3-geranyl-4-hydroxybenzoate acid in yeast, an important intermediate of shikonin biosynthesis pathway. FEMS Yeast Res. 2017, 17, fox065. [Google Scholar] [CrossRef]
- Zhou, T.; Yang, B. Novel strategy to produce prenylated resveratrol by prenyltransferase iacE and evaluation of neuroprotective mechanisms. Biochem. Biophys. Res. Commun. 2022, 609, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Zhou, J.; Li, J.; Chen, J.; Du, G.; Zhong, F.; Zhao, Y.; Zhao, X. Efficient biosynthesis of furanocoumarin intermediate marmesin by engineered Escherichia coli. ACS Synth. Biol. 2025, 14, 954–966. [Google Scholar] [CrossRef]
- Bamba, T.; Munakata, R.; Ushiro, Y.; Kumokita, R.; Tanaka, S.; Hori, Y.; Kondo, A.; Yazaki, K.; Hasunuma, T. De novo production of the bioactive phenylpropanoid Artepillin C using membrane-bound prenyltransferase in Komagataella phaffii. ACS Synth. Biol. 2024, 13, 4040–4049. [Google Scholar] [CrossRef]
- Zheng, Y.L.; Xu, Y.; Liu, Y.Q.; Zhao, Q.W.; Li, Y.Q. De Novo biosynthesis of a bioactive meroterpene Bakuchiol in yeast. ACS Synth. Biol. 2024, 13, 3600–3608. [Google Scholar] [CrossRef]
- Lee, S.Q.; Tan, T.S.; Kawamukai, M.; Chen, E.S. Cellular factories for coenzyme Q(10) production. Microb. Cell Fact. 2017, 16, 39. [Google Scholar] [CrossRef]
- Gao, Q.; Chen, H.; Wang, W.; Huang, J.; Tao, Y.; Lin, B. Menaquinone-7 production in engineered Escherichia coli. World J. Microbiol. Biotechnol. 2020, 36, 132. [Google Scholar] [CrossRef]
- Kong, M.K.; Lee, P.C. Metabolic engineering of menaquinone-8 pathway of Escherichia coli as a microbial platform for vitamin K production. Biotechnol. Bioeng. 2011, 108, 1997–2002. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Zheng, Z.; Liu, H.; Wang, P.; Wang, H.; Sun, X.; Yang, Q.; Fang, Z.; Tang, H.; Zhao, G. Combining mutagenesis on Glu281 of prenyltransferase NovQ and metabolic engineering strategies for the increased prenylated activity towards menadione. Appl. Microbiol. Biotechnol. 2020, 104, 4371–4382. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Gao, S.; Li, H.; Lyu, Y.; Yu, S.; Zhou, J. N-terminal truncation of prenyltransferase enhances the biosynthesis of prenylnaringenin. Chin. J. Biotechnol. 2022, 38, 1565–1575. [Google Scholar]
- Jiang, G.-Z.; Yao, M.-D.; Wang, Y.; Zhou, L.; Song, T.-Q.; Liu, H.; Xiao, W.-H.; Yuan, Y.-J. Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae. Metab. Eng. 2017, 41, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Bao, X.; Li, C.; Shen, Y.; Hou, J. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2016, 100, 4561–4571. [Google Scholar] [CrossRef]
- Ki, M.R.; Pack, S.P. Fusion tags to enhance heterologous protein expression. Appl. Microbiol. Biotechnol. 2020, 104, 2411–2425. [Google Scholar] [CrossRef]
- Wanying, Z.; Jingwen, Z.; Ying, H. Metabolic engineering of Escherichia coli for 8-prenylkaempferol synthesis. Food Ferment. Ind. 2023, 49, 16–24. [Google Scholar]
- Singh, R.K.; Lee, J.-K.; Selvaraj, C.; Singh, R.; Li, J.; Kim, S.-Y.; Kalia, V.C. Protein engineering approaches in the Post-Genomic Era. Curr. Protein Pept. Sci. 2017, 19, 5–15. [Google Scholar] [CrossRef]
- Mori, T.; Zhang, L.; Awakawa, T.; Hoshino, S.; Okada, M.; Morita, H.; Abe, I. Manipulation of prenylation reactions by structure-based engineering of bacterial indolactam prenyltransferases. Nat. Commun. 2016, 7, 10849. [Google Scholar] [CrossRef]
- Gao, Q.; Chen, H.; Wang, G.; Yang, W.; Zhong, X.; Liu, J.; Huo, X.; Liu, W.; Huang, J.; Tao, Y.; et al. Highly efficient production of menaquinone-7 from glucose by metabolically engineered Escherichia coli. ACS Synth. Biol. 2021, 10, 756–765. [Google Scholar] [CrossRef]
- Suastegui, M.; Shao, Z. Yeast factories for the production of aromatic compounds: From building blocks to plant secondary metabolites. J. Ind. Microbiol. Biotechnol. 2016, 43, 1611–1624. [Google Scholar] [CrossRef]
- An, T.; Lin, G.; Liu, Y.; Qin, L.; Xu, Y.; Feng, X.; Li, C. De novo biosynthesis of anticarcinogenic icariin in engineered yeast. Metab. Eng. 2023, 80, 207–215. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, T.; Liu, H.; Wen, L.; Jiang, Y.; Yang, B. Heterologous biosynthesis of prenylated resveratrol through multiplex metabolic engineering in Escherichia coli. Green. Chem. 2024, 26, 4792–4802. [Google Scholar]
- Song, J.; Liu, H.; Wang, L.; Dai, J.; Liu, Y.; Liu, H.; Zhao, G.; Wang, P.; Zheng, Z. Enhanced Production of Vitamin K2 from Bacillus subtilis (natto)by mutation and optimization of the fermentation medium. Braz. Arch. Biol. Technol. 2014, 57, 606–612. [Google Scholar] [CrossRef]
- Berenjian, A.; Mahanama, R.; Talbot, A.; Regtop, H.; Kavanagh, J.; Dehghani, F. Designing of an intensification process for biosynthesis and recovery of menaquinone-7. Appl. Biochem. Biotechnol. 2014, 172, 1347–1357. [Google Scholar] [PubMed]
- Sun, H.; Yang, J.; Lin, X.; Li, C.; He, Y.; Cai, Z.; Zhang, G.; Song, H. De Novo High-Titer production of delta-tocotrienol in recombinant Saccharomyces cerevisiae. J. Agric. Food Chem. 2020, 68, 7710–7717. [Google Scholar]
- Jiao, X.; Shen, B.; Li, M.; Ye, L.; Yu, H. Secretory production of tocotrienols in Saccharomyces cerevisiae. ACS Synth. Biol. 2022, 11, 788–799. [Google Scholar] [CrossRef]
- Jiao, X.; Bian, Q.; Feng, T.; Lyu, X.; Yu, H.; Ye, L. Efficient secretory production of delta-tocotrienol by combining pathway modularization and transportation engineering. J. Agric. Food Chem. 2023, 71, 9020–9030. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Y.; Wang, Y.; Yan, X. Reconstitution and optimization of the marmesin biosynthetic pathway in yeast. ACS Synth. Biol. 2023, 12, 2922–2933. [Google Scholar] [CrossRef]
- Ghanegaonkar, S.; Conrad, J.; Beifuss, U.; Sprenger, G.A.; Albermann, C. Towards the in vivo production of tocotrienol compounds: Engineering of a plasmid-free Escherichia coli strain for the heterologous synthesis of 2-methyl-6-geranylgeranyl-benzoquinol. J. Biotechnol. 2012, 164, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yao, W.; Tang, Y.; Ye, J.; Niu, T.; Yang, L.; Wang, R.; Wang, Z. Coupling the isopentenol utilization pathway and prenyltransferase for the biosynthesis of Licoflavanone in recombinant Escherichia coli. J. Agric. Food Chem. 2024, 72, 15832–15840. [Google Scholar] [CrossRef]
- Ma, Y.; McClure, D.D.; Somerville, M.V.; Proschogo, N.W.; Dehghani, F.; Kavanagh, J.M.; Coleman, N.V. Metabolic engineering of the MEP pathway in Bacillus subtilis for increased biosynthesis of menaquinone-7. ACS Synth. Biol. 2019, 8, 1620–1630. [Google Scholar] [CrossRef]
- Cui, S.; Lv, X.; Wu, Y.; Li, J.; Du, G.; Ledesma-Amaro, R.; Liu, L. Engineering a bifunctional Phr60-Rap60-Spo0A quorum-sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis. ACS Synth. Biol. 2019, 8, 1826–1837. [Google Scholar] [CrossRef]
- Cui, S.; Xia, H.; Chen, T.; Gu, Y.; Lv, X.; Liu, Y.; Li, J.; Du, G.; Liu, L. Cell membrane and electron transfer engineering for improved synthesis of menaquinone-7 in Bacillus subtilis. iScience 2020, 23, 100918. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.-Z.; Yan, W.-L.; Zhang, W.-G. Enhancing menaquinone-7 production in recombinant Bacillus amyloliquefaciens by metabolic pathway engineering. RSC Adv. 2017, 7, 28527–28534. [Google Scholar] [CrossRef]
- Boe, C.A.; Holo, H. Engineering Lactococcus lactis for increased Vitamin K2 production. Front. Bioeng. Biotechnol. 2020, 8, 191. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, Y.; Zhang, J.; Sun, L.; Sheng, J.-Z.; Tan, Z.; Qi, Q.; Hou, J. Metabolic engineering and strain mating of Yarrowia lipolytica for sustainable production of prenylated aromatic compounds. ACS Sustainable Chem. Eng. 2025, 13, 3149–3159. [Google Scholar] [CrossRef]
- Paramasivan, K.; Mutturi, S. Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae. Crit. Rev. Biotechnol. 2017, 37, 974–989. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, X.; Zhang, J.; Zhou, Y.; Wang, F.; Wang, Z.; Li, X. Advances in microbial production of geraniol: From metabolic engineering to potential industrial applications. Crit. Rev. Biotechnol. 2024, 45, 727–742. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Gao, X.; Jiang, Y.; Sun, B.; Gao, F.; Yang, S. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli. Metab. Eng. 2016, 37, 79–91. [Google Scholar] [CrossRef]
- Chatzivasileiou, A.O.; Ward, V.; Edgar, S.M.; Stephanopoulos, G. Two-step pathway for isoprenoid synthesis. Proc. Natl. Acad. Sci. USA 2019, 116, 506–511. [Google Scholar] [CrossRef]
- Holtz, W.J.; Keasling, J.D. Engineering static and dynamic control of synthetic pathways. Cell 2010, 140, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Gao, C.; Song, W.; Wei, W.; Wu, J.; Liu, L.; Chen, X. Engineering status of protein for improving microbial cell factories. Biotechnol. Adv. 2024, 70, 108282. [Google Scholar] [CrossRef]
- Cheah, L.C.; Liu, L.; Stark, T.; Plan, M.R.; Peng, B.; Lu, Z.; Schenk, G.; Sainsbury, F.; Vickers, C.E. Metabolic flux enhancement from the translational fusion of terpene synthases is linked to terpene synthase accumulation. Metab. Eng. 2023, 77, 143–151. [Google Scholar] [CrossRef]
- Han, L.; Wu, Y.; Xu, Y.; Zhang, C.; Liu, Y.; Li, J.; Du, G.; Lv, X.; Liu, L. Engineered Saccharomyces cerevisiae for de novo δ-tocotrienol biosynthesis. Syst. Microbiol. Biomanuf 2023, 4, 150–164. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, S.; Fu, G.; Guo, F.; Huang, W.; Zhang, T.; Dong, H.; Jin, Z.; Zhang, D. Highly flexible cell membranes are the key to efficient production of lipophilic compounds. J. Lipid Res. 2024, 65, 100597. [Google Scholar] [CrossRef]
- Carsanba, E.; Pintado, M.; Oliveira, C. Fermentation strategies for production of pharmaceutical terpenoids in engineered yeast. Pharmaceuticals 2021, 14, 295. [Google Scholar] [CrossRef] [PubMed]
- Yazaki, K. ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett. 2006, 580, 1183–1191. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ding, X.M.; Xue, Z.L.; Hu, L.X.; Zhang, N.J.; Wang, Z.; Yang, J.W.; Cheng, Q.; Chen, M.H.; Zhang, Z.Z.; et al. The change of the state of cell membrane can enhance the synthesis of menaquinone in Escherichia coli. World J. Microbiol. Biotechnol. 2017, 33, 52. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, L.; Zhang, X.; Zhang, J.; Zhang, Y.; Wang, F.; Li, X. Combined bioderivatization and engineering approach to improve the efficiency of geraniol production. Green. Chem. 2022, 24, 864–876. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, M.; Guo, X.; Liu, Z.; He, X. Reconstruction of metabolic module with improved promoter strength increases the productivity of 2-phenylethanol in Saccharomyces cerevisiae. Microb. Cell Fact. 2018, 17, 60. [Google Scholar] [PubMed]
- Freschlin, C.R.; Fahlberg, S.A.; Romero, P.A. Machine learning to navigate fitness landscapes for protein engineering. Curr. Opin. Biotechnol. 2022, 75, 102713. [Google Scholar] [CrossRef]
- Hie, B.L.; Yang, K.K. Adaptive machine learning for protein engineering. Curr. Opin. Struct. Biol. 2022, 72, 145–152. [Google Scholar] [CrossRef]
- Yu, T.; Boob, A.G.; Singh, N.; Su, Y.; Zhao, H. In vitro continuous protein evolution empowered by machine learning and automation. Cell Syst. 2023, 14, 633–644. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, W.; Qin, M.; Wang, Y.; Pu, Z.; Ding, K.; Liu, Y.; Zhang, Q.; Li, D.; Li, X.; et al. Integrating protein language models and automatic biofoundry for enhanced protein evolution. Nat. Commun. 2025, 16, 1553. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Fu, L.; Guo, E.; Wang, B.; Dai, L.; Si, T. Accelerating strain engineering in biofuel research via build and test automation of synthetic biology. Curr. Opin. Biotechnol. 2021, 67, 88–98. [Google Scholar] [CrossRef]
- Xue, P.; Si, T.; Mishra, S.; Zhang, L.; Choe, K.; Sweedler, J.V.; Zhao, H. A mass spectrometry-based high-throughput screening method for engineering fatty acid synthases with improved production of medium-chain fatty acids. Biotechnol. Bioeng. 2020, 117, 2131–2138. [Google Scholar] [CrossRef]
- Wu, X.-L.; Li, B.-Z.; Zhang, W.-Z.; Song, K.; Qi, H.; Dai, J.-b.; Yuan, Y.-J. Genome-wide landscape of position effects on heterogeneous gene expression in Saccharomyces cerevisiae. Biotechnol. Biofuels 2017, 10, 189. [Google Scholar] [CrossRef]
- Tan, W.; Miao, Q.; Jia, X.; Liu, Y.; Li, S.; Yang, D. Research progress on the assembly of large DNA fragments. ChemBioChem 2024, 25, e202400054. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Hu, G.; Wang, J.; Song, J. CRISPR/Cas-based gene editing tools for large DNA fragment integration. ACS Synth. Biol. 2024, 14, 57–71. [Google Scholar] [CrossRef]
- Xu, S.; Meng, J.; Zhang, Q.; Tong, B.; Liu, Z.; Fu, J.; Shi, S. CILF: CRISPR/Cas9 based integration of large DNA fragments in Saccharomyces cerevisiae. Biotechnol. Bioeng. 2024, 121, 3906–3911. [Google Scholar] [CrossRef]
- Nielsen, J. Yeast systems biology: Model organism and cell factory. Biotechnol. J. 2019, 14, e1800421. [Google Scholar] [CrossRef]
- Lacerda, M.P.; Oh, E.J.; Eckert, C. The model system Saccharomyces cerevisiae versus emerging Non-Model yeasts for the production of biofuels. Life 2020, 10, 299. [Google Scholar] [PubMed]
- Chen, K.; Maimaitirexiati, G.; Zhang, Q.; Li, Y.; Liu, X.; Tang, H.; Gao, X.; Wang, B.; Yu, T.; Guo, S. CRISPR-Cas9-based one-step multiplexed genome editing through optimizing guide RNA processing strategies in Pichia pastoris. Synth. Syst. Biotechnol. 2025, 10, 484–494. [Google Scholar] [PubMed]
- Jiang, W.; Wang, S.; Ahlheit, D.; Fumagalli, T.; Yang, Z.; Ramanathan, S.; Jiang, X.; Weber, T.; Dahlin, J.; Borodina, I. High-throughput metabolic engineering of Yarrowia lipolytica through gene expression tuning. Proc. Natl. Acad. Sci. USA 2025, 122, e2426686122. [Google Scholar] [CrossRef]
- Koh, H.G.; Tohidifar, P.; Oh, H.; Ye, Q.; Jung, S.-C.; Rao, C.V.; Jin, Y.-S. RT-EZ: A golden gate assembly toolkit for streamlined genetic engineering of Rhodotorula toruloides. ACS Synth. Biol. 2025, 14, 1572–1580. [Google Scholar] [CrossRef]
- Lewis, N.E.; Nagarajan, H.; Palsson, B.O. Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 2012, 10, 291–305. [Google Scholar] [CrossRef]
- Lee, G.; Lee, S.M.; Kim, H.U. A contribution of metabolic engineering to addressing medical problems: Metabolic flux analysis. Metab. Eng. 2023, 77, 283–293. [Google Scholar] [CrossRef]
- Fan, D.X.; Yuan, Z.J.; Tang, H.Y.; Ren, P.C.; Han, S.Y. Metabolic engineering of Pichia pastoris as an industrial chassis enables biosynthesis of dopamine from methanol. Bioresour. Technol. 2025, 436, 132915. [Google Scholar] [CrossRef]
- Zhao, B.J.; Shi, J.L.; Zhao, R.Y.; Gao, S.; Li, Y.; Zhang, Y.; Wei, Y.Q.; Guo, Y.B. Constructing CRISPR-Cas9 system for metabolic reprogramming and cordycepin biomanufacturing in Pichia pastoris. Bioresour. Technol. 2025, 436, 132967. [Google Scholar] [CrossRef]
- Xie, L.F.; Yu, W.; Gao, J.Q.; Wang, H.Y.; Zhou, Y.J.J. Ogataea polymorpha as a next-generation chassis for industrial biotechnology. Trends Biotechnol. 2024, 42, 1363–1378. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, Y.; Gao, J. Stress-driven regulation of cellular robustness for improving terpenoid production in Ogataea polymorpha. Bioresour. Technol. 2025, 439, 133297. [Google Scholar] [CrossRef]
- Gao, J.Q.; Yu, W.; Li, Y.X.; Jin, M.J.; Yao, L.; Zhou, Y.J. Engineering co-utilization of glucose and xylose for chemical overproduction from lignocellulose. Nat. Chem. Biol. 2023, 19, 1524–1531. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Lee, Y.R.; Lee, W.H.; Lee, S.Y.; Moon, M.; Park, G.W.; Min, K.Y.S.; Lee, J.H.; Lee, J.S. Valorization of CO2 to β-farnesene in Rhodobacter sphaeroides. Bioresour. Technol. 2022, 363, 127955. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.; Wang, Y.H.; Wang, W.S.; Cao, T.; Zhang, L.; Wang, Z.D.; Chi, X.R.; Shi, T.; Wang, H.W.; He, X.W.; et al. High-yield porphyrin production through metabolic engineering and biocatalysis. Nat. Biotechnol. 2024. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
Enzymes | NCBI Accession NO. | Type | Source | Aromatic Compound Receptors | Prenyl Side Chain Donors | Product | Reference |
---|---|---|---|---|---|---|---|
SyHPT | BAA17774 | UbiA | Synechocystis sp. PCC 6803 | homogentisic acid (HGA) | GGPP | δ-tocotrienol | [71] |
SfN8DT-1 | BAG12671.1 | UbiA | Sophora flavescens | naringenin | DMAPP | 8-prenylnaringenin | [62] |
SfFPT | AHA36633.1 | UbiA | S.flavescens | naringenin | DMAPP | 8-prenylnaringenin | [72] |
AnaPT | EAW16181 | DMATS | Neosartorya fischeri | naringenin | DMAPP | 3’-prenylnaringenin | [63] |
ShFPT | QXP40533.1 | ABBA | Streptomyces sp. NT11 | naringenin | DMAPP | 6-prenylnaringenin | [73] |
CloQ | WP_023545098.1 | ABBA | Streptomyces roseochromogenes | naringenin | DMAPP | 3’-prenylnaringenin, 6-prenylnaringenin | [74] |
HlPT1L | AJD80254.1 | UbiA | Humulus lupulus | Naringenin Chalcone | DMAPP | Desmethylxanthohumol | [75] |
EsPT2 | QKO29233.1 | UbiA | Epimedium sagittatum | kaempferol | DMAPP | 8-prenylkaempferol | [31] |
EkF8PT | QXN66318.1 | UbiA | Epimedium koreanum | kaempferol | DMAPP | 8-prenylkaempferol | [76] |
EkF8DT3 | Epimedium koreanum | kaempferol | DMAPP | 8-prenylkaempferol | [77] | ||
XimB | AGY49248.1 | UbiA | Streptomyces xiamenensis 318 | 4-hydroxybenzoate | GPP | 3-geranyl-4-hydroxybenzoic acid | [78] |
AePGT | ABD59796.2 | UbiA | Arnebia euchroma | 4-hydroxybenzoate | GPP | 3-geranyl-4-hydroxybenzoic acid | [79] |
AePGT4 | ANC67957.1 | ||||||
AePGT6 | ANC67959.1 | ||||||
iacE | A0A1J0HSL6.1 | DMATS | Pestalotiopsis fici | resveratrol | DMAPP | 2-C-prenyl resveratrol | [80] |
AmbP1 | AHB62774.1 | ABBA | Fischerella ambigua | resveratrol | GPP | 4-C-geranyl resveratrol,3-O-geranyl resveratrol | [26] |
PcPT | BAO31627.1 | UbiA | Petroselinum crispum | umbelliferone | DMAPP | demethylsuberosin | [81] |
PsPT1 | AJW31563.1 | UbiA | Pastinaca sativa | ||||
PpPT1 | WIL06374.1 | Peucedanum praeruptorum | |||||
AcPT1 | BBG56301.1 | UbiA | Artemisia capillaris | p-coumaric acid | DMAPP | Drupanin and artepillin C | [82] |
PcPT07 | PQ310576 | UbiA | Psoralea corylifolia | p-coumaric acid | GPP | bakuchiol | [83] |
EcUbiA | BAB38446 | UbiA | Escherichia coli | 4-hydroxybenzoic acid (4-HBA) | Decaprenyl diphosphate | Coenzyme Q10 | [84] |
ScCoq2 | P32378 | UbiA | Saccharomyces cerevisiae | 4-hydroxybenzoic acid (4-HBA) | Decaprenyl diphosphate | Coenzyme Q10 | [84] |
BsMenA | P39582 | UbiA | Bacillus subtilis | DHNA | HPP | Menaquinone-7 | [84] |
EcMenA | P32166 | UbiA | E. coli | DHNA | HPP, OPP | Menaquinone-7, Menaquinone-8 | [85,86] |
NovQ | AAF67510 | ABBA | Streptomyces niveus | menadione | DMAPP | Menaquinone-1` | [87] |
SyMenA | BAA18030.1 | UbiA | Synechocystis sp. PCC 6803 | DHNA | FPP | Menaquinone-4 | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, M.; Zhang, W.; Tian, Y.; Qiao, J.; Li, X.; Li, W.; Caiyin, Q. A Review of the Progress in the Microbial Biosynthesis of Prenylated Aromatic Compounds. Molecules 2025, 30, 3931. https://doi.org/10.3390/molecules30193931
Tang M, Zhang W, Tian Y, Qiao J, Li X, Li W, Caiyin Q. A Review of the Progress in the Microbial Biosynthesis of Prenylated Aromatic Compounds. Molecules. 2025; 30(19):3931. https://doi.org/10.3390/molecules30193931
Chicago/Turabian StyleTang, Min, Wanze Zhang, Yanjie Tian, Jianjun Qiao, Xiaobing Li, Weiguo Li, and Qinggele Caiyin. 2025. "A Review of the Progress in the Microbial Biosynthesis of Prenylated Aromatic Compounds" Molecules 30, no. 19: 3931. https://doi.org/10.3390/molecules30193931
APA StyleTang, M., Zhang, W., Tian, Y., Qiao, J., Li, X., Li, W., & Caiyin, Q. (2025). A Review of the Progress in the Microbial Biosynthesis of Prenylated Aromatic Compounds. Molecules, 30(19), 3931. https://doi.org/10.3390/molecules30193931