Multicomponent Synthesis of Multi-Target Quinazolines Modulating Cholinesterase, Oxidative Stress, and Amyloid Aggregation Activities for the Therapy of Alzheimer’s Disease
Abstract
1. Introduction
2. Results
2.1. Synthesis
2.2. Biological Evaluation
2.2.1. Inhibition of EeAChE
2.2.2. Antioxidant Analysis
2.2.3. Inhibition of Aβ1–42 Self- Aggregation
2.2.4. Molecular Docking Studies for Compounds 3e and 3h
2.2.5. Molecular Docking of Compounds 3e and 3h into EeAChE and eqBuChE
3. Materials and Methods
3.1. Synthesis of Quinazoline Derivatives 3a–q
3.2. Biological Evaluation
3.2.1. Inhibition of EeAChE and eqBuChE
3.2.2. Oxygen Radical Absorbance Capacity Assay
3.2.3. Self-Mediated Aggregation of Aβ1–42
3.2.4. Molecular Docking of Compounds 3e and 3h into EeAChE and eqBuChE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bouza, C.; Martínez-Alés, G.; López-Cuadrado, T. Effect of Dementia on the Incidence, Short-Term Outcomes, and Resource Utilization of Invasive Mechanical Ventilation in the Elderly: A Nationwide Population-Based Study. Crit. Care 2019, 23, 291. [Google Scholar] [CrossRef]
- Frölich, L. The Cholinergic Pathology in Alzheimer’s Disease--Discrepancies between Clinical Experience and Pathophysiological Findings. J. Neural Transm. 2002, 109, 1003–1013. [Google Scholar] [CrossRef]
- Tumiatti, V.; Minarini, A.; Bolognesi, M.L.; Milelli, A.; Rosini, M.; Melchiorre, C. Tacrine Derivatives and Alzheimer’s Disease. Curr. Med. Chem. 2010, 17, 1825–1838. [Google Scholar] [CrossRef]
- Rosini, M.; Simoni, E.; Milelli, A.; Minarini, A.; Melchiorre, C. Oxidative Stress in Alzheimer’s Disease: Are We Connecting the Dots? J. Med. Chem. 2014, 57, 2821–2831. [Google Scholar] [CrossRef]
- Bush, A.I. Drug Development Based on the Metals Hypothesis of Alzheimer’s Disease. J. Alzheimer’s Dis. 2008, 15, 223–240. [Google Scholar] [CrossRef]
- Bond, M.; Rogers, G.; Peters, J.; Anderson, R.; Hoyle, M.; Miners, A.; Moxham, T.; Davis, S.; Thokala, P.; Wailoo, A.; et al. The Effectiveness and Cost-Effectiveness of Donepezil, Galantamine, Rivastigmine and Memantine for the Treatment of Alzheimer’s Disease (Review of Technology Appraisal No. 111): A Systematic Review and Economic Model. Health Technol. Assess. 2012, 16. [Google Scholar] [CrossRef] [PubMed]
- Villarroya, M.; García, A.G.; Marco-Contelles, J.; López, M.G. An Update on the Pharmacology of Galantamine. Expert. Opin. Investig. Drugs 2007, 16, 1987–1998. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, D.; Wirth, Y.; Goebel, C. Memantine in Patients with Moderate to Severe Alzheimer’s Disease: Meta-Analyses Using Realistic Definitions of Response. Dement. Geriatr. Cogn. Disord. 2014, 37, 71–85. [Google Scholar] [CrossRef]
- Morphy, R.; Rankovic, Z. Designing Multiple Ligands–Medicinal Chemistry Strategies and Challenges. Curr. Pharm. Des. 2009, 15, 587–600. [Google Scholar] [CrossRef]
- Agis-Torres, A.; Sollhuber, M.; Fernandez, M.; Sanchez-Montero, J.M. Multi-Target-Directed Ligands and Other Therapeutic Strategies in the Search of a Real Solution for Alzheimer’s Disease. Curr. Neuropharmacol. 2014, 12, 2–36. [Google Scholar] [CrossRef] [PubMed]
- Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. Multi-Target-Directed Ligands To Combat Neurodegenerative Diseases. J. Med. Chem. 2008, 51, 347–372. [Google Scholar] [CrossRef]
- León, R.; Garcia, A.G.; Marco-Contelles, J. Recent Advances in the Multitarget-Directed Ligands Approach for the Treatment of Alzheimer’s Disease. Med. Res. Rev. 2013, 33, 139–189. [Google Scholar] [CrossRef]
- Ismaili, L.; Refouvelet, B.; Benchekroun, M.; Brogi, S.; Brindisi, M.; Gemma, S.; Campiani, G.; Filipic, S.; Agbaba, D.; Esteban, G.; et al. Multitarget Compounds Bearing Tacrine- and Donepezil-like Structural and Functional Motifs for the Potential Treatment of Alzheimer’s Disease. Prog. Neurobiol. 2016, 151, 4–34. [Google Scholar] [CrossRef]
- Benchekroun, M.; Ismaili, L.; Pudlo, M.; Luzet, V.; Gharbi, T.; Refouvelet, B.; Marco-Contelles, J. Donepezil–Ferulic Acid Hybrids as Anti-Alzheimer Drugs. Future Med. Chem. 2015, 7, 15–21. [Google Scholar] [CrossRef]
- Benchekroun, M.; Romero, A.; Egea, J.; León, R.; Michalska, P.; Buendía, I.; Jimeno, M.L.; Jun, D.; Janockova, J.; Sepsova, V.; et al. The Antioxidant Additive Approach for Alzheimer’s Disease Therapy: New Ferulic (Lipoic) Acid Plus Melatonin Modified Tacrines as Cholinesterases Inhibitors, Direct Antioxidants, and Nuclear Factor (Erythroid-Derived 2)-Like 2 Activators. J. Med. Chem. 2016, 59, 9967–9973. [Google Scholar] [CrossRef]
- Ismaili, L.; do Carmo Carreiras, M. Multicomponent Reactions for Multitargeted Compounds for Alzheimer`s Disease. Curr. Top. Med. Chem. 2018, 17, 3319–3327. [Google Scholar] [CrossRef] [PubMed]
- Martorana, A.; Giacalone, V.; Bonsignore, R.; Pace, A.; Gentile, C.; Pibiri, I.; Buscemi, S.; Lauria, A.; Piccionello, A.P. Heterocyclic Scaffolds for the Treatment of Alzheimer’s Disease. Curr. Pharm. Des. 2016, 22, 3971–3995. [Google Scholar] [CrossRef] [PubMed]
- Rastegari, A.; Nadri, H.; Mahdavi, M.; Moradi, A.; Mirfazli, S.S.; Edraki, N.; Moghadam, F.H.; Larijani, B.; Akbarzadeh, T.; Saeedi, M. Design, Synthesis and Anti-Alzheimer’s Activity of Novel 1,2,3-Triazole-Chromenone Carboxamide Derivatives. Bioorg. Chem. 2019, 83, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Peng, Y.; Zhu, L.; Wang, S.; Ji, J.; Rakesh, K.P. Triazole Derivatives as Inhibitors of Alzheimer’s Disease: Current Developments and Structure-Activity Relationships. Eur. J. Med. Chem. 2019, 180, 656–672. [Google Scholar] [CrossRef]
- Haghighijoo, Z.; Zamani, L.; Moosavi, F.; Emami, S. Therapeutic Potential of Quinazoline Derivatives for Alzheimer’s Disease: A Comprehensive Review. Eur. J. Med. Chem. 2022, 227, 113949. [Google Scholar] [CrossRef]
- Clissold, S.P.; Beresford, R. Proquazone. Drugs 1987, 33, 478–502. [Google Scholar] [CrossRef]
- Wheatley, D. Analgesic Properties of Fluproquazone. Br. J. Rheumatol. 1982, 21, 98–100. [Google Scholar] [CrossRef]
- Al-Salahi, R.; Anouar, E.-H.; Marzouk, M.; Taie, H.A.; Abuelizz, H.A. Screening and Evaluation of Antioxidant Activity of Some 1,2,4-Triazolo[1,5-a]Quinazoline Derivatives. Future Med. Chem. 2018, 10, 379–390. [Google Scholar] [CrossRef]
- Morgan, C.; Colombres, M.; Nunez, M.T.; Inestrosa, N.C. Structure–Activity Relationship Studies of Isomeric 2,4-Diaminoquinazolines on β-Amyloid Aggregation Kinetics. ACS Med. Chem. Lett. 2016, 7, 520–524. [Google Scholar] [CrossRef]
- Liu, W.; Yang, Y.; Cheng, X.; Gong, C.; Li, S.; He, D.; Yang, L.; Wang, Z.; Wang, C. Rapid and Sensitive Detection of the Inhibitive Activities of Acetyl- and Butyryl-Cholinesterases Inhibitors by UPLC–ESI-MS/MS. J. Pharm. Biomed. Anal. 2014, 94, 215–220. [Google Scholar] [CrossRef] [PubMed]
- El Ashry, E.S.H.; Nadeem, S.; Shah, M.R.; Kilany, Y.E. Recent Advances in the Dimroth Rearrangement: A Valuable Tool for the Synthesis of Heterocycles. Adv. Heterocycl. Chem. 2010, 101, 161–228. [Google Scholar]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Knez, D.; Sova, M.; Košak, U.; Gobec, S. Dual Inhibitors of Cholinesterases and Monoamine Oxidases for Alzheimer’s Disease. Future Med. Chem. 2017, 9, 811–832. [Google Scholar] [CrossRef]
- Darvesh, S.; Hopkins, D.A.; Geula, C. Neurobiology of Butyrylcholinesterase. Nat. Rev. Neurosci. 2003, 4, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Dávalos, A.; Gómez-Cordovés, C.; Bartolomé, B. Extending Applicability of the Oxygen Radical Absorbance Capacity (ORAC-Fluorescein) Assay. J. Agric. Food Chem. 2004, 52, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Malek, R.; Arribas, R.L.; Palomino-Antolin, A.; Totoson, P.; Demougeot, C.; Kobrlova, T.; Soukup, O.; Iriepa, I.; Moraleda, I.; Diez-Iriepa, D.; et al. New Dual Small Molecules for Alzheimer’s Disease Therapy Combining Histamine H3 Receptor (H3R) Antagonism and Calcium Channels Blockade with Additional Cholinesterase Inhibition. J. Med. Chem. 2019, 62, 11416–11422. [Google Scholar] [CrossRef] [PubMed]
- Benchekroun, M.; Bartolini, M.; Egea, J.; Romero, A.; Soriano, E.; Pudlo, M.; Luzet, V.; Andrisano, V.; Jimeno, M.-L.; López, M.G.; et al. Novel Tacrine-Grafted Ugi Adducts as Multipotent Anti-Alzheimer Drugs: A Synthetic Renewal in Tacrine-Ferulic Acid Hybrids. ChemMedChem 2015, 10, 523–539. [Google Scholar] [CrossRef]
- Bartolini, M.; Bertucci, C.; Bolognesi, M.L.; Cavalli, A.; Melchiorre, C.; Andrisano, V. Insight into the Kinetic of Amyloid Beta (1–42) Peptide Self-Aggregation: Elucidation of Inhibitors’ Mechanism of Action. ChemBioChem 2007, 8, 2152–2161. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Brooks, B.R.; Bruccoleri, R.E.; Olafson, B.D.; States, D.J.; Swaminathan, S.; Karplus, M. CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem. 1983, 4, 187–217. [Google Scholar] [CrossRef]
- Morreale, A.; Maseras, F.; Iriepa, I.; Gálvez, E. Ligand-Receptor Interaction at the Neural Nicotinic Acetylcholine Binding Site: A Theoretical Model. J. Mol. Graph. Mod. 2002, 21, 111–118. [Google Scholar] [CrossRef]
- Bienert, S.; Waterhouse, A.; de Beer, T.A.P.; Tauriello, G.; Studer, G.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository-New Features and Functionality. Nucleic Acids Res. 2017, 45, D313–D319. [Google Scholar] [CrossRef] [PubMed]
Quinazolines/ Standards | R1 | R2 | R3 | IC50 EeAChE (μM) a | IC50 eqBuChE (μM) a | ORAC b |
---|---|---|---|---|---|---|
3a | H | H | H | -c | -c | 0.20 ± 0.04 |
3b | CH3 | H | H | -c | -c | 0.51 ± 0.02 |
3c | C2H5 | H | H | -c | 5.34 ± 0.15 | 0.15 ± 0.03 |
3d | H | 3-OCH3 | 5-OCH3 | -c | -c | 2.85 ± 0.62 |
3e | CH3 | 3-OCH3 | 5-OCH3 | 6.04 ± 1.05 | 9.43 ± 1.13 | 1.81 ± 0.19 |
3f | C2H5 | 3-OCH3 | 5-OCH3 | -c | 8.50 ± 1.16 | 1.29 ± 0.08 |
3g | H | 3-OCH3 | 4-OCH3 | -c | -c | 5.46 ± 0.11 |
3h | C2H5 | 3-OCH3 | 4-OCH3 | 6.61 ± 0.11 | -c | 5.73 ± 0.39 |
3i | H | H | 4-CH3 | -c | -c | 0.43 ± 0.09 |
3j | CH3 | H | 4-CH3 | -c | -c | 0.75 ± 0.08 |
3k | C2H5 | H | 4-CH3 | -c | -c | 0.58 ± 0.04 |
3l | H | 2-CH3 | 3-CH3 | -c | -c | 0.32 ± 0.05 |
3m | CH3 | 2-CH3 | 3-CH3 | -c | -c | 0.45 ± 0.03 |
3n | H | H | 4-NO2 | -c | -c | 0.29 ± 0.02 |
3o | CH3 | H | 4-NO2 | -c | -c | 0.36 ± 0.01 |
3p | H | H | 4-Cl | -c | -c | 0.40 ± 0.07 |
3q | C2H5 | H | 4-Cl | -c | 8.64 ± 0.30 | 0.25 ± 0.05 |
Tacrine | 0.03 ± 0.01 | 5.1 ± 0.1 (nM) | -d | |||
Donepezil | 0.02 ± 0.00 | 0.8 ± 0.2 | -d | |||
Melatonin | -d | -d | 2.45 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakhari, S.; Marco-Contelles, J.; Iriepa, I.; Carreiras, M.d.C.; Chabchoub, F.; Ismaili, L.; Refouvelet, B. Multicomponent Synthesis of Multi-Target Quinazolines Modulating Cholinesterase, Oxidative Stress, and Amyloid Aggregation Activities for the Therapy of Alzheimer’s Disease. Molecules 2025, 30, 3930. https://doi.org/10.3390/molecules30193930
Chakhari S, Marco-Contelles J, Iriepa I, Carreiras MdC, Chabchoub F, Ismaili L, Refouvelet B. Multicomponent Synthesis of Multi-Target Quinazolines Modulating Cholinesterase, Oxidative Stress, and Amyloid Aggregation Activities for the Therapy of Alzheimer’s Disease. Molecules. 2025; 30(19):3930. https://doi.org/10.3390/molecules30193930
Chicago/Turabian StyleChakhari, Saida, José Marco-Contelles, Isabel Iriepa, Maria do Carmo Carreiras, Fakher Chabchoub, Lhassane Ismaili, and Bernard Refouvelet. 2025. "Multicomponent Synthesis of Multi-Target Quinazolines Modulating Cholinesterase, Oxidative Stress, and Amyloid Aggregation Activities for the Therapy of Alzheimer’s Disease" Molecules 30, no. 19: 3930. https://doi.org/10.3390/molecules30193930
APA StyleChakhari, S., Marco-Contelles, J., Iriepa, I., Carreiras, M. d. C., Chabchoub, F., Ismaili, L., & Refouvelet, B. (2025). Multicomponent Synthesis of Multi-Target Quinazolines Modulating Cholinesterase, Oxidative Stress, and Amyloid Aggregation Activities for the Therapy of Alzheimer’s Disease. Molecules, 30(19), 3930. https://doi.org/10.3390/molecules30193930