Quantum Transport and Molecular Sensing in Reduced Graphene Oxide Measured with Scanning Probe Microscopy
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Scanning Impedance Microscopy and Transport Measurements
2.3. Scanning Gate Microscopy
3. Results
3.1. Scanning Impedance Microscopy Measurements
3.2. Scanning Gate Microscopy Measurements
3.3. Chemical Sensing with rGO
3.4. Theoretical Model of Resonant Scattering
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Chen, J.H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M.S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Celorrio, A.; Edens, L.; Sanz, S.; Vilas-Varela, M.; Martinez-Castro, J.; Peña, D.; Langlais, V.; Frederiksen, T.; Pascual, J.I.; Serrate, D. Systematic Modulation of Charge and Spin in Graphene Nanoribbons on MgO. Nat. Commun. 2025, 16, 5632. [Google Scholar] [CrossRef]
- Malevich, Y.; Ergoktas, M.S.; Bakan, G.; Steiner, P.; Kocabas, C. Very-Large-Scale Reconfigurable Intelligent Surfaces for Dynamic Control of Terahertz and Millimeter Waves. Nat. Commun. 2025, 16, 2907. [Google Scholar] [CrossRef] [PubMed]
- Urade, A.R.; Lahiri, I.; Suresh, K.S. Graphene Properties, Synthesis and Applications: A Review. JOM 2023, 75, 614–630. [Google Scholar] [CrossRef]
- Abid; Sehrawat, P.; Islam, S.S.; Mishra, P.; Ahmad, S. Reduced graphene oxide (rGO) based wideband optical sensor and the role of Temperature, Defect States and Quantum Efficiency. Sci. Rep. 2018, 8, 3537. [Google Scholar] [CrossRef]
- Chang, H.; Sun, Z.; Saito, M.; Yuan, Q.; Zhang, H.; Li, J.; Wang, Z.; Fujita, T.; Ding, F.; Zheng, Z.; et al. Regulating Infrared Photoresponses in Reduced Graphene Oxide Phototransistors by Defect and Atomic Structure Control. ACS Nano 2013, 7, 6310–6320. [Google Scholar] [CrossRef]
- Mueller, T.; Xia, F.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297–301. [Google Scholar] [CrossRef]
- Loh, K.P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024. [Google Scholar] [CrossRef]
- Xia, R.; Almond, N.W.; Tadbier, W.; Kindness, S.J.; Degl’Innocenti, R.; Lu, Y.; Lowe, A.; Ramsay, B.; Jakob, L.A.; Dann, J.; et al. Achieving 100% Amplitude Modulation Depth in the Terahertz Range with Graphene-Based Tuneable Capacitance Metamaterials. Light. Sci. Appl. 2025, 14, 256. [Google Scholar] [CrossRef]
- Reep, T.; Wu, C.H.; Yudistira, D.; Brems, S.; Asselberghs, I.; Pantouvaki, M.; Van Campenhout, J.; Van Thourhout, D.; Kuyken, B. Graphene Absorber on an SOI Chip for Active and Passive Mode Locking of Lasers. Sci. Rep. 2025, 15, 9399. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Nag, A.; Zhang, L.; Wang, K. Reduced graphene oxide-based composites for wearable strain-sensing applications. Sens. Actuators A Phys. 2022, 345, 113767. [Google Scholar] [CrossRef]
- Xuan, X.; Yoon, H.S.; Park, J.Y. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens. Bioelectron. 2018, 109, 75–82. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, J.; Li, Q.; Li, G.; Tian, X.; Luo, Z.; Qiao, F.; Wu, X.; Zhang, J. Review of Printed Electrodes for Flexible Devices. Front. Mater. 2019, 5, 77. [Google Scholar] [CrossRef]
- Kim, D.J.; Sohn, I.Y.; Jung, J.H.; Yoon, O.J.; Lee, N.E.; Park, J.S. Reduced graphene oxide field-effect transistor for label-free femtomolar protein detection. Biosens. Bioelectron. 2013, 41, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Ohno, Y.; Maehashi, K.; Yamashiro, Y.; Matsumoto, K. Electrolyte-Gated Graphene Field-Effect Transistors for Detecting pH and Protein Adsorption. Nano Lett. 2009, 9, 3318–3322. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, N.; Berry, V. Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents. Nano Lett. 2008, 8, 4469–4476. [Google Scholar] [CrossRef]
- Al Faruque, M.A.; Syduzzaman, M.; Sarkar, J.; Bilisik, K.; Naebe, M. A Review on the Production Methods and Applications of Graphene-Based Materials. Nanomaterials 2021, 11, 2414. [Google Scholar] [CrossRef]
- Wang, Y.T.; Mukundan, A.; Karmakar, R.; Chen, T.H.; Dhiman, H.; Lin, F.M.; Wang, H.C. A Comprehensive Review of Graphene-Based Biosensors: Fabrication, Applications, Characterization and Future Perspectives. APL Bioeng. 2025, 9, 031504. [Google Scholar] [CrossRef] [PubMed]
- Salimiyan, N.; Gholami, M.; Sedghi, R. Preparation of degradable, biocompatible, conductive and multifunctional chitosan/thiol-functionalized graphene nanocomposite hydrogel via click chemistry for human motion sensing. Chem. Eng. J. 2023, 471, 144648. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Dan, Y.; Lu, Y.; Kybert, N.J.; Luo, Z.; Johnson, A.T.C. Intrinsic Response of Graphene Vapor Sensors. Nano Lett. 2009, 9, 1472–1475. [Google Scholar] [CrossRef]
- Staii, C.; Johnson, A.T.; Chen, M.; Gelperin, A. DNA-Decorated Carbon Nanotubes for Chemical Sensing. Nano Lett. 2005, 5, 1774–1778. [Google Scholar] [CrossRef]
- Lu, Y.; Goldsmith, B.R.; Kybert, N.J.; Johnson, A.T.C. DNA-decorated graphene chemical sensors. Appl. Phys. Lett. 2010, 97, 083107. [Google Scholar] [CrossRef]
- Teli, A.M.; Chavan, N.; Borse, S.; Deshmukh, A.D. Graphene-Based Gas Sensors: State-of-the-Art Developments for Gas Sensing Applications. Micromachines 2025, 16, 916. [Google Scholar] [CrossRef]
- Recum, P.; Hirsch, T. Graphene-Based Chemiresistive Gas Sensors. Nanoscale Adv. 2024, 6, 11–31. [Google Scholar] [CrossRef]
- Lu, G.; Park, S.; Yu, K.; Ruoff, R.S.; Ocola, L.E.; Rosenmann, D.; Chen, J. Toward Practical Gas Sensing with Highly Reduced Graphene Oxide: A New Signal Processing Method To Circumvent Run-to-Run and Device-to-Device Variations. ACS Nano 2011, 5, 1154–1164. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lei, Q.; Ma, Y.; Wang, J.; Yan, Y.; Yin, J.; Li, J.; Shen, J.; Li, G.; Pan, T.; et al. Highly sensitive, responsive, and selective iodine gas sensors fabricated using AgI-functionalized graphene. Nat. Commun. 2025, 16, 56621. [Google Scholar] [CrossRef]
- Su, S.; Zhao, J.; Ly, T.H. Scanning Probe Microscopies for Characterizations of 2D Materials. Small Methods 2024, 8, e2400211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, X.; Weick, G.; Weinmann, D.; Jalabert, R.A. Scanning gate microscopy in graphene nanostructures. Phys. Rev. B 2023, 107, 085420. [Google Scholar] [CrossRef]
- Checa, M.; Fuhr, A.S.; Sun, C.; Vasudevan, R.; Ziatdinov, M.; Ivanov, I.; Yun, S.J.; Xiao, K.; Sehirlioglu, A.; Kim, Y.; et al. High-speed mapping of surface charge dynamics using sparse scanning Kelvin probe force microscopy. Nat. Commun. 2023, 14, 7196. [Google Scholar] [CrossRef]
- Curtin, A.E.; Fuhrer, M.S.; Tedesco, J.L.; Myers-Ward, R.L.; Eddy, C.R., Jr.; Gaskill, D.K. Kelvin probe microscopy and electronic transport in graphene on SiC(0001) in the minimum conductivity regime. Appl. Phys. Lett. 2011, 98, 243111. [Google Scholar] [CrossRef]
- Kehayias, C.E.; MacNaughton, S.; Sonkusale, S.; Staii, C. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors. Nanotechnology 2013, 24, 245502. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, D.J.; Seewald, E.; Zhao, F.; Cox, J.; Xie, K.; Vitalone, R.A.; Ruta, F.L.; Chica, D.G.; Shao, Y.; Shabani, S.; et al. Engineering anisotropic electrodynamics at the graphene/CrSBr interface. Nat. Commun. 2025, 16, 1853. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Tjoa, V.; Fan, H.M.; Tan, H.R.; Sayle, D.C.; Olivo, M.; Mhaisalkar, S.; Wei, J.; Sow, C.H. Reduced Graphene Oxide Conjugated Cu2O Nanowire Mesocrystals for High-Performance NO2 Gas Sensor. J. Am. Chem. Soc. 2012, 134, 4905–4917. [Google Scholar] [CrossRef]
- Dua, V.; Surwade, S.; Ammu, S.; Agnihotra, S.; Jain, S.; Roberts, K.; Park, S.; Ruoff, R.; Manohar, S. All-Organic Vapor Sensor Using Inkjet-Printed Reduced Graphene Oxide. Angew. Chem. Int. Ed. 2010, 49, 2154–2157. [Google Scholar] [CrossRef]
- Robinson, J.T.; Perkins, F.K.; Snow, E.S.; Wei, Z.; Sheehan, P.E. Reduced Graphene Oxide Molecular Sensors. Nano Lett. 2008, 8, 3137–3140. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Yoo, Y.K.; Chae, M.S.; Hwang, K.S.; Lee, J.; Kim, H.; Hur, D.; Lee, J.H. Highly selective reduced graphene oxide (rGO) sensor based on a peptide aptamer receptor for detecting explosives. Sci. Rep. 2019, 9, 10297. [Google Scholar] [CrossRef]
- Oh, Y.J.; Yoo, J.J.; Kim, Y.I.; Yoon, J.K.; Yoon, H.N.; Kim, J.H.; Park, S.B. Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochim. Acta 2014, 116, 118–128. [Google Scholar] [CrossRef]
- Cai, B.; Wang, S.; Huang, L.; Ning, Y.; Zhang, Z.; Zhang, G.J. Ultrasensitive Label-Free Detection of PNA–DNA Hybridization by Reduced Graphene Oxide Field-Effect Transistor Biosensor. ACS Nano 2014, 8, 2632–2638. [Google Scholar] [CrossRef] [PubMed]
- Walleni, C.; Ali, M.B.; Ncib, M.F.; Llobet, E. Synergistic Enhancement of Chemiresistive NO2 Gas Sensors Using Nitrogen-Doped Reduced Graphene Oxide (N-rGO) Decorated with Nickel Oxide (NiO) Nanoparticles: Achieving sub-ppb Detection Limit. Sensors 2025, 25, 1631. [Google Scholar] [CrossRef]
- Murphy, B.B.; Apollo, N.V.; Unegbu, P.; Posey, T.; Rodriguez-Perez, N.; Hendricks, Q.; Cimino, F.; Richardson, A.G.; Vitale, F. Vitamin C-reduced graphene oxide improves the performance and stability of multimodal neural microelectrodes. iScience 2022, 25, 104652. [Google Scholar] [CrossRef]
- Rowley-Neale, S.J.; Randviir, E.P.; Abo Dena, A.S.; Banks, C.E. An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Appl. Mater. Today 2018, 10, 218–226. [Google Scholar] [CrossRef]
- Mehmood, Z.; Shah, S.A.A.; Omer, S.; Idrees, R.; Saeed, S. Scalable synthesis of high-quality, reduced graphene oxide with a large C/O ratio and its dispersion in a chemically modified polyimide matrix for electromagnetic interference shielding applications. RSC Adv. 2024, 14, 7641–7654. [Google Scholar] [CrossRef]
- Nishina, Y. Mass Production of Graphene Oxide Beyond the Laboratory: Bridging the Gap Between Academic Research and Industry. ACS Nano 2024, 18, 33264–33275. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef] [PubMed]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Si, Y.; Samulski, E.T. Synthesis of Water Soluble Graphene. Nano Lett. 2008, 8, 1679–1682. [Google Scholar] [CrossRef]
- Gilje, S.; Han, S.; Wang, M.; Wang, K.L.; Kaner, R.B. A Chemical Route to Graphene for Device Applications. Nano Lett. 2007, 7, 3394–3398. [Google Scholar] [CrossRef]
- Sehrawat, P.; Abid; Islam, S.S.; Mishra, P. Reduced graphene oxide based temperature sensor: Extraordinary performance governed by lattice dynamics assisted carrier transport. Sens. Actuators B Chem. 2018, 258, 424–435. [Google Scholar] [CrossRef]
- Jung, I.; Dikin, D.A.; Piner, R.D.; Ruoff, R.S. Tunable Electrical Conductivity of Individual Graphene Oxide Sheets Reduced at “Low” Temperatures. Nano Lett. 2008, 8, 4283–4287. [Google Scholar] [CrossRef]
- Kalinin, S.V.; Bonnell, D.A. Scanning impedance microscopy of electroactive interfaces. Appl. Phys. Lett. 2001, 78, 1306–1308. [Google Scholar] [CrossRef]
- Yu, Y.J.; Zhao, Y.; Ryu, S.; Brus, L.E.; Kim, K.S.; Kim, P. Tuning the Graphene Work Function by Electric Field Effect. Nano Lett. 2009, 9, 3430–3434. [Google Scholar] [CrossRef]
- Fang, T.; Konar, A.; Xing, H.; Jena, D. Carrier Statistics and Quantum Capacitance of Graphene Sheets and Ribbons. Appl. Phys. Lett. 2007, 91, 092109. [Google Scholar] [CrossRef]
- Luryi, S. Quantum Capacitance Devices. Appl. Phys. Lett. 1988, 52, 501–503. [Google Scholar] [CrossRef]
- Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge Studies in Semiconductor Physics and Microelectronic Engineering; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar] [CrossRef]
- Motevalli, B.; Fox, B.L.; Barnard, A.S. Charge-dependent Fermi level of graphene oxide nanoflakes from machine learning. Comput. Mater. Sci. 2022, 211, 111526. [Google Scholar] [CrossRef]
- Chae, J.; Jung, S.; Young, A.F.; Dean, C.R.; Wang, L.; Gao, Y.; Watanabe, K.; Taniguchi, T.; Hone, J.; Shepard, K.L.; et al. Renormalization of the graphene dispersion velocity determined from scanning tunneling spectroscopy. Phys. Rev. Lett. 2012, 109, 116802. [Google Scholar] [CrossRef]
- Çınar, M.N.; Antidormi, A.; Nguyen, V.H.; Kovtun, A.; Lara-Avila, S.; Liscio, A.; Charlier, J.C.; Roche, S.; Sevinçli, H. Toward Optimized Charge Transport in Multilayer Reduced Graphene Oxides. Nano Lett. 2022, 22, 2202–2208. [Google Scholar] [CrossRef]
- Staii, C.; Radosavljevic, M.; Johnson, A.T. Scanning Probe Microscopy of Individual Carbon Nanotube Quantum Devices. In Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale; Springer: New York, NY, USA, 2007; pp. 423–439. [Google Scholar] [CrossRef]
- Staii, C.; Johnson, A.T.; Shao, R.; Bonnell, D.A. High Frequency Scanning Gate Microscopy and Local Memory Effect of Carbon Nanotube Transistors. Nano Lett. 2005, 5, 893–896. [Google Scholar] [CrossRef]
- Freitag, M.; Johnson, A.T.; Kalinin, S.V.; Bonnell, D.A. Role of Single Defects in Electronic Transport through Carbon Nanotube Field-Effect Transistors. Phys. Rev. Lett. 2002, 89, 216801. [Google Scholar] [CrossRef]
- Jalilian, R.; Jauregui, L.A.; Lopez, G.; Tian, J.; Roecker, C.; Yazdanpanah, M.M.; Cohn, R.W.; Jovanovic, I.; Chen, Y.P. Scanning gate microscopy on graphene: Charge inhomogeneity and extrinsic doping. Nanotechnology 2011, 22, 295705. [Google Scholar] [CrossRef] [PubMed]
- Bockrath, M.; Liang, W.; Bozovic, D.; Hafner, J.H.; Lieber, C.M.; Tinkham, M.; Park, H. Resonant Electron Scattering by Defects in Single-Walled Carbon Nanotubes. Science 2001, 291, 283–285. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wang, Y.; Dong, L.; Xu, Z.; Liu, Y.; Hu, N.; Kong, E.S.W.; Zhao, J.; Peng, C. Gas Sensors Based on Chemically Reduced Holey Graphene Oxide Thin Films. Nanoscale Res. Lett. 2019, 14, 218. [Google Scholar] [CrossRef]
- Ostrowski, A.; Synoradzki, K.; Tomaszewski, D. Variable range hopping conductivity of hydrothermally reduced graphene oxide fibers. J. Mater. Sci. Mater. Electron. 2024, 35, 13274. [Google Scholar] [CrossRef]
- Lee, J.; Ferguson, J.B.; Hubbard, A.M.; Ren, Y.; Nepal, D.; Back, T.C.; Glavin, N.R.; Roy, A.K. Transitions of Electrical Conduction Mechanism in Graphene Flake van der Waals Thin Film. Mater. Today Commun. 2024, 39, 108859. [Google Scholar] [CrossRef]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L.; et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef] [PubMed]
- You, Y.G.; Ahn, J.H.; Park, B.H.; Kwon, Y.; Campbell, E.E.B.; Jhang, S.H. Role of Remote Interfacial Phonons in the Resistivity of Graphene. Appl. Phys. Lett. 2019, 115, 043104. [Google Scholar] [CrossRef]
- Gebert, M.; Bhattacharyya, S.; Bounds, C.C.; Syed, N.; Daeneke, T.; Fuhrer, M.S. Passivating Graphene and Suppressing Interfacial Phonon Scattering with Mechanically Transferred Large-Area Ga2O3. Nano Lett. 2023, 23, 363–370. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, J.; Ruan, X.; Bao, H. Defect Scattering Can Lead to Enhanced Phonon Transport at Nanoscale. Nat. Commun. 2024, 15, 3304. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Shi, F.; Kong, X.; Jelezko, F.; Wrachtrup, J. Single-molecule scale magnetic resonance spectroscopy using quantum diamond sensors. Rev. Mod. Phys. 2024, 96, 025001. [Google Scholar] [CrossRef]
- Xu, Z.; Palm, M.L.; Huxter, W.S.; Herb, K.; Abendroth, J.M.; Bouzehouane, K.; Boulle, O.; Gabor, M.S.; Urrestarazu Larranaga, J.; Morales, A.; et al. Minimizing Sensor–Sample Distances in Scanning Nitrogen-Vacancy Magnetometry. ACS Nano 2025, 19, 8255–8265. [Google Scholar] [CrossRef]
- Žaper, L.; Rickhaus, P.; Wyss, M.; Gross, B.; Wagner, K.; Poggio, M.; Braakman, F. Scanning Nitrogen-Vacancy Magnetometry of Focused-Electron-Beam-Deposited Cobalt Nanomagnets. ACS Appl. Nano Mater. 2024, 7, 3854–3860. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutaria, J.; Staii, C. Quantum Transport and Molecular Sensing in Reduced Graphene Oxide Measured with Scanning Probe Microscopy. Molecules 2025, 30, 3929. https://doi.org/10.3390/molecules30193929
Sutaria J, Staii C. Quantum Transport and Molecular Sensing in Reduced Graphene Oxide Measured with Scanning Probe Microscopy. Molecules. 2025; 30(19):3929. https://doi.org/10.3390/molecules30193929
Chicago/Turabian StyleSutaria, Julian, and Cristian Staii. 2025. "Quantum Transport and Molecular Sensing in Reduced Graphene Oxide Measured with Scanning Probe Microscopy" Molecules 30, no. 19: 3929. https://doi.org/10.3390/molecules30193929
APA StyleSutaria, J., & Staii, C. (2025). Quantum Transport and Molecular Sensing in Reduced Graphene Oxide Measured with Scanning Probe Microscopy. Molecules, 30(19), 3929. https://doi.org/10.3390/molecules30193929