Impact of Calcium Lactate Concentration and Holding Time on Caviar-like Chicken Broth Hydrogel Beads
Abstract
1. Introduction
2. Results and Discussion
2.1. Effect of Calcium Lactate Concentration and Holding Time on Physicochemical Properties of CBHBs
2.2. The Optic Images and Shape Classification of CBHBs
2.3. Effect of Calcium Lactate Concentration and Holding Time on Color Properties of CBHBs
2.4. Effect of Calcium Lactate Concentration and Holding Time on Mechanical Properties of CBHBs
2.5. Effect of Calcium Lactate Concentration and Holding Time on Sensorial Properties of CBHBs
3. Materials and Methods
3.1. Experimental Location and Ethical Aspects
3.2. Materials, Chemicals and Apparatus
3.3. Preparation of CBHB
3.4. Analyses
3.4.1. pH Measurements
3.4.2. The Shape Images and Bead Size Measurements
3.4.3. Bulk Density Analysis
3.4.4. Color Measurement
3.4.5. Mechanical Properties
3.4.6. Sensory Analysis
3.4.7. Statistical Analysis
4. Conclusions
Implications for Research and Practice
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sivakumaran, K.; Prabodhani, W. An overview of the applications molecular gastronomy in food industry. Int. J. Food Sci. Nutr. 2018, 3, 35–40. [Google Scholar]
- Lee, P.; Rogers, M. Effect of calcium source and exposure-time on basic caviar spherification using sodium alginate. Int. J. Gastron. Food Sci. 2012, 1, 96–100. [Google Scholar] [CrossRef]
- Bennacef, C.; Desobry-Banon, S.; Probst, L.; Desobry, S. Advances on alginate use for spherification to encapsulate biomolecules. Food Hydrocoll. 2021, 118, 106782. [Google Scholar] [CrossRef]
- Leong, J.-Y.; Lam, W.-H.; Ho, K.-W.; Voo, W.-P.; Lee, M.F.-X.; Lim, H.-P.; Lim, S.-L.; Tey, B.-T.; Poncelet, D.; Chan, E.-S. Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology 2016, 24, 44–60. [Google Scholar] [CrossRef]
- Rhein-Knudsen, N.; Ale, M.T.; Ajalloueian, F.; Meyer, A.S. Characterization of alginates from Ghanaian brown seaweeds: Sargassum spp. and Padina spp. Food Hydrocoll. 2017, 71, 236–244. [Google Scholar] [CrossRef]
- Alkhatib, H.; Doolaanea, A.A.; Assadpour, E.; Mohmad Sabere, A.S.; Mohamed, F.; Jafari, S.M. Optimizing the encapsulation of black seed oil into alginate beads by ionic gelation. J. Food Eng. 2022, 328, 111065. [Google Scholar] [CrossRef]
- Dallabona, I.D.; de Lima, G.G.; Cestaro, B.I.; de Souza Tasso, I.; Paiva, T.S.; Laureanti, E.J.G.; de Matos Jorge, L.M.; da Silva, B.J.G.; Helm, C.V.; Mathias, A.L. Development of alginate beads with encapsulated jabuticaba peel and propolis extracts to achieve a new natural colorant antioxidant additive. Int. J. Biol. Macromol. 2020, 163, 1421–1432. [Google Scholar] [CrossRef] [PubMed]
- Zazzali, I.; Calvo, T.R.A.; Ruíz-Henestrosa, V.M.P.; Santagapita, P.R.; Perullini, M. Effects of pH, extrusion tip size and storage protocol on the structural properties of Ca (II)-alginate beads. Carbohydr. Polym. 2019, 206, 749–756. [Google Scholar] [CrossRef]
- Jain, D.; Bar-Shalom, D. Alginate drug delivery systems: Application in context of pharmaceutical and biomedical research. Drug Dev. Ind. Pharm. 2014, 40, 1576–1584. [Google Scholar] [CrossRef] [PubMed]
- Draget, K.I.; Skjåk-Bræk, G.; Smidsrød, O. Alginate based new materials. Int. J. Biol. Macromol. 1997, 21, 47–55. [Google Scholar] [CrossRef]
- Puguan, J.M.C.; Yu, X.; Kim, H. Characterization of structure, physico-chemical properties and diffusion behavior of Ca-Alginate gel beads prepared by different gelation methods. J. Colloid Interface Sci. 2014, 432, 109–116. [Google Scholar] [CrossRef]
- Martinsen, A.; Skjåk-Bræk, G.; Smidsrød, O. Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol. Bioeng. 1989, 33, 79–89. [Google Scholar] [CrossRef]
- Lee, B.-B.; Bhandari, B.R.; Howes, T. Gelation of an alginate film via spraying of calcium chloride droplets. Chem. Eng. Sci. 2018, 183, 1–12. [Google Scholar] [CrossRef]
- Lin, L.; Wong, M.; Deeth, H.; Oh, H. Calcium-induced skim milk gels using different calcium salts. Food Chem. 2018, 245, 97–103. [Google Scholar] [CrossRef]
- Meng, Y.C.; Hong, L.B.; Jin, J.Q. A study on the gelation properties and rheological behavior of gellan gum. Appl. Mech. Mater. 2013, 284, 20–24. [Google Scholar] [CrossRef]
- Devatkal, S.; Mendiratta, S.K. Use of calcium lactate with salt-phosphate and alginate-calcium gels in restructured pork rolls. Meat Sci. 2001, 58, 371–379. [Google Scholar] [CrossRef]
- Tsai, F.-H.; Chiang, P.-Y.; Kitamura, Y.; Kokawa, M.; Islam, M. Producing liquid-core hydrogel beads by reverse spherification: Effect of secondary gelation on physical properties and release characteristics. Food Hydrocoll. 2017, 62, 140–148. [Google Scholar] [CrossRef]
- Sen, D.J. Cross linking of calcium ion in alginate produce spherification in molecular gastronomy by pseudoplastic flow. World J. Pharm. Sci. 2017, 5, 1–10. [Google Scholar]
- Topuz, O.K.; Aygün, T.; Ural, G.N. Caviar-like hydrogel beads containing different concentrations of NaCl and melanin-free squid ink. Food Biosci. 2020, 36, 100652. [Google Scholar] [CrossRef]
- Yuasa, M.; Tagawa, Y.; Tominaga, M. The texture and preference of “mentsuyu (Japanese noodle soup base) caviar” prepared from sodium alginate and calcium lactate. Int. J. Gastron. Food Sci. 2019, 18, 100178. [Google Scholar] [CrossRef]
- Sunarharum, W.; Kambodji, A.; Nur, M. The physical properties of coffee caviar as influenced by sodium alginate concentration and calcium sources. IOP Conf. Ser. Earth Environ. Sci. 2020, 475, 012021. [Google Scholar]
- Binsi, P.; Nayak, N.; Sarkar, P.; Sahu, U.; Lalitha, K.; Ninan, G.; Ravishankar, C. Conversion of carp roe mass to caviar substitutes: Stabilization with oregano extract. LWT 2019, 108, 446–455. [Google Scholar] [CrossRef]
- Ha, B.-B.; Jo, E.-H.; Cho, S.; Kim, S.-B. Production optimization of flying fish roe analogs using calcium alginate hydrogel beads. Fish. Aquat. Sci. 2016, 19, 30. [Google Scholar] [CrossRef]
- Jo, E.-H.; Ha, B.-B.; Kim, S.-B. Effects of Heat, Salt and hydrocolloid treatments on flying fish Cypselurus agoo roe analogs prepared using calcium alginate hydrogels. Fish. Aquat. Sci. 2014, 17, 203–207. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, X.; Hayat, K.; Duhoranimana, E.; Zhang, X.; Xia, S.; Yu, J.; Xing, F. Characterization of odor-active compounds of chicken broth and improved flavor by thermal modulation in electrical stewpots. Food Res. Int. 2018, 109, 72–81. [Google Scholar] [CrossRef]
- Zhan, H.; Hayat, K.; Cui, H.; Hussain, S.; Ho, C.-T.; Zhang, X. Characterization of flavor active non-volatile compounds in chicken broth and correlated contributing constituent compounds in muscle through sensory evaluation and partial least square regression analysis. LWT 2020, 118, 108786. [Google Scholar] [CrossRef]
- Draget, K.I.; Gåserød, O.; Aune, I.; Andersen, P.O.; Storbakken, B.; Stokke, B.T.; Smidsrød, O. Effects of molecular weight and elastic segment flexibility on syneresis in Ca-alginate gels. Food Hydrocoll. 2001, 15, 485–490. [Google Scholar] [CrossRef]
- Lupo, B.; Maestro, A.; Gutiérrez, J.M.; González, C. Characterization of alginate beads with encapsulated cocoa extract to prepare functional food: Comparison of two gelation mechanisms. Food Hydrocoll. 2015, 49, 25–34. [Google Scholar] [CrossRef]
- Sun, X.-F.; Wang, S.-G.; Liu, X.-W.; Gong, W.-X.; Bao, N.; Ma, Y. The effects of pH and ionic strength on fulvic acid uptake by chitosan hydrogel beads. Colloids Surf. A Physicochem. Eng. Asp. 2008, 324, 28–34. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, R.; Zou, L.; McClements, D.J. Protein encapsulation in alginate hydrogel beads: Effect of pH on microgel stability, protein retention and protein release. Food Hydrocoll. 2016, 58, 308–315. [Google Scholar] [CrossRef]
- Manzoor, A.; Dar, A.H.; Pandey, V.K.; Shams, R.; Khan, S.; Panesar, P.S.; Kennedy, J.F.; Fayaz, U.; Khan, S.A. Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: A review. Int. J. Biol. Macromol. 2022, 213, 987–1006. [Google Scholar] [CrossRef]
- Chan, E.-S.; Wong, S.-L.; Lee, P.-P.; Lee, J.-S.; Ti, T.B.; Zhang, Z.; Poncelet, D.; Ravindra, P.; Phan, S.-H.; Yim, Z.-H. Effects of starch filler on the physical properties of lyophilized calcium–alginate beads and the viability of encapsulated cells. Carbohydr. Polym. 2011, 83, 225–232. [Google Scholar] [CrossRef]
- Gholamian, S.; Nourani, M.; Bakhshi, N. Formation and characterization of calcium alginate hydrogel beads filled with cumin seeds essential oil. Food Chem. 2021, 338, 128143. [Google Scholar] [CrossRef]
- Toprakçı, İ.; Torun, M.; Şahin, S. Development of an Encapsulation Method for Trapping the Active Materials from Sour Cherry Biowaste in Alginate Microcapsules. Foods 2023, 12, 130. [Google Scholar] [CrossRef]
- Zhu, T.; Jiang, C.; Wang, M.; Zhu, C.; Zhao, N.; Xu, J. Skin-inspired double-hydrophobic-coating encapsulated hydrogels with enhanced water retention capacity. Adv. Funct. Mater. 2021, 31, 2102433. [Google Scholar] [CrossRef]
- Aykın-Dinçer, E.; Dinçer, C.; Topuz, O.K. Modeling of release mechanism of sage (Salvia fruticosa Miller) phenolics encapsulated in alginate capsule: Physicochemical properties. J. Food Process. Preserv. 2024, 2024, 7598455. [Google Scholar] [CrossRef]
- Chan, E.; Lim, T.; Voo, W.; Pogaku, R.; Tey, B.; Zhang, Z. Effect of formulation of alginate beads on their mechanical behavior and stiffness. Particuology 2011, 9, 228–234. [Google Scholar] [CrossRef]
- Łętocha, A.; Miastkowska, M.; Sikora, E. Preparation and Characteristics of Alginate Microparticles for Food, Pharmaceutical and Cosmetic Applications. Polymers 2022, 14, 3834. [Google Scholar] [CrossRef]
- Cuadros, T.R.; Skurtys, O.; Aguilera, J.M. Mechanical properties of calcium alginate fibers produced with a microfluidic device. Carbohydr. Polym. 2012, 89, 1198–1206. [Google Scholar] [CrossRef]
- Kaltsa, O.; Alibade, A.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Encapsulation of Moringa oleifera Extract in Ca-Alginate Chocolate Beads: Physical and Antioxidant Properties. J. Food Qual. 2021, 2021, 5549873. [Google Scholar] [CrossRef]
- Gheorghita, R.E.; Lupaescu, A.V.; Gâtlan, A.M.; Dabija, D.; Lobiuc, A.; Iatcu, O.C.; Buculei, A.; Andriesi, A.; Dabija, A. Biopolymers-Based Macrogels with Applications in the Food Industry: Capsules with Berry Juice for Functional Food Products. Gels 2024, 10, 71. [Google Scholar] [CrossRef]
- Semprebon, C.; Scheel, M.; Herminghaus, S.; Seemann, R.; Brinkmann, M. Liquid morphologies and capillary forces between three spherical beads. Phys. Rev. E 2016, 94, 012907. [Google Scholar] [CrossRef]
- Friedman, H.H.; WHITNEY, J.E.; SZCZESNIAK, A.S. The Texturometer—A New Instrument for Objective Texture Measurement. J. Food Sci. 1963, 28, 390–396. [Google Scholar] [CrossRef]
- Alkhatib, H.; Mohamed, F.; Akkawi, M.E.; Alfatama, M.; Chatterjee, B.; Doolaanea, A.A. Microencapsulation of black seed oil in alginate beads for stability and taste masking. J. Drug Deliv. Sci. Technol. 2020, 60, 102030. [Google Scholar] [CrossRef]
- Karslıoğlu, B.; Soncu, E.D.; Nekoyu, B.; Karakuş, E.; Bekdemir, G.; Şahin, B. From waste to consumption: Tomato peel flour in hamburger patty production. Foods 2024, 13, 2218. [Google Scholar] [CrossRef] [PubMed]
Interaction Effect (Calcium Lactate Concentration × Holding Time) | |||
---|---|---|---|
CBHB Samples | dl (mm) | pH | Bulk Density (g/mL) |
C1T0 | 2.95 ± 0.11 | 6.59 ± 0.05 z2 | 0.607 ± 0.02 |
C1T30 | 2.82 ± 0.09 | 6.76 ± 0.45 y2 | 0.618 ± 0.02 |
C1T60 | 2.75 ± 0.12 | 6.93 ± 0.05 x1 | 0.641 ± 0.02 |
C2.5T0 | 2.50 ± 0.32 | 6.83 ± 0.03 x1 | 0.535 ± 0.02 |
C2.5T30 | 2.45 ± 0.18 | 6.88 ± 0.06 x1 | 0.547 ± 0.02 |
C2.5T60 | 2.36 ± 0.31 | 6.90 ± 0.09 x1 | 0.550 ± 0.03 |
C5T0 | 2.36 ± 0.45 | 6.87 ± 0.06 y1 | 0.576 ± 0.05 |
C5T30 | 2.32 ± 0.81 | 6.90 ± 0.05 xy1 | 0.546 ± 0.01 |
C5T60 | 2.25 ± 0.52 | 6.96 ± 0.03 x1 | 0.541 ± 0.02 |
Main effects | |||
Holding time | |||
0. | 30. | 60. | |
dl (mm) | 2.57 ± 0.12 A | 2.51 ± 0.12 A | 2.37 ± 0.14 B |
pH | 6.76 ± 0.06 | 6.85 ± 0.03 | 6.93 ± 0.02 |
Bulk density | 0.572 ± 0.02 | 0.570 ± 0.02 | 0.577 ± 0.02 |
Main effects | |||
Calcium lactate concentration | |||
C1 | C2.5 | C5 | |
dl (mm) | 2.87 ± 0.02 a | 2.39 ± 0.05 b | 2.20 ± 0.05 c |
pH | 6.76 ± 0.06 | 6.87 ± 0.06 | 6.91 ± 0.06 |
Bulk density | 0.622 ± 0.01 a | 0.544 ± 0.01 b | 0.554 ± 0.02 b |
Calcium lactate concentration × Holding time | Holding time | Calcium lactate concentration | |
dl (mm) | ns | p < 0.001 | p < 0.001 |
pH | p < 0.001 | p < 0.001 | p < 0.001 |
Bulk density | ns | ns | p < 0.001 |
Dimensionless Shape Indicators | |||
---|---|---|---|
CBHB Samples | Circularity (C) | Aspect Ratio (AR) | Sphericity Factor (SF) |
C1T0 | 1.00 | 1.0 | 0.036 |
C1T30 | 0.99 | 1.00 | 0.042 |
C1T60 | 0.99 | 1.00 | 0.041 |
C2.5T0 | 1.00 | 1.00 | 0.061 |
C2.5T30 | 0.99 | 1.00 | 0.065 |
C2.5T60 | 1.00 | 1.00 | 0.072 |
C5T0 | 1.00 | 1.00 | 0.12 |
C5T30 | 0.99 | 1.00 | 0.16 |
C5T60 | 1.00 | 1.00 | 0.21 |
Interaction | ||||
---|---|---|---|---|
Calcium Lactate Concentration × Holding Time | ||||
CBHB Samples | L* | a* | b* | Chroma |
C1T0 | 51.91 ± 0.23 | 2.46 ± 0.51 | 61.76 ± 0.35 | 62.85 ± 0.71 |
C1T30 | 50.02 ± 1.00 | 2.55 ± 0.50 | 61.47 ± 0.12 | 61.52 ± 0.14 |
C1T60 | 49.24 ± 0.50 | 2.61 ± 0.50 | 61.74 ± 0.16 | 61.79 ± 0.20 |
C2.5T0 | 49.03 ± 0.86 | 4.41 ± 0.32 | 64.22 ± 0.34 | 64.36 ± 0.36 |
C2.5T30 | 48.59 ± 1.00 | 4.56 ± 0.37 | 64.48 ± 0.48 | 64.64 ± 0.50 |
C2.5T60 | 48.10 ± 0.41 | 4.71 ± 0.38 | 64.53 ± 0.42 | 64.70 ± 0.45 |
C5T0 | 48.30 ± 0.18 | 5.26 ± 0.83 | 64.90 ± 0.77 | 65.12 ± 0.84 |
C5T30 | 48.15 ± 0.73 | 5.28 ± 0.84 | 65.10 ± 0.55 | 65.32 ± 0.62 |
C5T60 | 47.82 ± 0.51 | 5.35 ± 0.83 | 65.35 ± 0.55 | 65.57 ± 0.86 |
Main effects | ||||
Holding time | ||||
0. | 30. | 60. | ||
L* | 49.75 ± 0.74 | 48.92 ± 0.49 | 48.39 ± 0.35 | |
a* | 4.04 ± 0.59 | 4.13 ± 0.58 | 4.22 ± 0.55 | |
b* | 63.62 ± 0.65 | 63.68 ± 0.74 | 63.87 ± 0.72 | |
Chroma | 64.11 ± 0.52 | 63.83 ± 0.77 | 64.02 ± 0.75 | |
Main effects | ||||
Calcium lactate concentration | ||||
C1 | C2.5 | C5 | ||
L* | 50.39 ± 0.58 a | 48.58 ± 0.32 b | 48.09 ± 0.25 b | |
a* | 2.54 ± 0.23 c | 4.56 ± 0.17 b | 5.29 ± 0.37 a | |
b* | 61.65 ± 0.12 b | 64.41 ± 0.20 a | 65.12 ± 0.29 a | |
Chroma | 62.05 ± 0.32 c | 64.57 ± 0.21 b | 65.33 ± 0.32 a | |
Calcium lactate concentration × Holding time | Holding time | Calcium lactate concentration | ||
L* | ns | ns | p < 0.05 | |
a* | ns | ns | p < 0.001 | |
b* | ns | ns | p < 0.001 | |
Chroma | ns | ns | p < 0.001 |
Interaction | ||||||
---|---|---|---|---|---|---|
Calcium Lactate Concentration × Holding Time | ||||||
CBHB Samples |
Hardness (N) |
Springiness
(mm) |
Cohesiveness (N) | Gumminess |
Chewiness (Nmm) | Resilienceth |
C1T0 | 3.49 ± 0.12 y3 | 0.95 ± 0.04 | 0.80 ± 0.30 | 5.25 ± 0.65 | 3.99 ± 0.37 | 0.26 ± 0.01 |
C1T30 | 7.33 ± 0.15 x1 | 0.93 ± 0.12 | 0.77 ± 0.07 | 5.16 ± 0.81 | 3.93 ± 0.30 | 0.40 ± 0.05 |
C1T60 | 7.80 ± 0.16 x1 | 0.89 ± 0.09 | 0.75 ± 0.33 | 4.99 ± 0.23 | 3.16 ± 0.58 | 0.37 ± 0.09 |
C2.5T0 | 5.22 ± 0.11 y2 | 0.93 ± 0.02 | 0.76 ± 0.03 | 4.25 ± 0.12 | 3.22 ± 0.16 | 0.33 ± 0.01 |
C2.5T30 | 6.59 ± 0.23 x1 | 0.91 ± 0.04 | 0.70 ± 0.21 | 4.20 ± 0.10 | 3.02 ± 0.22 | 0.46 ± 0.05 |
C2.5T60 | 7.18 ± 0.70 x1 | 0.88 ± 0.03 | 0.69 ± 0.56 | 4.12 ± 0.33 | 2.90 ± 0.18 | 0.47 ± 0.01 |
C5T0 | 7.53 ± 0.42 x1 | 0.86 ± 0.25 | 0.72 ± 0.87 | 3.25 ± 0.25 | 3.04 ± 0.37 | 0.50 ± 0.06 |
C5T30 | 7.35 ± 0.21 x1 | 0.84 ± 0.03 | 0.73 ± 0.03 | 3.23 ± 0.81 | 3.01 ± 0.37 | 0.51 ± 0.02 |
C5T60 | 7.81 ± 0.75 x1 | 0.81 ± 0.12 | 0.71 ± 0.01 | 3.03 ± 0.23 | 2.82 ± 0.37 | 0.50 ± 0.01 |
Main effects | ||||||
Holding time | ||||||
Hardness | Springiness | Cohesiveness | Gumminess | Chewiness | Resilience | |
0. | 5.41 ± 0.15 | 0.91 ± 0.15 | 0.76 ± 0.05 | 4.25 ± 0.05 A | 3.42 ± 0.03 A | 0.36 ± 0.03 |
30. | 7.10 ± 0.06 | 0.89 ± 0.05 | 0.73 ± 0.05 | 4.20 ± 0.05 B | 3.32 ± 0.06 A | 0.44 ± 0.05 |
60. | 7.60 ± 0.04 | 0.86 ± 0.03 | 0.72 ± 0.06 | 4.05 ± 0.06 B | 2.96 ± 0.05 B | 0.45 ± 0.06 |
Main effects | ||||||
Calcium lactate concentration | ||||||
Hardness | Springiness | Cohesiveness | Gumminess | Chewiness | Resilience | |
C1 | 6.21 ± 0.15 | 0.92 ± 0.06 a | 0.77 ± 0.50 | 5.13 ± 0.06 a | 3.69 ± 0.03 a | 0.34 ± 0.02 |
C2.5 | 6.33 ± 0.05 | 0.91 ± 0.05 a | 0.72 ± 0.06 | 4.19 ± 0.12 b | 3.05 ± 0.05 b | 0.42 ± 0.03 |
C5 | 7.56 ± 0.75 | 0.85 ± 0.09 b | 0.72 ± 0.09 | 3.17 ± 0.18 c | 2.96 ± 0.02 c | 0.50 ± 0.02 |
Hardness | Springiness | Cohesiveness | Gumminess | Chewiness | Resilience | |
Calcium lactate concentration × Holding time | p < 0.001 | ns | ns | ns | ns | ns |
Calcium lactate concentration | ns | p < 0.05 | ns | p < 0.001 | p < 0.001 | ns |
Holding time | ns | ns | ns | p < 0.001 | p < 0.001 | ns |
CBHB Samples | Sodium Alginate (%) | Calcium Lactate (%) | Moles Ca2+/g Alginate | Gelation Time (min) | Post-Preparation Holding Time (min) |
---|---|---|---|---|---|
C1T0 | 1 | 1 | 0.00459 | 2.5 | 0 |
C1T30 | 1 | 30 | |||
C1T60 | 1 | 60 | |||
C2.5T0 | 2.5 | 0.01147 | 0 | ||
C2.5T30 | 2.5 | 30 | |||
C2.5T60 | 2.5 | 60 | |||
C5T0 | 5 | 0.02294 | 0 | ||
C5T30 | 5 | 30 | |||
C5T60 | 5 | 60 |
Shape Indicator | Equation | Remarks |
---|---|---|
Circularity (C) | C = P2/4πA | The circularity varies from unity for a perfect sphere to infinity for a non-spherical object |
Aspect ratio (AR) | AR = dmax/dmin | The AR varies from unity for a perfect sphere to approaching infinity for an elongated particle |
Sphericity factor (SF) | SF = (dmax − dmin)/(dmax + dmin) | The deformation factor varies from 0 for a perfect sphere to approaching unity for an elongated object |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karslıoğlu, B.; Soncu, E.D.; Kızıldoğan, T.; Gezer, D.; Almaci, S.S. Impact of Calcium Lactate Concentration and Holding Time on Caviar-like Chicken Broth Hydrogel Beads. Molecules 2025, 30, 3926. https://doi.org/10.3390/molecules30193926
Karslıoğlu B, Soncu ED, Kızıldoğan T, Gezer D, Almaci SS. Impact of Calcium Lactate Concentration and Holding Time on Caviar-like Chicken Broth Hydrogel Beads. Molecules. 2025; 30(19):3926. https://doi.org/10.3390/molecules30193926
Chicago/Turabian StyleKarslıoğlu, Betül, Eda Demirok Soncu, Tayyip Kızıldoğan, Dilan Gezer, and Sıla Sudem Almaci. 2025. "Impact of Calcium Lactate Concentration and Holding Time on Caviar-like Chicken Broth Hydrogel Beads" Molecules 30, no. 19: 3926. https://doi.org/10.3390/molecules30193926
APA StyleKarslıoğlu, B., Soncu, E. D., Kızıldoğan, T., Gezer, D., & Almaci, S. S. (2025). Impact of Calcium Lactate Concentration and Holding Time on Caviar-like Chicken Broth Hydrogel Beads. Molecules, 30(19), 3926. https://doi.org/10.3390/molecules30193926