The Pharmacokinetics, Bioavailability, and Excretion Studies of α-Cyperone in Rats by UHPLC-QQQ-MS/MS
Abstract
1. Introduction
2. Results and Discussions
2.1. Optimization of Sample Preparation
2.2. Optimization of QQQ-MS/MS
2.3. Method Validation of the Constructed UHPLC-QQQ-MS/MS
2.4. Plasma Pharmacokinetic Study
2.5. Excretion Kinetics Study
3. Materials and Methods
3.1. Regents and Chemicals
3.2. UHPLC-QQQ-MS/MS Condition
3.3. Biosample Collection
3.4. Sample Preparation
3.5. Preparation of Standard and Quality Control Samples
3.6. Method Validation
3.7. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CR | Cyperi Rhizoma |
UHPLC-QQQ-MS/MS | Ultra-performance liquid chromatography tandem triple quadrupole mass spectrometry |
MRM | Multiple reaction monitoring |
QC | Quality control |
LLOQ | Lower limit of quantification |
Cmax | Maximum plasma concentration |
Tmax | Time to reach Cmax |
T1/2 | Half-life time |
AUC | Area under the curve |
F | Absolute bioavailability |
References
- Taheri, Y.; Herrera-Bravo, J.; Huala, L.; Salazar, L.A.; Sharifi-Rad, J.; Akram, M.; Shahzad, K.; Melgar-Lalanne, G.; Baghalpour, N.; Tamimi, K.; et al. Cyperus spp.: A review on phytochemical composition, biological activity, and health-promoting effects. Oxidative. Med. Cell. Longev. 2021, 2021, 4014867. [Google Scholar] [CrossRef]
- Pan, S.; Zhang, Z.; Feng, Q.; Zhao, J.; Aziz, S.; Dou, L.; Li, J.; Huang, L.; Yan, H.; Wang, X.; et al. An efficient high-speed counter-current chromatography method for the preparative separation of sesquiterpenoids from the rhizomes of Cyperus rotundus L. combined with evaluation of the anti-inflammation activity in vitro and molecular docking. J. Sep. Sci. 2023, 46, e2300042. [Google Scholar] [CrossRef]
- Shi, Y.; Mei, X.; Li, Y.; Li, M.; Ji, D.; Su, L.; Mao, C.; Lu, T. Study on the quality difference of Cyperus rotundus before and after vinegar processing based on ultra-high-performance liquid chromatography-quadrupole-time of flight-mass spectrometry and molecular network combined with color parameters. J. Sep. Sci. 2023, 46, e2200990. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, S.; Zhang, J.; Yuan, F. Systematic review of ethnomedicine, phytochemistry, and pharmacology of Cyperi Rhizoma. Front. Pharmacol. 2022, 13, 965902. [Google Scholar] [CrossRef]
- Huang, B.; Hu, G.; Zong, X.; Yang, S.; He, D.; Gao, X.; Liu, D. α-Cyperone protects dopaminergic neurons and inhibits neuroinflammation in LPS-induced Parkinson’s disease rat model via activating Nrf2/HO-1 and suppressing NF-κB signaling pathway. Int. Immunopharmacol. 2023, 115, 109698. [Google Scholar] [CrossRef]
- Zhang, H.; Li, S.; Lu, J.; Jin, J.; Zhu, G.; Wang, L.; Yan, Y.; He, L.; Wang, B.; Wang, X.; et al. α-Cyperone (CYP) down-regulates NF-κB and MAPKs signaling, attenuating inflammation and extracellular matrix degradation in chondrocytes, to ameliorate osteoarthritis in mice. Aging 2021, 13, 17690–17706. [Google Scholar] [CrossRef] [PubMed]
- Daude, R.B.; Bhadane, R.; Shah, J.S. Alpha-cyperone mitigates renal ischemic injury via modulation of HDAC-2 expression in diabetes: Insights from molecular dynamics simulations and experimental evaluation. Eur. J. Pharmacol. 2024, 975, 176643. [Google Scholar] [CrossRef]
- Ge, N.; Yan, G.; Sun, H.; Yang, L.; Kong, L.; Sun, Y.; Han, Y.; Zhao, Q.; Kang, S.; Wang, X. Version updates of strategies for drug discovery based on effective constituents of traditional Chinese medicine. Acupunct. Herb. Med. 2023, 3, 158–179. [Google Scholar] [CrossRef]
- Adolat, M.; Andrey, B.; Timur, K.; Igor, Y.; Pavel, A.; Madina, A.; Vladimir, B.; Vyacheslav, D. Gallic, aconitic, and crocetin acids as potential TNF modulators: An integrated study combining molecular docking, dynamics simulations, ADMET profiling, and gene expression analysis. Molecules 2025, 30, 3175. [Google Scholar]
- Zhang, C.X.; Arnold, S.L.M. Potential and challenges in application of physiologically based pharmacokinetic modeling in predicting diarrheal disease impact on oral drug pharmacokinetics. Drug. Metab. Dispos. 2025, 53, 100014. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Qian, D.; Duan, J.; Liu, P.; Zhu, Z.; Guo, J.; Zhang, Y.; Pan, Y. Preparation, characterization and pharmacokinetic study of Xiangfu Siwu Decoction essential oil/β-cyclodextrin inclusion complex. Molecules. 2015, 20, 10705–10720. [Google Scholar] [CrossRef]
- Chuanhua, F.; Huiling, G.; Xiaolin, T.; Xiaojuan, Z.; Xinlu, F.; Dekun, L.; Gang, L. Determination of cyperenone and α-cyperone in rat plasma by UPLC-MS/MS and their pharmacokinetics. Chin. J. Mod. Appl. Pharm. 2023, 40, 3197–3201. [Google Scholar]
- Nan, G.; Fanna, M. Pharmacokinetics study of alpha-cyperone in rat. Chin. Med. Biotechnol. 2009, 4, 312–314. [Google Scholar]
- Bansal, S.; Paine, M.F.; Unadkat, J.D. Predicting in vivo cannabinoid-drug interactions mediated via inhibition of UDP-glucuronosyltransferases using in vitro studies and physiologically based pharmacokinetic modeling and simulations. Drug. Metab. Dispos. 2025, 53, 100096. [Google Scholar] [CrossRef]
- Xuejiao, W.; Fei, W.; Peng, T.; Huiming, H.; Zhuguo, W.; Jinxin, X.; Longyan, W.; Dongxiao, L.; Zhongdong, H. The interactions between traditional Chinese medicine and gut microbiota in cancers: Current status and future perspectives. Pharmacol. Res. 2024, 203, 107148. [Google Scholar] [CrossRef] [PubMed]
- Mödinger, Y.; Knaub, K.; Dharsono, T.; Wacker, R.; Meyrat, R.; Land, M.H.; Petraglia, A.L.; Schön, C. Enhanced oral bioavailability of β-caryophyllene in healthy subjects using the VESIsorb(®) formulation technology, a novel self-emulsifying drug delivery system (SEDDS). Molecules 2022, 27, 2860. [Google Scholar] [CrossRef]
- Ansari, M.T.; Batty, K.T.; Iqbal, I.; Sunderland, V.B. Improving the solubility and bioavailability of dihydroartemisinin by solid dispersions and inclusion complexes. Arch. Pharmacal. Res. 2011, 34, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Chaves, J.S.; Leal, P.C.; Pianowisky, L.; Calixto, J.B. Pharmacokinetics and tissue distribution of the sesquiterpene alpha-humulene in mice. Planta Medica 2008, 74, 1678–1683. [Google Scholar] [CrossRef]
- Zhai, B.; Zeng, Y.; Zeng, Z.; Zhang, N.; Li, C.; Zeng, Y.; You, Y.; Wang, S.; Chen, X.; Sui, X.; et al. Drug delivery systems for elemene, its main active ingredient β-elemene, and its derivatives in cancer therapy. Int. J. Nanomed. 2018, 13, 6279–6296. [Google Scholar] [CrossRef]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef]
- Alizadeh, S.R.; Savadkouhi, N.; Ebrahimzadeh, M.A. Drug design strategies that aim to improve the low solubility and poor bioavailability conundrum in quercetin derivatives. Expert. Opin. Drug. Discov. 2023, 18, 1117–1132. [Google Scholar] [CrossRef]
- Wei, C.; Jiansong, M.; Chun, L.; Jinlian, K. Alpha-cyperone ameliorates renal fibrosis and inflammation in mice with chronic kidney disease via NF-κB and Akt/Nrf2/HO-1 pathways. Immunopharmacol. Immunotoxicol. 2025, 47, 460–470. [Google Scholar]
- Huang, B.; Liu, J.; Fu, S.; Zhang, Y.; Li, Y.; He, D.; Ran, X.; Yan, X.; Du, J.; Meng, T.; et al. α-Cyperone Attenuates H(2)O(2)-Induced Oxidative Stress and Apoptosis in SH-SY5Y Cells via Activation of Nrf2. Front. Pharmacol. 2020, 11, 281. [Google Scholar] [CrossRef] [PubMed]
- Qiao, N.; Wang, Q.; Tao, Y.; Wu, J.; Fang, Y.; Ni, Y.; Ding, X. α-Cyperone ameliorates depression in mammary gland hyperplasia and chronic unpredictable mild stress rat by regulating hormone, inflammation, and oxidative stress. Immunopharmacol. Immunotoxicol. 2023, 45, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Ding, N.; Lv, J.; Ramzan, M.N.; Wen, Q. α-Cyperone inhibitory effects on tumor-derived DNA trigger microglia by STING pathway. J. Ethnopharmacol. 2021, 264, 113246. [Google Scholar] [CrossRef]
- Kim, C.; Kim, S.; Jung, A.R.; Jang, J.H.; Bae, J.; Choi, W.I.I.; Sung, D. Nanoparticle encapsulation of the hexane fraction of Cyperus Rotundus extract for enhanced antioxidant and anti-Inflammatory activities in vitro. Int. J. Nanomed. 2024, 19, 8403–8415. [Google Scholar] [CrossRef]
Sample | Liner Range (ng/mL or ng/mg) | Regression Equation | r | LLOQ (ng/mL or ng/mg) |
---|---|---|---|---|
plasma | 2.4–1500 | y = 1.9160x + 0.2433 | 0.9999 | 0.15 |
bile | 1.6–1000 | y = 1.4538x + 0.0510 | 0.9996 | 0.39 |
urine | 1.6–1000 | y = 0.8509x + 0.0192 | 0.9997 | 0.16 |
feces | 0.64–400 | y = 2.4378x + 0.0427 | 0.9996 | 0.45 |
PK Characteristic | Intravenous Administration | Oral Administration |
---|---|---|
Tmax (h) | 0.03 ± 0.00 | 0.20 ± 0.16 |
Cmax (ng/mL) | 1258.68 ± 156.85 | 51.19 ± 16.41 |
AUC(0→t) (μg/L × h) | 380.62 ± 50.73 | 25.89 ± 14.01 |
T1/2 (h) | 0.23 ± 0.17 | 0.14 ± 0.05 |
MRT(0→t) (h) | 0.58 ± 0.12 | 0.47 ± 0.22 |
MRT(0→∞) (h) | 0.58 ± 0.12 | 0.47 ± 0.22 |
F (%) | – | 1.36 |
Sample | T1/2 (h) | Ke (h−1) |
---|---|---|
bile | 2.10 ± 0.72 | 0.37 ± 0.13 |
urine | 21.58 ± 24.81 | 0.06 ± 0.03 |
feces | 18.84 ± 9.15 | 0.05 ± 0.04 |
Compound | Precursor Ion (m/z) | Fragment Ion (m/z) | Fragmentor Voltage (V) | Collision Energy (eV) |
---|---|---|---|---|
α-cyperone | 219.0 | 111.0 | 134 | 25 |
alantolactone | 233.1 | 151.0 | 110 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, Y.; Zhu, Y.; Zhang, K.; Zhang, Z.; Geng, H.; Liu, X.; Li, W.; Chen, L.; Li, C.; Liu, Y.; et al. The Pharmacokinetics, Bioavailability, and Excretion Studies of α-Cyperone in Rats by UHPLC-QQQ-MS/MS. Molecules 2025, 30, 3899. https://doi.org/10.3390/molecules30193899
Shang Y, Zhu Y, Zhang K, Zhang Z, Geng H, Liu X, Li W, Chen L, Li C, Liu Y, et al. The Pharmacokinetics, Bioavailability, and Excretion Studies of α-Cyperone in Rats by UHPLC-QQQ-MS/MS. Molecules. 2025; 30(19):3899. https://doi.org/10.3390/molecules30193899
Chicago/Turabian StyleShang, Ye, Yameng Zhu, Kaili Zhang, Zijing Zhang, Huining Geng, Xueyu Liu, Wenwen Li, Lu Chen, Caixia Li, Yang Liu, and et al. 2025. "The Pharmacokinetics, Bioavailability, and Excretion Studies of α-Cyperone in Rats by UHPLC-QQQ-MS/MS" Molecules 30, no. 19: 3899. https://doi.org/10.3390/molecules30193899
APA StyleShang, Y., Zhu, Y., Zhang, K., Zhang, Z., Geng, H., Liu, X., Li, W., Chen, L., Li, C., Liu, Y., Ouyang, H., & He, J. (2025). The Pharmacokinetics, Bioavailability, and Excretion Studies of α-Cyperone in Rats by UHPLC-QQQ-MS/MS. Molecules, 30(19), 3899. https://doi.org/10.3390/molecules30193899