hERG Channel Blockade and Antagonistic Interactions of Three Steroidal Alkaloids from Fritillaria Species
Abstract
1. Introduction
2. Results
2.1. Blockade of hERG Channels by Peiminine, Peimine, and Sipeimine
2.2. Effects of Peiminine on the Voltage Dependence of hERG Channels
2.3. Use-Dependent Manner of Peiminine Blockade
2.4. Time-Dependent Manner of Peiminine Blockade
2.5. Effects of Peiminine on the Inactivation Kinetics of hERG Channels
2.6. Attenuation of Peiminine Blockade by hERG Channel Mutant S631A
2.7. Molecular Docking of the Interactions Between the hERG Channel and Three Alkaloids
2.8. Molecular Dynamics Simulations
2.9. Combination Effects of Three Alkaloids on hERG Currents
3. Discussion
4. Materials and Methods
4.1. Cell Culture and Plasmid Transfection
4.2. Solution Preparation
4.3. Electrophysiological Recordings
4.4. Molecular Docking
4.4.1. Ligand Preparation
4.4.2. Protein Preparation
4.4.3. Ligand–hERG Channel Interaction
4.5. Molecular Dynamics (MD) Simulation
4.6. Drug Combination Analysis
4.7. Data and Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miyashita, Y.; Moriya, T.; Kato, T.; Kawasaki, M.; Yasuda, S.; Adachi, N.; Suzuki, K.; Ogasawara, S.; Saito, T.; Senda, T.; et al. Improved higher resolution cryo-EM structures reveal the binding modes of hERG channel inhibitors. Structure 2024, 32, 1926–1935.e3. [Google Scholar] [CrossRef] [PubMed]
- Kratz, J.M.; Grienke, U.; Scheel, O.; Mann, S.A.; Rollinger, J.M. Natural products modulating the hERG channel: Heartaches and hope. Nat. Prod. Rep. 2017, 34, 957–980. [Google Scholar] [CrossRef]
- Zhao, W.; Xiao, L.; Pan, L.; Ke, X.; Zhang, Y.; Zhong, D.; Xu, J.; Cao, F.; Wu, L.; Chen, Y. Cardiac toxicity of Triptergium wilfordii Hook F. may correlate with its inhibition to hERG channel. Heliyon 2019, 5, e02527. [Google Scholar] [CrossRef]
- Forgo, P.; Borcsa, B.; Csupor, D.; Fodor, L.; Berkecz, R.; Molnar, V.A.; Hohmann, J. Diterpene alkaloids from Aconitum anthora and assessment of the hERG-inhibiting ability of Aconitum alkaloids. Planta Med. 2011, 77, 368–373. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Wang, W.P.; Ke, J.; Ou, H.P.; Chen, L.Y.; Hou, A.G.; Li, P.; Ma, Y.S.; Bin Jin, W. Nuciferine analogs block voltage-gated sodium, calcium and potassium channels to regulate the action potential and treat arrhythmia. Biomed. Pharmacother. 2024, 179, 117422. [Google Scholar] [CrossRef]
- Lu, Z.; Li, S.; Wei, R.; Li, W.; Huang, Y.; Yang, T.; Yan, M. Quercetin is a foe in the heart by targeting the hERG potassium channel. Iran. J. Basic Med. Sci. 2024, 27, 1397–1404. [Google Scholar] [PubMed]
- Chinese Pharmacopoeia Commission (Ed.) Pharmacopoeia of the People’s Republic of China; China Medical Science and Technology Press: Beijing, China, 2020; Volume 1. [Google Scholar]
- Kan, L.; Zhao, W.; Pan, L.; Xu, J.; Chen, Q.; Xu, K.; Xiao, L.; Chen, Y. Peimine inhibits hERG potassium channels through the channel inactivation states. Biomed. Pharmacother. 2017, 89, 838–844. [Google Scholar] [CrossRef]
- Schonherr, R.; Heinemann, S.H. Molecular determinants for activation and inactivation of HERG, a human inward rectifier potassium channel. J. Physiol. 1996, 493 Pt 3, 635–642. [Google Scholar] [CrossRef]
- Wang, W.; MacKinnon, R. Cryo-EM structure of the open human Ether-a-go-go-Related K+ channel hERG. Cell 2017, 169, 422–430.e10. [Google Scholar] [CrossRef]
- Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010, 70, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.; Martin, N. CompuSyn Software. CompuSyn for Drug Combinations: PC Software and User’s Guide: A Computer Program for Quantitation of Synergism and Antagonism in Drug Combinations, and the Determination of IC50 and ED50 and LD50 Values; ComboSyn Inc.: Paramus, NJ, USA, 2005; Available online: https://www.combosyn.com (accessed on 1 September 2024).
- Chou, T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef]
- Borjigin, G.; Wei, F.; Jiang, S.; Li, Q.; Yang, C. Extraction, purification, structural characterization and biological activity of polysaccharides from Fritillaria: A review. Int. J. Biol. Macromol. 2023, 242, 124817. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, K.; Niwa, R.; Morishima, M.; Honjo, H.; Sanguinetti, M.C. Molecular determinants of herg channel block by terfenadine and cisapride. J. Pharmacol. Sci. 2008, 108, 301–307. [Google Scholar] [CrossRef]
- Harchi, A.E.; Butler, A.S.; Zhang, Y.; Dempsey, C.E.; Hancox, J.C. The macrolide drug erythromycin does not protect the herg channel from inhibition by thioridazine and terfenadine. Physiol. Rep. 2020, 8, e14385. [Google Scholar] [CrossRef] [PubMed]
- Qauli, A.I.; Marcellinus, A.; Jos Vanheusden, F.; Lim, K.M. Cardiotoxicity evaluation of two-drug fixed-dose combination therapy under cipa: A computational study. Transl. Clin. Pharmaco. 2024, 32, 198–215. [Google Scholar] [CrossRef] [PubMed]
- Winiowska, B.; Lisowski, B.; Kulig, M.; Polak, S. Drug interaction at herg channel: In vitro assessment of the electrophysiological consequences of drug combinations and comparison against theoretical models. J. Appl. Toxicol. 2017, 38, 450–458. [Google Scholar] [CrossRef]
- Zheng, J.F.; Zhao, W.; Xu, K.; Chen, Q.M.; Chen, Y.Y.; Shen, Y.L.; Xiao, L.P.; Jiang, L.Q.; Chen, Y. Interaction among hERG channel blockers is a potential mechanism of death in caffeine overdose. Eur. J. Pharmacol. 2017, 800, 23–33. [Google Scholar] [CrossRef]
- Alper, K.; Bai, R.; Liu, N.; Fowler, S.J.; Huang, X.P.; Priori, S.G.; Ruan, Y. hERG Blockade by Iboga Alkaloids. Cardiovasc. Toxicol. 2016, 16, 14–22. [Google Scholar] [CrossRef]
- Orvos, P.; Virag, L.; Talosi, L.; Hajdu, Z.; Csupor, D.; Jedlinszki, N.; Szel, T.; Varro, A.; Hohmann, J. Effects of Chelidonium majus extracts and major alkaloids on hERG potassium channels and on dog cardiac action potential—A safety approach. Fitoterapia 2015, 100, 156–165. [Google Scholar] [CrossRef]
- Wu, X.; Chan, S.W.; Ma, J.; Li, P.; Shaw, P.C.; Lin, G. Investigation of association of chemical profiles with the tracheobronchial relaxant activity of Chinese medicinal herb Beimu derived from various Fritillaria species. J. Ethnopharmacol. 2018, 210, 39–46. [Google Scholar] [CrossRef]
- Xu, Y.; Ming, T.W.; Gaun, T.K.W.; Wang, S.; Ye, B. A comparative assessment of acute oral toxicity and traditional pharmacological activities between extracts of Fritillaria cirrhosae Bulbus and Fritillaria pallidiflora Bulbus. J. Ethnopharmacol. 2019, 238, 11185. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Stalin, A.; Han, J.; Daniel Reegan, A.; Ignacimuthu, S.; Liu, S.; Yao, X.; Zou, Q. Exploring the antiviral inhibitory activity of Niloticin against the NS2B/NS3 protease of Dengue virus (DENV2). Int. J. Biol. Macromol. 2024, 277, 133791. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.R.; Brooks, C.L.; Mackerell, A.D.; Nilsson, L., Jr.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009, 30, 1545–1614. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Jo, S.; Brooks, C.L.; Lee, H.S.; Im, W. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. J. Comput. Chem. 2017, 38, 1879–1886. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Im, W. Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS ONE 2007, 2, e880. [Google Scholar] [CrossRef]
- Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; et al. CHARMM-GUI input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 2016, 12, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Wu, E.L.; Cheng, X.; Jo, S.; Rui, H.; Song, K.C.; Davila-Contreras, E.M.; Qi, Y.; Lee, J.; Monje-Galvan, V.; Venable, R.M.; et al. CHARMM-GUI membrane builder toward realistic biological membrane simulations. J. Comput. Chem. 2014, 35, 1997–2004. [Google Scholar] [CrossRef]
- Mark, J.A.; Roland, S.; Szilárd, P.; Jeremy, C.S.; Berk, H.; Erik, L. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
Ligand | Interacting Residues and Atoms in Bond (Ligand–Receptor) | Interaction Type | Binding Energy (kcal/mol) | Vdw_hb_ Desolv_Energy (kcal/mol) | Inhibition Constant | Ligand Efficiency |
---|---|---|---|---|---|---|
Peimine | D: SER624: HG-O A: TYR652: OH-H B: THR623: O-H D: ALA653 B: TYR652 C: TYR652 | H-Bond: Conventional H-Bond: Conventional H-Bond: Conventional Hydrophobic: Alkyl Hydrophobic: Pi-Alkyl Hydrophobic: Pi-Alkyl | −6.47 | −5.91 | 52.8 (μM) | 0.24 |
Peiminine | B: SER624: HG-O D: SER624: HG-O A: THR623: O-H B: ALA653 A: TYR652 D: TYR652 | H-Bond: Conventional H-Bond: Conventional H-Bond: Conventional Hydrophobic: Alkyl Hydrophobic: Pi-Alkyl Hydrophobic: Pi-Alkyl | −6.46 | −5.59 | 53.7 (μM) | 0.24 |
Sipeimine | A: SER624: HG-O B: SER624: HG-O D: SER624: HG-O C: THR623: O-H D: ALA653: O-C D: ALA653 B: TYR652 C: TYR652 | H-Bond: Conventional H-Bond: Conventional H-Bond: Conventional H-Bond: Conventional H-Bond: Carbon Hydrophobic: Alkyl Hydrophobic: Pi-Alkyl Hydrophobic: Pi-Alkyl | −6.95 | −6.0 | 23.6 (μM) | 0.26 |
Drug | Inhibition Rates or Fractional Inhibition (fa) a | Parameters b | CI c | ||||
---|---|---|---|---|---|---|---|
Peimine | Peiminine | Sipeimine | m | Dm | r | ||
μM | μM | ||||||
(D)1 | |||||||
1 | 0.07720 | ||||||
3 | 0.16842 | ||||||
10 | 0.26472 | ||||||
30 | 0.46692 | ||||||
100 | 0.73314 | ||||||
300 | 0.90416 | 0.80527 | 26.0768 | 0.99184 | |||
(D)2 | |||||||
1 | 0.06712 | ||||||
3 | 0.16349 | ||||||
10 | 0.32263 | ||||||
30 | 0.4457 | ||||||
100 | 0.62983 | ||||||
300 | 0.79842 | 0.67394 | 39.3294 | 0.99626 | |||
(D)3 | |||||||
1 | 0.12823 | ||||||
3 | 0.23479 | ||||||
10 | 0.32705 | ||||||
30 | 0.4362 | 0.47628 | 46.5381 | 0.99147 | |||
(D)1 + (D)2 (1:1) | |||||||
1 | 1 | 0.08071 | 1.72625 | ||||
3 | 3 | 0.16318 | 1.73871 | ||||
10 | 10 | 0.2766 | 2.32422 | ||||
30 | 30 | 0.50934 | 1.81993 | ||||
100 | 100 | 0.77468 | 1.23432 | ||||
150 | 150 | 0.86801 | 0.84087 | 44.7360 | 0.99135 | 0.78784 | |
(D)1 + (D)3 (1:1) | |||||||
1 | 1 | 0.04072 | 18.2757 | ||||
3 | 3 | 0.09928 | 8.38861 | ||||
10 | 10 | 0.23001 | 4.43545 | ||||
30 | 30 | 0.45886 | 0.87461 | 75.1683 | 0.99962 | 2.32334 | |
(D)2 + (D)3 (1:1) | |||||||
1 | 1 | 0.1089 | 2.34913 | ||||
3 | 3 | 0.20257 | 1.72776 | ||||
10 | 10 | 0.31681 | 1.87398 | ||||
30 | 30 | 0.46767 | 0.57103 | 74.2231 | 0.99852 | 1.77044 | |
(D)1 + (D)2 + (D)3 (1:1:1) | |||||||
1 | 1 | 1 | 0.09527 | 3.77000 | |||
3 | 3 | 3 | 0.20834 | 2.21979 | |||
10 | 10 | 10 | 0.36322 | 2.05336 | |||
30 | 30 | 30 | 0.58395 | 0.74823 | 58.6535 | 0.99874 | 1.53277 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Hao, T.; Zhang, Z.; Jiang, C.; Xu, J.; Stalin, A.; Zhao, W. hERG Channel Blockade and Antagonistic Interactions of Three Steroidal Alkaloids from Fritillaria Species. Molecules 2025, 30, 3882. https://doi.org/10.3390/molecules30193882
Lu H, Hao T, Zhang Z, Jiang C, Xu J, Stalin A, Zhao W. hERG Channel Blockade and Antagonistic Interactions of Three Steroidal Alkaloids from Fritillaria Species. Molecules. 2025; 30(19):3882. https://doi.org/10.3390/molecules30193882
Chicago/Turabian StyleLu, Hui, Tingting Hao, Zixuan Zhang, Chenxin Jiang, Jianwei Xu, Antony Stalin, and Wei Zhao. 2025. "hERG Channel Blockade and Antagonistic Interactions of Three Steroidal Alkaloids from Fritillaria Species" Molecules 30, no. 19: 3882. https://doi.org/10.3390/molecules30193882
APA StyleLu, H., Hao, T., Zhang, Z., Jiang, C., Xu, J., Stalin, A., & Zhao, W. (2025). hERG Channel Blockade and Antagonistic Interactions of Three Steroidal Alkaloids from Fritillaria Species. Molecules, 30(19), 3882. https://doi.org/10.3390/molecules30193882