Reactivity and Stereoselectivity in the Inverse-Electron-Demand Diels–Alder Reaction of 1-Aza-1,3-Butadiene
Abstract
1. Introduction
2. Results and Discussion
2.1. Transition-State (TS) Structures
2.2. Asynchronous Bond Formations and Regioselectivity
2.3. Stereoselectivity
2.4. Effect of the Position of the Methoxycarbonyl Group on the Reactivity and Selectivity
3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicolaou, K.C.; Snyder, S.A.; Montagnon, T.; Vassilikogiannakis, G. The Diels-Alder Reaction in Total Synthesis. Angew. Chem. Int. Ed. 2002, 41, 1668–1698. [Google Scholar] [CrossRef]
- Fleming, I. Molecular Orbitals and Organic Chemical Reactions, Reference Edition; Wiley: Hoboken, NJ, USA, 2010; pp. 253–368. [Google Scholar]
- Alder, K.; Stein, G. Untersuchungen über den Verlauf der Diensynthese. Angew. Chem. 1937, 50, 510–519. [Google Scholar] [CrossRef]
- Alder, K. Über den sterischen Verlauf von Dien-Synthesen mit acyclischen Dienen. Die allgemeine sterische Formel. Eur. J. Org. Chem. 1951, 571, 157–166. [Google Scholar] [CrossRef]
- Salem, L. Intermolecular orbital theory of the interaction between conjugated systems. II. Thermal and photochemical cycloadditions. J. Am. Chem. Soc. 1968, 90, 553–566. [Google Scholar] [CrossRef]
- Houk, K. The role of secondary orbital interactions in cycloaddition reactions. Tetrahedron Lett. 1970, 11, 2621–2624. [Google Scholar] [CrossRef]
- Houk, K.N.; Strozier, R.W. Lewis acid catalysis of Diels-Alder reactions. J. Am. Chem. Soc. 1973, 95, 4094–4096. [Google Scholar] [CrossRef]
- McCarrick, M.A.; Wu, Y.D.; Houk, K.N. exo-Lone-pair effect on hetero-Diels-Alder cycloaddition stereochemistry. J. Am. Chem. Soc. 1992, 114, 1499–1500. [Google Scholar] [CrossRef]
- McCarrick, M.A.; Wu, Y.D.; Houk, K.N. Hetero-Diels-Alder reaction transition structures: Reactivity, stereoselectivity, catalysis, solvent effects, and the exo-lone-pair effect. J. Org. Chem. 1993, 58, 3330–3343. [Google Scholar] [CrossRef]
- Suarez, D.; Sordo, T.L.; Sordo, J.A. Ab initio study of the Lewis acid-catalyzed Diels-Alder reaction of sulfur dioxide with isoprene: Regioselectivity and stereoselectivity. J. Am. Chem. Soc. 1994, 116, 763–764. [Google Scholar] [CrossRef]
- Suarez, D.; Gonzalez, J.; Sordo, T.L.; Sordo, J.A. Ab Initio Study of the Thermal and Lewis Acid-Catalyzed Hetero Diels-Alder Reactions of 1,3-Butadiene and Isoprene with Sulfur Dioxide. J. Org. Chem. 1994, 59, 8058–8064. [Google Scholar] [CrossRef]
- Apeloig, Y.; Matzner, E. Evidence for the Dominant Role of Secondary Orbital Interactions in Determining the Stereochemistry of the Diels-Alder Reaction: The Case of Cyclopropene. J. Am. Chem. Soc. 1995, 117, 5375–5376. [Google Scholar] [CrossRef]
- Okamoto, I.; Ohwada, T.; Shudo, K. Orbital Unsymmetrization Affects Facial Selectivities of Diels–Alder Dienophiles. J. Org. Chem. 1996, 61, 3155–3166. [Google Scholar] [CrossRef]
- Domingo, L.R.; Picher, M.T.; Andrés, J.; Safont, V.S. Ab Initio Study of Stereo- and Regioselectivity in the Diels–Alder Reaction between 2-Phenylcyclopentadiene and α-(Methylthio)acrylonitrile. J. Org. Chem. 1997, 62, 1775–1778. [Google Scholar] [CrossRef]
- Imade, M.; Hirao, H.; Omoto, K.; Fujimoto, H. Theoretical study of endo selectivity in the Diels–Alder reactions between bu-tadienes and cyclopropane. J. Org. Chem. 1999, 64, 6697–6701. [Google Scholar] [CrossRef]
- García, J.I.; Mayoral, J.A.; Salvatella, L. Do Secondary Orbital Interactions Really Exist? Accounts Chem. Res. 2000, 33, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Calbo-Losada, S.; Suárez, D. Stereochemistry of the furan−maleic anhydride cycloaddition: a theoretical study. J. Am. Chem. Soc. 2000, 122, 390–391. [Google Scholar] [CrossRef]
- Arrieta, A.; Cossío, F.P.; Lecea, B. Direct Evaluation of Secondary Orbital Interactions in the Diels–Alder Reaction between Cyclopentadiene and Maleic Anhydride. J. Org. Chem. 2001, 66, 6178–6180. [Google Scholar] [CrossRef] [PubMed]
- Birney, D.; Lim, T.-K.; Koh, J.H.P.; Pool, B.R.; White, J.M. Structural investigations into the retro-Diels-Alder reaction. Experimental and theoretical studies. J. Am. Chem. Soc. 2002, 124, 5091–5099. [Google Scholar] [CrossRef]
- Kiri, S.; Odo, Y.; Omar, H.I.; Shimo, T.; Somekawa, K. Origin of the Endo/Exo Stereoselectivity and Syn/Anti Face-Selectivity in Diels–Alder Reactions, Determined by Transition State Energy Partitioning. Bull. Chem. Soc. Jpn. 2004, 77, 1499–1504. [Google Scholar] [CrossRef]
- García, J.I.; Mayoral, J.A.; Salvatella, L. The Source of the endo Rule in the Diels–Alder Reaction: Are Secondary Orbital Interactions Really Necessary? Eur. J. Org. Chem. 2004, 2005, 85–90. [Google Scholar] [CrossRef]
- Lubomír, R.; Šebek, P.; Havlas, Z.; Hrabal, R.; Čapek, P.; Svatoš, A.; Svatoš, A. An Experimental and Theoretical Study of Stereoselectivity of Furan−Maleic Anhydride and Furan−Maleimide Diels–Alder Reactions. J. Org. Chem. 2005, 70, 6295–6302. [Google Scholar]
- Meir, R.; Chen, H.; Lai, W.; Shaik, S. Oriented electric fields accelerate diels–alder reactions and control the endo/exo selectivity. Chem. Phys. Chem. 2010, 11, 301–310. [Google Scholar] [CrossRef]
- Fernández, I.; Bickelhaupt, F.M. Origin of the “endo rule” in Diels–Alder reactions. J. Comput. Chem. 2014, 35, 371–376. [Google Scholar] [CrossRef]
- Gayatri, G.; Sastry, G.N. Estimating Regio and Stereoselectivity in [4 + 2] Cycloadditions of Vinyl-Substituted Cyclic Dienes with Maleic Anhydride. J. Phys. Chem. A 2009, 113, 12013–12021. [Google Scholar] [CrossRef] [PubMed]
- Goh, Y.W.; Pool, B.R.; White, J.M. Structural Studies on Cycloadducts of Furan, 2-Methoxyfuran, and 5-Trimethylsilylcyclopentadiene with Maleic Anhydride and N-Methylmaleimide. J. Org. Chem. 2007, 73, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Boutelle, R.C.; Northrop, B.H. Substituent Effects on the Reversibility of Furan–Maleimide Cycloadditions. J. Org. Chem. 2011, 76, 7994–8002. [Google Scholar] [CrossRef]
- Qiu, Y. Substituent effects in the Diels–Alder reactions of butadienes, cyclopentadienes, furans and pyroles with maleic anhydride. J. Phys. Org. Chem. 2015, 28, 370–376. [Google Scholar] [CrossRef]
- Molina-Espíritu, M.; Esquivel, R.O.; Kohout, M.; Angulo, J.C.; Dobado, J.A.; Dehesa, J.S.; Lópezrosa, S.; Soriano-Correa, C. Insight into the informational-structure behavior of the Diels-Alder reaction of cyclopentadiene and maleic anhydride. J. Mol. Model. 2014, 20, 2361. [Google Scholar] [CrossRef]
- Hoffmann, R.; Woodward, R.B. Orbital Symmetries and endo-exo Relationships in Concerted Cycloaddition Reactions. J. Am. Chem. Soc. 1965, 87, 4388–4389. [Google Scholar] [CrossRef]
- Woodward, R.B.; Hoffmann, R. The Conservation of Orbital Symmetry; Verlag Chemie: Weinheim, Germany, 1970. [Google Scholar]
- Wannere, C.S.; Paul, A.; Herges, R.; Houk, K.N.; Schaefer, H.F., III; Schleyer, P.V.R. The existence of secondary orbital interactions. J. Comput. Chem. 2007, 28, 344–361. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, A.; Fujimoto, H. Reexamination of orbital interactions in Diels–Alder reactions. Tetrahedron Lett. 2002, 43, 2055–2057. [Google Scholar] [CrossRef]
- Sakata, K.; Fujimoto, H. Origin of the endo selectivity in the Diels–Alder reaction between cyclopentadiene and maleic anhydride. Eur. J. Org. Chem. 2016, 2016, 4275–4278. [Google Scholar] [CrossRef]
- Sakata, K.; Fujimoto, H. Roles of Lewis Acid Catalysts in Diels-Alder Reactions between Cyclopentadiene and Methyl Acrylate. ChemistryOpen 2020, 9, 662–666. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, B.L.; Guo, Z.; Bernardes, G.J.L. Inverse electron demand Diels–Alder reactions in chemical biology. Chem. Soc. Rev. 2017, 46, 4895–4950. [Google Scholar] [CrossRef] [PubMed]
- Png, Z.M.; Zeng, H.; Ye, Q.; Xu, J. Inverse-Electron-Demand Diels–Alder Reactions: Principles and Applications. Chem. Asian J. 2017, 12, 2142–2159. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, R. Recent Developments in Catalytic Asymmetric Inverse-Electron-Demand Diels–Alder Reaction. Chem. Rev. 2013, 113, 5515–5546. [Google Scholar] [CrossRef]
- Zhang, J.; Shukla, V.; Boger, D.L. Inverse Electron Demand Diels–Alder Reactions of Heterocyclic Azadienes, 1-Aza-1,3-Butadienes, Cyclopropenone Ketals, and Related Systems. A Retrospective. J. Org. Chem. 2019, 84, 9397–9445. [Google Scholar] [CrossRef]
- Boger, D.L.; Corbett, W.L.; Curran, T.T.; Kasper, A.M. Inverse electron-demand Diels-Alder reactions of N-sulfonyl .alpha.,.beta.-unsaturated imines: A general approach to implementation of the 4.pi. participation of 1-aza-1,3-butadienes in Diels-Alder reactions. J. Am. Chem. Soc. 1991, 113, 1713–1729. [Google Scholar] [CrossRef]
- Rooshenas, P.; Hof, K.; Schreiner, P.R.; Williams, C.M. 1,2,4-Triazine vs. 1,3- and 1,4-oxazinones in normal- and inverse-electron-demand hetero-Diels–Alder reactions: Establishing a status quo by computational analysis. Eur. J. Org. Chem. 2011, 2011, 983–992. [Google Scholar] [CrossRef]
- Domingo, L.R.; Pérez, P. A molecular electron density theory study of the higher-order cycloaddition reactions of tropone with electron-rich ethylenes. The role of the Lewis acid catalyst in the mechanism and pseudocyclic selectivity. New J. Chem. 2021, 46, 294–308. [Google Scholar] [CrossRef]
- Domingo, L.R.; Aurell, M.; Pérez, P.; Contreras, R. Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron 2002, 58, 4417–4423. [Google Scholar] [CrossRef]
- Fukui, K. The path of chemical reactions-the IRC approach. Accounts Chem. Res. 1981, 14, 363–368. [Google Scholar] [CrossRef]
- Hratchian, H.P.; Schlegel, H.B. Accurate reaction paths using a Hessian based predictor–corrector integrator. J. Chem. Phys. 2004, 120, 9918–9924. [Google Scholar] [CrossRef]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Sakata, K.; Fujimoto, H. Quantum Chemical Study of Diels–Alder Reactions Catalyzed by Lewis Acid Activated Oxazaborolidines. J. Org. Chem. 2013, 78, 3095–3103. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J. Chem. Phys. 1955, 23, 1833–1840. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies. J. Chem. Phys. 1955, 23, 1841–1846. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. III. Effects of Hybridization on Overlap and Gross AO Populations. J. Chem. Phys. 1955, 23, 2338–2342. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. IV. Bonding and Antibonding in LCAO and Valence-Bond Theories. J. Chem. Phys. 1955, 23, 2343–2346. [Google Scholar] [CrossRef]
- Sakata, K.; Eda, M.; Kitaoka, Y.; Yoshino, T.; Matsunaga, S. Cp*CoIII-catalyzed C–H alkenylation/annulation reactions of indoles with alkynes: A DFT study. J. Org. Chem. 2017, 82, 7379–7387. [Google Scholar] [CrossRef]
- Fukui, K.; Koga, N.; Fujimoto, H. Interaction frontier orbitals. J. Am. Chem. Soc. 1981, 103, 196–197. [Google Scholar] [CrossRef]
- Fujimoto, H. Paired interacting orbitals: A way of looking at chemical interactions. Accounts Chem. Res. 1987, 20, 448–453. [Google Scholar] [CrossRef]
- Su, P.; Li, H. Energy decomposition analysis of covalent bonds and intermolecular interactions. J. Chem. Phys. 2009, 131, 014102. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.; et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14, 1347–1363. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Density Functionals with Broad Applicability in Chemistry. Acc. Chem. Res. 2008, 41, 157–167. [Google Scholar] [CrossRef]
- Riley, K.E.; Op’t Holt, B.T.; Merz, K.M., Jr. Critical Assessment of the Performance of Density Functional Methods for Several Atomic and Molecular Properties. J. Chem. Theory Comput. 2007, 3, 407–433. [Google Scholar] [CrossRef] [PubMed]
- Pieniazek, S.N.; Clemente, F.R.; Houk, K.N. Sources of Error in DFT Computations of C-C Bond Formation Thermochemistries: π→σ Transformations and Error Cancellation by DFT Methods. Angew. Chem. 2008, 120, 7860–7863. [Google Scholar] [CrossRef]
- Plumley, J.A.; Evanseck, J.D. Hybrid Meta-Generalized Gradient Functional Modeling of Boron−Nitrogen Coordinate Covalent Bonds. J. Chem. Theory Comput. 2008, 4, 1249–1253. [Google Scholar] [CrossRef]
- Hehre, W.J.; Radom, L.; Schleyer, P.v.R.; Pople, J.A. Ab Initio Molecular Orbital Theory; Wiley: New York, NY, USA, 1986. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakata, K.; Go, Y.; Yoshikawa, T. Reactivity and Stereoselectivity in the Inverse-Electron-Demand Diels–Alder Reaction of 1-Aza-1,3-Butadiene. Molecules 2025, 30, 3861. https://doi.org/10.3390/molecules30193861
Sakata K, Go Y, Yoshikawa T. Reactivity and Stereoselectivity in the Inverse-Electron-Demand Diels–Alder Reaction of 1-Aza-1,3-Butadiene. Molecules. 2025; 30(19):3861. https://doi.org/10.3390/molecules30193861
Chicago/Turabian StyleSakata, Ken, Yui Go, and Takeshi Yoshikawa. 2025. "Reactivity and Stereoselectivity in the Inverse-Electron-Demand Diels–Alder Reaction of 1-Aza-1,3-Butadiene" Molecules 30, no. 19: 3861. https://doi.org/10.3390/molecules30193861
APA StyleSakata, K., Go, Y., & Yoshikawa, T. (2025). Reactivity and Stereoselectivity in the Inverse-Electron-Demand Diels–Alder Reaction of 1-Aza-1,3-Butadiene. Molecules, 30(19), 3861. https://doi.org/10.3390/molecules30193861