A Thorough Understanding of Methylrhodium(III)–Porphyrin Photophysics: A DFT/TDDFT Study
Abstract
1. Introduction
2. Results
2.1. Geometry of MeRhPor Complex and Rh-CMe Bond Dissociation Energy
2.2. Simulated UV/VIS Spectrum of MeRhPor and Character of Excited Electronic States
2.3. Excited States of RhPor• Complex and Dimerisation of Radical Complex
2.4. PECs as a Function of the Rh-C Bond Length
2.5. Singlet–Triplet Interaction
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DFT | Density Functional Theory |
TDDFT | Time-Dependent Density Functional Theory |
MeRhPor | Methylrhodium(III)–porphyrin complex |
RhPor• | Rhodium(II)–porphyrin radical |
PEC | Potential energy curve |
SOC | Spin–orbit coupling |
SOCC | Spin–orbit coupling coefficient |
IC | Internal conversion |
ISC | Intersystem crossing |
Si | i-th singlet electronic state |
Ti | i-th triplet electronic state |
SQ | S1 and S2 electronic state |
SSoret | S9 and S10 electronic state |
NTOs | Natural transition orbitals |
CASSCF/NEVPT2 | Complete active space self-consistent field method in conjunction with the second order of perturbation theory in the N-Electron Valence State Perturbation Theory version. |
Appendix A
References
- Fleischer, E.B. The Structure of Porphyrins and Metalloporphyrins. Acc. Chem. Res. 1970, 3, 105–112. [Google Scholar] [CrossRef]
- Smith, K.M. Porphyrins and Metalloporphyrins: A New Edition Based on the Original Volume by J. E. Falk, 2nd ed.; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands; Oxford, UK; New York, NY, USA, 1975; pp. 1–910. [Google Scholar]
- Kadish, K.M.; Smith, K.M.; Guilard, R. The Porphyrin Handbook: Synthesis and Organic Chemistry; Academic Press INC: San Diego, CA, USA, 1999; Volume 1, pp. 1–399. [Google Scholar]
- Momenteau, M.; Reed, C.A. Synthetic Heme Dioxygen Complexes. Chem. Rev. 1994, 94, 659–698. [Google Scholar] [CrossRef]
- Kim, H.J.; Khalimonchuk, O.; Smith, P.M.; Winge, D.R. Structure, function, and assembly of heme centers in mitochondrial respiratory complexes. Biochim. Biophys. Acta 2012, 1823, 1604–1616. [Google Scholar] [CrossRef]
- Mukherjee, M. Heme Enzymes: Nature’s Versatile Catalysts. Am. J. Biomed. Sci. Res. 2022, 16, 406–408. [Google Scholar] [CrossRef]
- Gao, F.; Jiaxuan Guo, J.; Yuanyue Shen, Y. Advances from chlorophyll biosynthesis to photosynthetic adaptation, evolution and signaling. Plant Stress 2024, 12, 100470. [Google Scholar] [CrossRef]
- Denisov, I.G.; Makris, T.M.; Sligar, S.G.; Schlichting, I. Structure and Chemistry of Cytochrome P450. Chem. Rev. 2005, 105, 2253–2277. [Google Scholar] [CrossRef]
- Wasielewski, M.R. Photoinduced Electron Transfer in Supramolecular Systems for Artificial Photosynthesis. Chem. Rev. 1992, 92, 435–461. [Google Scholar] [CrossRef]
- Lomova, T.; Tsaplev, Y.; Klyueva, M.; Ovchenkova, E. Recent advances in the practical use of the redox properties of manganese porphyrins. J. Organomet. Chem. 2021, 945, 121880. [Google Scholar] [CrossRef]
- Cojocariu, I.; Carlotto, S.; Zamborlini, G.; Jugovac, M.; Schio, L.; Floreano, L.; Casarin, M.; Feyer, V.; Schneider, C.M. Reversible redox reactions in metal-supported porphyrin: The role of spin and oxidation state. J. Mater. Chem. C 2021, 9, 12559–12565. [Google Scholar] [CrossRef]
- Sheldon, R.A. Metalloporphyrins in Catalytic Oxidations, 1st ed.; CRC Press: Boca Raton, FL, USA, 1994; pp. 1–381. [Google Scholar]
- Kadish, K.M.; Smith, K.M.; Guilard, R. The Porphyrin Handbook: Applications: Past, Present, and Future; Academic Press INC: San Diego, CA, USA, 1999; Volume 6, pp. 1–346. [Google Scholar]
- Bonnett, R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem. Soc. Rev. 1995, 24, 19–33. [Google Scholar] [CrossRef]
- Ogoshi, H.; Mizutani, T. Multifunctional and Chiral Porphyrins: Model Receptors for Chiral Recognition. Acc. Chem. Res. 1998, 31, 81–89. [Google Scholar] [CrossRef]
- Chandra, R.; Tiwari, M.; Kaur, P.; Sharma, M.; Jain, R.; Dass, S. Metalloporphyrins-Application and Clinical Significance. Indian J. Clin. Biochem. 2000, 15, 183–199. [Google Scholar] [CrossRef]
- Suslick, K.S.; Rakow, N.A.; Kosal, M.E.; Chou, J.-H. The materials chemistry of porphyrins and metalloporphyrins. J. Porphyr. Phthalocyanines 2000, 4, 407–413. [Google Scholar] [CrossRef]
- Takagi, S.; Miharu Eguchi, M.; Donald, A.; Tryk, D.A.; Inoue, H. Porphyrin photochemistry in inorganic/organic hybrid materials: Clays, layered semiconductors, nanotubes, and mesoporous materials. J. Photochem. Photobiol. C Photochem. Rev. 2006, 7, 104–126. [Google Scholar] [CrossRef]
- Sekhar, A.R.; Chitose, Y.; Janoš, J.; Dangoor, S.I.; Ramundo, A.; Satchi-Fainaro, R.; Slavíček, P.; Klán, P.; Weinstain, R. Porphyrin as a versatile visible-light-activatable organic/metal hybrid photoremovable protecting group. Nat. Commun. 2022, 13, 3614. [Google Scholar] [CrossRef]
- Ouyang, J.; Li, D.; Zhu, L.; Cai, X.; Liu, L.; Pan, H.; Ma, A. Application and Challenge of Metalloporphyrin Sensitizers in Noninvasive Dynamic Tumor Therapy. Molecules 2024, 29, 4828. [Google Scholar] [CrossRef]
- Imran, M.; Ramzan, M.; Qureshi, A.K.; Khan, M.A.; Tariq, M. Emerging Applications of Porphyrins and Metalloporphyrins in Biomedicine and Diagnostic Magnetic Resonance Imaging. Biosensors 2018, 8, 95. [Google Scholar] [CrossRef]
- Boscencu, R.; Radulea, N.; Manda, G.; Machado, I.F.; Socoteanu, R.P.; Lupuliasa, D.; Burloiu, A.M.; Mihai, D.P.; Ferreira, L.F.V. Porphyrin Macrocycles: General Properties and Theranostic Potential. Molecules 2023, 28, 1149. [Google Scholar] [CrossRef]
- Brothers, P.J.; Collman, J.P. The Organometallic Chemistry of Transition-Metal Porphyrin Complexes. Acc. Chem. Res. 1986, 19, 209–215. [Google Scholar] [CrossRef]
- Wayland, B.B.; Sherry, A.E.; Coffin, V.L. Homogeneous Transition Metal Catalyzed Reactions; American Chemical Society: Washington, DC, USA, 2009; Volume 230, pp. 249–259. [Google Scholar]
- Cui, W.; Wayland, B.B. Hydrocarbon C-H bond activation by rhodium porphyrins. J. Porphyr. Phthalocyanines 2004, 08, 103–110. [Google Scholar] [CrossRef]
- de Bruin, B.; Hetterscheid, D.G.H. Paramagnetic (Alkene)Rh and (Alkene)Ir Complexes: Metal or Ligand Radicals? Eur. J. Inorg. Chem. 2007, 2007, 211–230. [Google Scholar] [CrossRef]
- Thompson, S.J.; Brennan, M.R.; Lee, S.Y.; Dong, G. Synthesis and applications of rhodium porphyrin complexes. Chem. Soc. Rev. 2018, 47, 929–981. [Google Scholar] [CrossRef]
- Campagna, S.; Puntoriero, F.; Nastasi, F.; Bergamini, G.; Balzani, V. Photochemistry and Photophysics of Coordination Compounds: Ruthenium. In Photochemistry and Photophysics of Coordination Compounds I. Topics in Current Chemistry; Balzani, V., Campagna, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 280, pp. 117–214. [Google Scholar]
- Bosch, H.W.; Wayland, B.B. The role of rhodium porphyrins in the photoassisted formation of formaldehyde and methanol from hydrogen and carbon monoxide. Chem. Soc. Chem. Commun. 1986, 12, 900–901. [Google Scholar] [CrossRef]
- Zhou, J.; Gai, L.; Mack, J.; Zhou, Z.; Qiu, H.; Chan, K.S.; Shen, Z. Synthesis and photophysical properties of orthogonal rhodium(III)–carbon bonded porphyrin–aza-BODIPY conjugates. Mater. Chem. C 2016, 4, 8422. [Google Scholar] [CrossRef]
- Yu, M.; Fu, X. Visible Light Promoted Hydroxylation of a Si-C(sp3) Bond Catalyzed by Rhodium Porphyrins in Water. J. Am. Chem. Soc. 2011, 133, 15926–15929. [Google Scholar] [CrossRef]
- Vasil’ev, V.V.; Borisov, S.M.; Golovina, I.V. Luminescence of Water-Soluble Rh(III) Porphyrins. Opt. Spectrosc. 2003, 95, 29–34. [Google Scholar] [CrossRef]
- Li, H.; Boao Han, B.; Wang, R.; Li, W.; Zhang, W.; Fu, X.; Fang, H.; Ma, F.; Wang, Z.; Zhang, J. Photochemical conversion of CO to C1 and C2 products mediated by porphyrin rhodium(II) metallo-radical complexes. Nat. Commun. 2024, 15, 7724. [Google Scholar] [CrossRef]
- Kalyanasundaram, K. Luminescence and triplet—Triplet absorption spectra of rhodium (III) porphyrins. Chem. Phys. Lett. 1984, 104, 357–362. [Google Scholar] [CrossRef]
- Ogoshi, H.; Omura, T.; Yoshida, Z. A New Rhodium(I)-Porphyrin Complex. II. Synthesis and Oxidative Alkylation. J. Am. Chem. Soc. 1973, 95, 1666–1668. [Google Scholar] [CrossRef]
- Hanson, L.K.; Gouterman, M.; Hanson, J.C. Porphyrins. XXIX. The Crystal and Molecular Structure and Luminescence of Bis(dimethylamine)etio(I)porphinatorhodium(III) Chloride Dihydrate. J. Am. Chem. Soc. 1973, 95, 4822–4829. [Google Scholar] [CrossRef]
- Lever, A.B.P.; Ramaswamy, B.S.; Licoccia, S. Sensitized photoreduction of methyl viologen by metalloporphyrins. J. Photochem. 1982, 19, 173–182. [Google Scholar] [CrossRef]
- Hoshino, M.; Nagamori, T.; Seki, H.; Tase, T.; Chihara, T.; Lillis, J.P.; Wakatsuki, Y. Laser Photolysis Studies on Photodissociation of Axial Ligands from Isocyanide Complexes of Cobalt(III) and Rhodium(III) Porphyrins in Toluene Solutions. A Comparison with the Photochemistry of Carbonylrhodium(III) Porphyrin. J. Phys. Chem. A 1999, 103, 3672–3677. [Google Scholar] [CrossRef]
- Hoshino, M.; Yasufuku, K.; Seki, H.; Yamazaki, H. Wavelength-Dependent Photochemlcal Reaction of Methylrhodlum(III) Octaethylporphyrin. Studies on CH3-Rh Bond Cleavage. J. Phys. Chem. 1985, 89, 3080–3085. [Google Scholar] [CrossRef]
- Whang, D.; Kim, K. Structure of a new form of octaethylporphyrinato(methyl)rhodium(III). Acta Crystallogr. Sect. C Struct. Chem. 1991, C47, 2547–2550. [Google Scholar] [CrossRef]
- Wayland, B.B. Rh-Rh, Rh-H, Rh-C and Rh-O bond energies in (OEP)Rh complexes: Thermodynamic criteria for addition of M-H and M-M bonds to C-O and C-C multiple bonds. Polyhedron 1998, 7, 1545–1555. [Google Scholar] [CrossRef]
- Li, G.; Zhang, F.F.; Pi, N.; Chen, H.L.; Zhang, S.Y.; Chan, K.S. Determination of Rh–C Bond Dissociation Energy in Methyl(porphyrinato)rhodium(III) Complexes: A New Application of Photoacoustic Calorimetry. Chem. Lett. 2001, 30, 284–285. [Google Scholar] [CrossRef]
- Fu, X.; Wayland, B.B. Thermodynamics of Rhodium Hydride Reactions with CO, Aldehydes, and Olefins in Water: Organo-Rhodium Porphyrin Bond Dissociation Free Energies. J. Am. Chem. Soc. 2005, 127, 16460–16467. [Google Scholar] [CrossRef]
- Gouterman, M. Optical Spectra and Electronic Structure of Porphyrins and Related Rings. In The Porphyrins; Dolphin, D., Ed.; Academic Press: New York, USA, 1978; Volume III, pp. 1–165. [Google Scholar]
- Antipas, A.; Gouterman, M. Porphyrins. 44. Electronic States of Co, Ni, Rh, and Pd Complexes. J. Am. Chem. Soc. 1983, 105, 4896–4901. [Google Scholar] [CrossRef]
- Kuznetsov, A.E. Stacks of Metalloporphyrins: Comparison of Experimental and Computational Results. J. Phys. Chem. B 2019, 123, 10044–10060. [Google Scholar] [CrossRef]
- Roos, B.O. The Complete Active Space Self-Consistent Field Method and its Applications in Electronic Structure Calculations. In Advances in Chemical Physics: Ab Initio Methods in Quantum Chemistry Part 2; Lawley, K.P., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1987; Volume 69, pp. 399–445. [Google Scholar]
- Angeli, C.; Cimiraglia, R.; Evangelisti, S.; Leininger, T.; Malrieu, J.-P. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 2001, 114, 10252–10264. [Google Scholar] [CrossRef]
- Angeli, C.; Cimiraglia, R.; Malrieu, J.-P. N-electron valence state perturbation theory: A fast implementation of the strongly contracted variant. Chem. Phys. Lett. 2001, 350, 297–305. [Google Scholar] [CrossRef]
- Angeli, C.; Cimiraglia, R.; Malrieu, J.-P. n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants. J. Chem. Phys. 2002, 117, 9138–9153. [Google Scholar] [CrossRef]
- Landau, L.D. Zur Theorie der Energieübertragung. II. Phys. Sov. Union 1932, 2, 46–51. [Google Scholar]
- Zener, C. Non-Adiabatic Crossing of Energy Levels. Proc. R. Soc. Lond. A. 1932, 137, 696–702. [Google Scholar]
- Thallmair, S.; Kowalewski, M.; Zauleck, J.P.P.; Roos, M.K.; de Vivie-Riedle, R. Quantum Dynamics of a Photochemical Bond Cleavage Influenced by the Solvent Environment: A Dynamic Continuum Approach. J. Phys. Chem. Lett. 2014, 5, 3480–3485. [Google Scholar] [CrossRef]
- Thallmair, S.; Zauleck, J.P.P.; de Vivie-Riedle, R. Quantum Dynamics in an Explicit Solvent Environment: A Photochemical Bond Cleavage Treated with a Combined QD/MD Approach. J. Chem. Theory Comput. 2015, 11, 1987–1995. [Google Scholar] [CrossRef]
- Szczepańska, M.; Lodowski, P.; Jaworska, M. Electronic excited states and luminescence properties of palladium(II)corrin complex. J. Photochem. Photobiol. A Chem. 2020, 389, 112226. [Google Scholar] [CrossRef]
- Jaworska, M.; Lodowski, P. Interaction of palladium porphyrin with dioxygen molecule. The perspective from theoretical calculation. In Proceedings of the 6th EuChemS Inorganic Chemistry Conference, Vienna, Austria, 3–7 September 2023. [Google Scholar]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B8713. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Hohenberg, P.C.; Kohn, W.; Sham, L.J. The Beginnings and Some Thoughts on the Future. Adv. Quantum Chem. 1990, 21, 7–26. [Google Scholar]
- Runge, E.; Gross, E.K.U. Density-Functional Theory for Time-Dependent Systems. Phys. Rev. Lett. 1984, 52, 997–1000. [Google Scholar] [CrossRef]
- Casida, M.E. Time-Dependent Density Functional Response Theory for Molecules. In Recent Advances in Density-Functional Methods; Chong, D.P., Ed.; World Scientific: Singapore, 1995; Volume 1, pp. 155–192. [Google Scholar]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Munro, O.Q.; Camp, G.L.; Carlton, L. Structural, 103Rh NMR and DFT Studies of a Bis(phosphane)RhIII–Porphyrin Derivative. Eur. J. Inorg. Chem. 2009, 2009, 2512–2523. [Google Scholar] [CrossRef]
- Steinmetz, M.; Grimme, S. Benchmark Study of the Performance of Density Functional Theory for Bond Activations with (Ni,Pd)-Based Transition-Metal Catalysts. ChemistryOpen 2013, 2, 115–124. [Google Scholar] [CrossRef]
- Maity, B.; Scott, T.R.; Stroscio, G.D.; Gagliardi, L.; Cavallo, L. The Role of Excited States of LNiII/III(Aryl)(Halide) Complexes in Ni–Halide Bond Homolysis in the Arylation of Csp3–H Bonds. ACS Catal. 2022, 12, 13215–13224. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77, 123–141. [Google Scholar] [CrossRef]
- Neese, F. An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix. J. Comp. Chem. 2003, 24, 1740–1747. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem. Phys. 2009, 356, 98–109. [Google Scholar]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Garcia-Rates, M.; Neese, F. Efficient implementation of the analytical second derivatives of hartree-fock and hybrid DFT energies within the framework of the conductor-like polarizable continuum model. J. Comput. Chem. 2019, 40, 1816–1828. [Google Scholar] [CrossRef]
- Garcia-Rates, M.; Neese, F. Effect of the Solute Cavity on the Solvation Energy and Its Derivatives Within the Framework of the Gaussian Charge Scheme. J. Comput. Chem. 2020, 41, 922–939. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Perdew, J.P. Density-functional approximation for the correlation-energy of the inhomogeneous electron-gas. Phys. Rev. B Condens. Matter Mater. Phys. 1986, 33, 8822–8824. [Google Scholar] [CrossRef]
- Tozer, D.J.; Handy, N.C. On the determination of excitation energies using density functional theory. Phys. Chem. Chem. Phys. 2000, 2, 2117–2121. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, Q.; Shiota, Y.; Nakagawa, T.; Kuwabara, K.; Yoshizawa, K.; Adachi, C. Computational Prediction for Singlet- and Triplet-Transition Energies of Charge-Transfer Compounds. J. Chem. Theory Comput. 2013, 9, 3872–3877. [Google Scholar] [CrossRef]
- Jacquemin, D.; Perpète, E.A.; Ciofini, I.; Adamo, C. Assessment of Functionals for TD-DFT Calculations of Singlet−Triplet Transitions. J. Chem. Theory Comput. 2010, 6, 1532–1537. [Google Scholar] [CrossRef]
- Wang, J.; Bai, F.Q.; Xia, B.H.; Zhang, H.X.; Cui, T. Accurate simulation of geometry, singlet-singlet and triplet-singlet excitation of cyclometalated iridium(III) complex. J. Mol. Model. 2014, 20, 2108. [Google Scholar] [CrossRef]
- Bousquet, D.; Fukuda, R.; Jacquemin, D.; Ciofini, I.; Adamo, C.; Ehara, M. Benchmark Study on the Triplet Excited-State Geometries and Phosphorescence Energies of Heterocyclic Compounds: Comparison Between TD-PBE0 and SAC-CI. J. Chem. Theory Comput. 2014, 10, 3969–3979. [Google Scholar] [CrossRef]
- Atkins, A.J.; Talotta, F.; Freitag, L.; Boggio-Pasqua, M.; González, L. Assessing Excited State Energy Gaps with Time-Dependent Density Functional Theory on Ru(II) Complexes. J. Chem. Theory Comput. 2017, 13, 4123–4145. [Google Scholar]
- Grotjahn, R.; Kaupp, M. Validation of Local Hybrid Functionals for Excited States: Structures, Fluorescence, Phosphorescence, and Vibronic Spectra. J. Chem. Theory Comput. 2020, 16, 5821–5834. [Google Scholar] [CrossRef]
- Rangel, T.; Hamed, S.M.; Bruneval, F.; J. Neaton, J.B. An assessment of low-lying excitation energies and triplet instabilities of organic molecules with an ab initio Bethe-Salpeter equation approach and the Tamm-Dancoff approximation. J. Chem. Phys. 2017, 146, 194108. [Google Scholar] [CrossRef]
- Roemelt, M.; Maganas, D.; DeBeer, S.; Neese, F. A combined DFT and restricted open-shell configuration interaction method including spin-orbit coupling: Application to transition metal L-edge X-ray absorption spectroscopy. J. Chem. Phys. 2013, 138, 204101. [Google Scholar] [CrossRef]
- de Souza, B.; Farias, G.; Neese, F.; Izsak, R. Predicting Phosphorescence Rates of Light Organic Molecules Using Time-Dependent Density Functional Theory and the Path Integral Approach to Dynamics. J. Chem. Theory Comput. 2019, 15, 1896. [Google Scholar] [CrossRef]
- ORCA Manual, Version 6.0; Max-Planck-Institut für Kohlenforschung: Mülheim a. d. Ruhr, Germany. 2025; Available online: https://www.faccts.de/docs/orca/6.0/manual/ (accessed on 1 August 2025).
- Rolfes, J.D.; Neese, F.; Pantazis, D.A. All-electron scalar relativistic basis sets for the elements Rb–Xe. J. Comput. Chem. 2010, 41, 1842–1849. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. WIRES Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, L224108. [Google Scholar] [CrossRef] [PubMed]
- Neese, F. Software update: The ORCA program system, version 5.0. WIRES Comput. Mol. Sci. 2022, 12, 1606. [Google Scholar] [CrossRef]
- Neese, F. The SHARK Integral Generation and Digestion System. J. Comput. Chem. 2023, 44, 381–396. [Google Scholar] [CrossRef]
- Wayland, B.B.; Ba, S.; Sherry, A.E. Activation of Methane and Toluene by Rhodium(II) Porphyrin Complexes. J. Am. Chem. Soc. 1991, 113, 5305–5311. [Google Scholar] [CrossRef]
- Wayland, B.B.; Coffin, V.L.; Farnos, M.D. Estimation of the Rh-Rh bond dissociation energy in the (octaethylporphyrina-to)rhodium(II) dimer by proton NMR line broadening. Inorg. Chem. 1988, 27, 2745–2747. [Google Scholar] [CrossRef]
MeRhPor | RhPor• | |||||||
S0 | S1 | T1 | Exp. (a) | S0 | S1 | S3 | S4 | |
Bond length [Å] | ||||||||
Rh-CMe | 2.002 | 2.003 | 2.000 | 1.974 | ||||
Rh-N21 | 2.023 | 2.032 | 2.041 | 2.022 | 2.029 | 2.031 | 2.026 | 2.017 |
Rh-N22 | 2.023 | 2.030 | 2.041 | 2.033 | 2.028 | 2.005 | 2.026 | 2.017 |
Rh-N23 | 2.022 | 2.032 | 2.040 | 2.012 | 2.029 | 2.031 | 2.026 | 2.017 |
Rh-N24 | 2.023 | 2.030 | 2.042 | 2.044 | 2.028 | 2.005 | 2.026 | 2.017 |
Valence angle [°] | ||||||||
N21-Rh-N23 | 177.3 | 177.3 | 178.2 | 178.8 | 180.0 | 180.0 | 180.0 | 180.0 |
N22-Rh-N24 | 177.2 | 177.2 | 178.2 | 178.5 | 180.0 | 180.0 | 180.0 | 180.0 |
Dihedral angle [°] | ||||||||
N21-N22-N23-N24 | 0.0 | 0.1 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 |
N21-N22-N23-Rh | −1.9 | −1.9 | −1.3 | −0.9 | 0.0 | 0.0 | 0.0 | 0.0 |
[kcal/mol] | ||||||||
With dispersion correction | ||||||||
ΔEDE | ΔEBDE (b) | ΔGBDFE | ΔEDE | ΔEBDE (b) | ΔGBDFE | |||
PBE0 | 49.9 | 45.8 | 35.2 | 54.7 | 50.5 | 39.9 | ||
B3LYP | 46.7 | 42.6 | 32.1 | 54.5 | 50.3 | 39.8 | ||
BP86 | 55.9 | 52.3 | 40.2 | 63.8 | 60.2 | 48.1 | ||
PBE | 59.0 | 54.5 | 44.1 | 63.8 | 59.2 | 48.6 | ||
Exp. | 58.0 (c) | 54.3 (d) | 41.0, 49.0 (e) |
E (eV) | λ (nm) | f | % | Character | Experimental (a) | |||
S1 | 2.68 | 463 | 0.0188 | 41 | 93 → 94 | H → L | π1 → πx* | 543 nm (2.28 eV) |
33 | 92 → 95 | H-1 → L+1 | π2 → πy* | |||||
14 | 93 → 95 | H → L+1 | π1 → πy* | |||||
11 | 92 → 94 | H-1 → L | π2 → πx* | |||||
S2 | 2.68 | 463 | 0.0188 | 41 | 93 → 95 | H → L+1 | π1 → πy* | |
33 | 92 → 94 | H-1 → L | π2 → πx* | |||||
14 | 93 → 94 | H → L | π1 → πx* | |||||
11 | 92 → 95 | H-1 → L+1 | π2 → πy* | |||||
S3 | 2.83 | 438 | 0.0001 | 46 | 91 → 95 | H-2 → L+1 | π/dxz → πy* | |
44 | 90 → 94 | H-3 → L | π/dyz → πx* | |||||
S4 | 2.90 | 427 | 0.0000 | 46 | 90 → 95 | H-3 → L+1 | π/dyz → πy* | |
46 | 91 → 94 | H-2 → L | π/dxz → πx* | |||||
S5 | 2.96 | 419 | 0.0000 | 47 | 90 → 94 | H-3 → L | π/dyz → πx* | |
46 | 91 → 95 | H-2 → L+1 | π/dxz → πy* | |||||
S6 | 3.33 | 373 | 0.0053 | 42 | 90 → 95 | H-3 → L+1 | π/dyz → πy* | |
42 | 91 → 94 | H-2 → L | π/dxz → πx* | |||||
S7 | 3.40 | 365 | 0.0950 | 74 | 91 → 96 | H-2 → L+2 | π/dxz → σ* | |
S8 | 3.40 | 365 | 0.0967 | 74 | 90 → 96 | H-3 → L+2 | π/dyz → σ* | |
S9 | 3.75 | 330 | 1.5943 | 37 | 92 → 94 | H-1 → L | π2 → πx* | 395 nm (3.14 eV) |
32 | 93 → 95 | H → L+1 | π1 → πy* | |||||
S10 | 3.75 | 330 | 1.6204 | 38 | 92 → 95 | H-1 → L+1 | π2 → πy* | |
32 | 93 → 94 | H → L | π1 → πx* | |||||
S11 | 3.79 | 327 | 0.0108 | 92 | 89 → 95 | H-4 → L+1 | dx2-y2 → πy* | |
S12 | 3.79 | 327 | 0.0403 | 90 | 89 → 94 | H-4 → L | dx2-y2 → πx* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lodowski, P.; Jaworska, M. A Thorough Understanding of Methylrhodium(III)–Porphyrin Photophysics: A DFT/TDDFT Study. Molecules 2025, 30, 3855. https://doi.org/10.3390/molecules30193855
Lodowski P, Jaworska M. A Thorough Understanding of Methylrhodium(III)–Porphyrin Photophysics: A DFT/TDDFT Study. Molecules. 2025; 30(19):3855. https://doi.org/10.3390/molecules30193855
Chicago/Turabian StyleLodowski, Piotr, and Maria Jaworska. 2025. "A Thorough Understanding of Methylrhodium(III)–Porphyrin Photophysics: A DFT/TDDFT Study" Molecules 30, no. 19: 3855. https://doi.org/10.3390/molecules30193855
APA StyleLodowski, P., & Jaworska, M. (2025). A Thorough Understanding of Methylrhodium(III)–Porphyrin Photophysics: A DFT/TDDFT Study. Molecules, 30(19), 3855. https://doi.org/10.3390/molecules30193855