Comprehensive Speciation and Computational Study of Cu2+ and Zn2+ Complexation with O-Phosphorylethanolamine and O-Phosphorylcholine in Aqueous Solution
Abstract
1. Introduction
2. Results and Discussion
2.1. Interaction of PEA and PPC with Cu2+
2.2. Interaction of PEA and PPC with Zn2+
2.3. 1H NMR Spectroscopy
2.4. Dependence of Formation Constant Values on Ionic Strength and Temperature
2.5. Sequestering Ability
2.6. Quantum-Mechanical Calculations
2.7. Simulation Under Relevant Wilson’s Disease Conditions
3. Materials and Methods
3.1. Materials
3.2. Potentiometric Equipment and Procedure
3.3. 1H NMR Equipment and Procedure
3.4. Post-Processing Calculations
3.5. Quantum-Mechanical Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CPCM | Conductive Polarizable Continuum Model |
CREST | Conformer–Rotamer Ensemble Sampling Tool |
CSF | Cerebrospinal fluid |
DFT | Density Functional Theory |
PEA | O-phosphorylethanolamine |
PESs | Potential Energy Surfaces |
PPC | O-phosphorylcholine |
TMS | Tetramethylsilane |
ZPE | Zero-Point Energy |
NDs | Neurodegenerative Diseases |
AD | Alzheimer’s Disease |
WD | Wilson’s Disease |
MD | Menkes Disease |
PEN | Penicillamine |
References
- Takeda, H.; Takahashi, M.; Hara, T.; Izumi, Y.; Bamba, T. Improved quantitation of lipid classes using supercritical fluid chromatography with a charged aerosol detector. J. Lipid Res. 2019, 60, 1465–1474. [Google Scholar] [CrossRef]
- Cardoso, R.M.S.; Lairion, F.; Disalvo, E.A.; Loura, L.M.S.; Moreno, M.J. Dipole Potential of Monolayers with Biologically Relevant Lipid Compositions. Molecules 2024, 29, 5843. [Google Scholar] [CrossRef]
- Holdaway, C.M.; Leonard, K.A.; Nelson, R.; van der Veen, J.; Das, C.; Watts, R.; Clugston, R.D.; Lehner, R.; Jacobs, R.L. Alterations in phosphatidylethanolamine metabolism impacts hepatocellular lipid storage, energy homeostasis, and proliferation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2025, 1870, 159608. [Google Scholar] [CrossRef] [PubMed]
- Aiello, D.; Cordaro, M.; Napoli, A.; Foti, C.; Giuffrè, O. Speciation Study on O-Phosphorylethanolamine and O-Phosphorylcholine: Acid-Base Behavior and Mg2+ Interaction. Front. Chem. 2022, 10, 864648. [Google Scholar] [CrossRef] [PubMed]
- Nuschy, L.; Sarkar, B.; Zamyatina, A.; Wilson, I.B.H. Substrate flexibility of Mycoplasma fermentans mf1 phosphorylcholine transferase. Glycoconj. J. 2025, 42, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Labrada, K.P.; Strobl, S.; Eckmair, B.; Blaukopf, M.; Dutkiewicz, Z.; Hykollari, A.; Malzl, D.; Paschinger, K.; Yan, S.; Wilson, I.B.H.; et al. Zwitterionic Phosphodiester-Substituted Neoglycoconjugates as Ligands for Antibodies and Acute Phase Proteins. ACS Chem. Biol. 2020, 15, 369–377. [Google Scholar] [CrossRef]
- Zhang, Y.; Jen, F.E.C.; Fox, K.L.; Edwards, J.L.; Jennings, M.P. The biosynthesis and role of phosphorylcholine in pathogenic and nonpathogenic bacteria. Trends Microbiol. 2023, 31, 692–706. [Google Scholar] [CrossRef]
- Chung, Y.-C.; Chen, I.H.; Chen, C.-J. The surface modification of silver nanoparticles by phosphoryl disulfides for improved biocompatibility and intracellular uptake. Biomaterials 2008, 29, 1807–1816. [Google Scholar] [CrossRef]
- Hui, S.C.N.; Zöllner, H.J.; Oeltzschner, G.; Edden, R.A.E.; Saleh, M.G. In vivo spectral editing of phosphorylethanolamine. Magn. Reson. Med. 2022, 87, 50–56. [Google Scholar] [CrossRef]
- Cuellar, J.; Parada-Díaz, L.; Garza, J.; Mejía, S.M. A Theoretical Analysis of Interaction Energies and Intermolecular Interactions between Amphotericin B and Potential Bioconjugates Used in the Modification of Nanocarriers for Drug Delivery. Molecules 2023, 28, 2674. [Google Scholar] [CrossRef]
- Zheng, D.; Lu, Z.G.; Li, J.; Dong, J.; Zhang, X.; Zhang, X.; Cao, D. Unveiling the Interaction Mechanism of siRNA with Lipid Bilayers of Different Types for siRNA-Based Therapy. J. Phys. Chem. B 2025, 129, 2872–2881. [Google Scholar] [CrossRef] [PubMed]
- Karabaliev, M.; Paarvanova, B.; Savova, G.; Tacheva, B.; Jahn, S.; Georgieva, R. Electrochemical Investigation of the Stability of Poly-Phosphocholinated Liposomes. Molecules 2024, 29, 3511. [Google Scholar] [CrossRef]
- Yoshizaki, Y.; Konno, T. Cellular Internalization and Exiting Behavior of Zwitterionic 4-Armed Star-Shaped Polymers. Molecules 2023, 28, 4479. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wilfahrt, D.; Jonker, P.; Lontos, K.; Cai, C.; Cameron, B.; Xie, B.; Peralta, R.; Schoedel, E.; Gunn, W.; et al. Tumour interstitial fluid-enriched phosphoethanolamine suppresses T cell function. Nat. Cell Biol. 2025, 27, 835–846. [Google Scholar] [CrossRef]
- Abate, C.; Aiello, D.; Cordaro, M.; Giuffrè, O.; Napoli, A.; Foti, C. Binding ability of l-carnosine towards Cu2+, Mn2+ and Zn2+ in aqueous solution. J. Mol. Liq. 2022, 368, 120772. [Google Scholar] [CrossRef]
- Tyczyńska, M.; Gędek, M.; Brachet, A.; Stręk, W.; Flieger, J.; Teresiński, G.; Baj, J. Trace Elements in Alzheimer’s Disease and Dementia: The Current State of Knowledge. J. Clin. Med. 2024, 13, 2381. [Google Scholar] [CrossRef]
- Chen, L.; Shen, Q.; Liu, Y.; Zhang, Y.; Sun, L.; Ma, X.; Song, N.; Xie, J. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct. Target. Ther. 2025, 10, 31. [Google Scholar] [CrossRef]
- Gromadzka, G.; Tarnacka, B.; Flaga, A.; Adamczyk, A. Copper Dyshomeostasis in Neurodegenerative Diseases—Therapeutic Implications. Int. J. Mol. Sci. 2020, 21, 9259. [Google Scholar] [CrossRef]
- Zhang, H.-L.; Wang, X.-C.; Liu, R. Zinc in Regulating Protein Kinases and Phosphatases in Neurodegenerative Diseases. Biomolecules 2022, 12, 785. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, H.; Zheng, W.; Xu, H. Current understanding of the interactions between metal ions and Apolipoprotein E in Alzheimer’s disease. Neurobiol. Dis. 2022, 172, 105824. [Google Scholar] [CrossRef]
- Esmieu, C.; Hostachy, S.; Hureau, C. Cu(I) chelators: Useful tools to reveal and control Cu(I) homeostasis and toxicity. Coord. Chem. Rev. 2025, 539, 216684. [Google Scholar] [CrossRef]
- Di Natale, G.; Sabatino, G.; Sciacca, M.F.M.; Tosto, R.; Milardi, D.; Pappalardo, G. Aβ and Tau Interact with Metal Ions, Lipid Membranes and Peptide-Based Amyloid Inhibitors: Are These Common Features Relevant in Alzheimer’s Disease? Molecules 2022, 27, 5066. [Google Scholar] [CrossRef]
- Banik, S.P.; Bagchi, D.; Banerjee, P.; Chakraborty, S.; Bagchi, M.; Bose, C.; De, D.; Saha, S.; Chakraborty, S. Subtle concentration changes in zinc hold the key to fibrillation of α-synuclein: An updated insight on the micronutrient’s role in prevention of neurodegenerative disorders. Front. Mol. Biosci. 2025, 12, 1603364. [Google Scholar] [CrossRef]
- Rulmont, C.; Stigliani, J.-L.; Hureau, C.; Esmieu, C. Rationally Designed Cu(I) Ligand to Prevent CuAβ-Generated ROS Production in the Alzheimer’s Disease Context. Inorg. Chem. 2024, 63, 2340–2351. [Google Scholar] [CrossRef] [PubMed]
- Okafor, M.; Gonzalez, P.; Ronot, P.; El Masoudi, I.; Boos, A.; Ory, S.; Chasserot-Golaz, S.; Gasman, S.; Raibaut, L.; Hureau, C.; et al. Development of Cu(ii)-specific peptide shuttles capable of preventing Cu–amyloid beta toxicity and importing bioavailable Cu into cells. Chem. Sci. 2022, 13, 11829–11840. [Google Scholar] [CrossRef]
- Fijałkowski, P.; Pomastowski, P.; van Eldik, R.; Rafińska, K. Multifunctional role of Lactoferrin in metal ion interactions and biomedical applications: A review. Int. J. Biol. Macromol. 2025, 321, 146531. [Google Scholar] [CrossRef]
- Shen, X.; Sheng, H.; Zhang, Y.; Dong, X.; Kou, L.; Yao, Q.; Zhao, X. Nanomedicine-based disulfiram and metal ion co-delivery strategies for cancer treatment. Int. J. Pharm. X 2024, 7, 100248. [Google Scholar] [CrossRef]
- Maiti, B.K.; Moura, J.J.G. Diverse biological roles of the tetrathiomolybdate anion. Coord. Chem. Rev. 2021, 429, 213635. [Google Scholar] [CrossRef]
- Šegota, S.; Vojta, D.; Pletikapić, G.; Baranović, G. Ionic strength and composition govern the elasticity of biological membranes. A study of model DMPC bilayers by force- and transmission IR spectroscopy. Chem. Phys. Lipids 2015, 186, 17–29. [Google Scholar] [CrossRef]
- Indelicato, S.; Bongiorno, D.; Calabrese, V.; Perricone, U.; Almerico, A.M.; Ceraulo, L.; Piazzese, D.; Tutone, M. Micelles, Rods, Liposomes, and Other Supramolecular Surfactant Aggregates: Computational Approaches. Interdiscip. Sci. Comput. Life Sci. 2017, 9, 392–405. [Google Scholar] [CrossRef] [PubMed]
- Filella, M.; May, P.M. Reflections on the calculation and publication of potentiometrically-determined formation constants. Talanta 2005, 65, 1221–1225. [Google Scholar] [CrossRef]
- Carnamucio, F.; Foti, C.; Micale, N.; Van Pelt, N.; Matheeussen, A.; Caljon, G.; Giuffrè, O. Metronidazole Interaction with Cu2+ and Zn2+: Speciation Study in Aqueous Solution and Biological Activity Evaluation. ACS Omega 2024, 9, 29000–29008. [Google Scholar] [CrossRef]
- Foti, C.; Giuffrè, O. Interaction of Ampicillin and Amoxicillin with Mn2+: A Speciation Study in Aqueous Solution. Molecules 2020, 25, 3110. [Google Scholar] [CrossRef]
- Mazur, T.; Malik, M.; Bieńko, D.C. The impact of chelating compounds on Cu2+, Fe2+/3+, and Zn2+ ions in Alzheimer’s disease treatment. J. Inorg. Biochem. 2024, 257, 112601. [Google Scholar] [CrossRef]
- De Stefano, C.; Gianguzza, A.; Pettignano, A.; Piazzese, D.; Sammartano, S. Uranium(VI) sequestration by polyacrylic and fulvic acids in aqueous solution. J. Radioanal. Nucl. Chem. 2011, 289, 689–697. [Google Scholar] [CrossRef]
- de Almeida, K.J.; Rinkevicius, Z.; Hugosson, H.W.; Ferreira, A.C.; Ågren, H. Modeling of EPR parameters of copper(II) aqua complexes. Chem. Phys. 2007, 332, 176–187. [Google Scholar] [CrossRef]
- Pavelka, M.; Burda, J.V. Theoretical description of copper Cu(I)/Cu(II) complexes in mixed ammine-aqua environment. DFT and ab initio quantum chemical study. Chem. Phys. 2005, 312, 193–204. [Google Scholar] [CrossRef]
- Nazmutdinov, R.R.; Schmickler, W.; Kuznetsov, A.M. Microscopic modelling of the reduction of a Zn(II) aqua-complex on metal electrodes. Chem. Phys. 2005, 310, 257–268. [Google Scholar] [CrossRef]
- Carnamucio, F.; Foti, C.; Cordaro, M.; Saija, F.; Cassone, G.; da Rocha, S.R.P.; Giuffrè, O. Metal Complexation for the Rational Design of Gemcitabine Formulations in Cancer Therapy. ACS Appl. Mater. Interfaces 2024, 16, 56789–56800. [Google Scholar] [CrossRef]
- Abate, C.; Giuffrè, O.; Amadeo, A.; Saija, F.; Cassone, G.; Foti, C. Experimental and computational study on morin and its complexes with Mg2+, Mn2+, Zn2+, and Al3+: Coordination and antioxidant properties. J. Inorg. Biochem. 2024, 258, 112635. [Google Scholar] [CrossRef] [PubMed]
- Giacobello, F.; Mollica-Nardo, V.; Foti, C.; Ponterio, R.C.; Saija, F.; Trusso, S.; Sponer, J.; Cassone, G.; Giuffrè, O. Hydrolysis of Al3+ in Aqueous Solutions: Experiments and Ab Initio Simulations. Liquids 2022, 2, 26–38. [Google Scholar] [CrossRef]
- Bussi, G.; Laio, A. Using metadynamics to explore complex free-energy landscapes. Nat. Rev. Phys. 2020, 2, 200–212. [Google Scholar] [CrossRef]
- Feng, H.; Fu, Q.; Du, W.; Zhu, R.; Ge, X.; Wang, C.; Li, Q.; Su, L.; Yang, H.; Song, J. Quantitative Assessment of Copper(II) in Wilson’s Disease Based on Photoacoustic Imaging and Ratiometric Surface-Enhanced Raman Scattering. ACS Nano 2021, 15, 3402–3414. [Google Scholar] [CrossRef]
- Gromadzka, G.; Grycan, M.; Przybyłkowski, A.M. Monitoring of Copper in Wilson Disease. Diagnostics 2023, 13, 1830. [Google Scholar] [CrossRef]
- Artru, A. Cerebrospinal fluid. In Cottrell’s Neuroanesthesia; Cottrell, J.E., Young, W.L., Eds.; Mosby: San Francisco, CA, USA, 2010; Chapter 3; pp. 60–74. [Google Scholar]
- Barrett, H.B.K.; Boitano, S.; Barman, S. Ganongs Review of Medical Physiology; McGraw-Hill Education ed.: New York, NY, USA, 2013. [Google Scholar]
- Gupta, V.K.; Ali, I. Determination of stability constants of Fe(II), Co(II) and Cu(II)–nitrilotriacetate–penicillamine mixed complexes by electrophoresis. Talanta 1998, 46, 197–201. [Google Scholar] [CrossRef]
- Aronson, J.K. Meyler’s Side Effects of Drugs: The International Encyclopedia of Adverse Drug Reactions and Interactions; Elsevier: Amsterdam, The Netherlands, 2006; pp. 2729–2756. [Google Scholar]
- De Stefano, C.; Sammartano, S.; Mineo, P.; Rigano, C. Marine Chemistry—An Environmental Analytical Chemistry Approach; Gianguzza, A., Pelizzetti, E., Sammartano, S., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1997; pp. 71–83. [Google Scholar]
- Frassineti, C.; Alderighi, L.; Gans, P.; Sabatini, A.; Vacca, A.; Ghelli, S. Determination of protonation constants of some fluorinated polyamines by means of 13C NMR data processed by the new computer program HypNMR2000. Protonation sequence in polyamines. Anal. Bioanal. Chem. 2003, 376, 1041–1052. [Google Scholar]
- Alderighi, L.; Gans, P.; Ienco, A.; Peters, D.; Sabatini, A.; Vacca, A. Hyperquad simulation and speciation (HySS): A utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 1999, 184, 311–318. [Google Scholar] [CrossRef]
- Pracht, P.; Grimme, S.; Bannwarth, C.; Bohle, F.; Ehlert, S.; Feldmann, G.; Gorges, J.; Müller, M.; Neudecker, T.; Plett, C.; et al. CREST—A program for the exploration of low-energy molecular chemical space. J. Chem. Phys. 2024, 160, 114110. [Google Scholar] [CrossRef]
- Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Cramer, C.J.; Truhlar, D.G. Density functional theory for transition metals and transition metal chemistry. Phys. Chem. Chem. Phys. 2009, 11, 10757–10816. [Google Scholar] [CrossRef] [PubMed]
- Perrella, F.; Langellotti, V.; Buttarazzi, E.; Cucciolito, M.E.; Melchiorre, M.; Pinto, G.; Prokopenko, V.; Rega, N.; Ruffo, F.; Petrone, A.; et al. Unveiling Stereo-Electronic Effects in Homogeneous Catalysis Integrating Theory and Experiments: The Potential of Dimeric Iron(III) Salen Complexes in Methyl Levulinate Transesterification. ChemCatChem 2024, 16, e202300945. [Google Scholar] [CrossRef]
- Bühl, M.; Kabrede, H. Geometries of Transition-Metal Complexes from Density-Functional Theory. J. Chem. Theory Comput. 2006, 2, 1282–1290. [Google Scholar] [CrossRef]
- David, G.; Wennmohs, F.; Neese, F.; Ferré, N. Chemical Tuning of Magnetic Exchange Couplings Using Broken-Symmetry Density Functional Theory. Inorg. Chem. 2018, 57, 12769–12776. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Cassone, G. Nuclear Quantum Effects Largely Influence Molecular Dissociation and Proton Transfer in Liquid Water under an Electric Field. J. Phys. Chem. Lett. 2020, 11, 8983–8988. [Google Scholar] [CrossRef]
- Dasgupta, S.; Cassone, G.; Paesani, F. Nuclear Quantum Effects and the Grotthuss Mechanism Dictate the pH of Liquid Water. J. Phys. Chem. Lett. 2025, 16, 2996–3003. [Google Scholar] [CrossRef] [PubMed]
- Giuffrè, O.; Aiello, D.; Chillè, D.; Napoli, A.; Foti, C. Binding ability of arsenate towards Cu2+ and Zn2+: Thermodynamic behavior and simulation under natural water conditions. Environ. Sci. Process. Impacts 2020, 22, 1731. [Google Scholar] [CrossRef] [PubMed]
- Crea, F.; Falcone, G.; Foti, C.; Giuffrè, O.; Materazzi, S. Thermodynamic data for Pb2+ and Zn2+ sequestration by biologically important S-donor ligands, at different temperatures and ionic strengths. New J. Chem. 2014, 38, 3973. [Google Scholar] [CrossRef]
- Crea, F.; De Stefano, C.; Milea, D.; Pettignano, A.; Sammartano, S. SALMO and S3M: A Saliva Model and a Single Saliva Salt Model for Equilibrium Studies. Bioinorg. Chem. Appl. 2015, 2015, 267985. [Google Scholar] [CrossRef] [PubMed]
- Aiello, D.; Carnamucio, F.; Cordaro, M.; Foti, C.; Napoli, A.; Giuffrè, O. Ca2+ Complexation With Relevant Bioligands in Aqueous Solution: A Speciation Study With Implications for Biological Fluids. Front. Chem. 2021, 9, 640219. [Google Scholar] [CrossRef] [PubMed]
logβ a | ||||||
---|---|---|---|---|---|---|
Complex | L | t = 15 °C | t = 25 °C | t = 37 °C | ||
I = 0.15 b | I = 0.15 b | I = 0.49 b | I = 0.97 b | I = 0.15 b | ||
ML0 | PEA | 6.50(6) c | 5.63(7) c | 6.01(4) c | 6.58(7) c | 6.31(9) c |
M2L(OH)20 | −3.80(9) | −4.55(6) | −3.92(3) | −2.96(5) | −3.35(10) | |
ML+ | PPC | 2.17(5) | 2.05(3) | 1.57(9) | 2.16(9) | 2.39(9) |
M2L(OH)2+ | −7.90(2) | −6.83(2) | −6.14(4) | −5.60(2) | −7.18(9) | |
logK d | ||||||
ML0 | PEA | 6.50 | 5.63 | 6.01 | 6.58 | 6.31 |
M2L(OH)20 | 7.33 | 6.17 | 6.83 | 7.81 | 6.99 | |
ML+ | PPC | 2.17 | 2.05 | 1.57 | 2.16 | 2.39 |
M2L(OH)2+ | 3.23 | 3.89 | 4.65 | 5.17 | 3.16 |
logβ a | ||||||
---|---|---|---|---|---|---|
Complex | L | t = 15 °C | t = 25 °C | t = 37 °C | ||
I = 0.15 b | I = 0.15 b | I = 0.48 b | I = 0.97 b | I = 0.15 b | ||
MLH+ | PEA | 12.82(8) c | 12.32(5) c | 12.24(4) c | 12.39(7) c | 12.68(5) c |
ML0 | 5.32(5) | 4.29(5) | 4.46(8) | 4.10(9) | 4.90(5) | |
MLOH− | −2.48(3) | −2.37(2) | −2.79(2) | −2.91(3) | −2.09(4) | |
ML(OH)22− | −13.47(9) | −12.55(3) | −13.10(3) | −13.67(7) | −12.17(5) | |
ML+ | PPC | 2.65(8) | 2.41(4) | 2.01(6) | 1.62(9) | 2.51(4) |
ML(OH)2− | −13.28(6) | −12.68(2) | −12.94(2) | −13.42(3) | −12.23(2) | |
logK d | ||||||
MLH+ | PEA | 2.44 | 2.18 | 2.17 | 2.30 | 2.84 |
ML0 | 5.32 | 4.29 | 4.46 | 4.10 | 4.90 | |
MLOH− | 8.02 | 6.78 | 6.28 | 5.97 | 6.29 | |
ML(OH)22− | 3.79 | 4.55 | 3.96 | 3.25 | 4.93 | |
ML+ | PPC | 2.65 | 2.41 | 2.01 | 1.62 | 2.51 |
ML(OH)2− | 3.82 | 4.42 | 4.12 | 3.50 | 4.87 |
L | Complex | logβ a | |
---|---|---|---|
1H-NMR | Potentiometry | ||
PEA | MLH+ | 12.1(2) b | 12.32 |
ML0 | 4.29 | 4.29 | |
MLOH− | −2.37 | −2.37 | |
ML(OH)22− | −12.55 | −12.55 | |
PPC | ML+ | 2.4(4) | 2.41 |
ML(OH)2− | −12.68 | −12.68 |
M | L | Complex a | ΔG b | ΔH b | TΔS b | z* | logβ0 a | C |
---|---|---|---|---|---|---|---|---|
Cu2+ | PEA | ML0 | −32.1 | 58(8) c | 90 | 8 | 6.38(11) c | 1.92(16) c |
M2L(OH)20 | 26.0 | 29(13) | 3 | 10 | −3.69(12) | 2.89(18) | ||
Cu2+ | PPC | ML+ | −11.7 | 14(8) | 26 | 4 | 2.81(19) | 0.9(4) |
M2L(OH)2+ | 38.8 | 59(8) | 20 | 6 | −5.84(17) | 2.4(4) | ||
Zn2+ | PEA | MLH+ | −70.3 | −4(5) | 66 | 8 | 13.24(8) | 0.72(12) |
ML0 | −24.5 | −27(12) | −3 | 8 | 5.36(12) | 0.49(25) | ||
ML(OH)− | 13.5 | 32(9) | 9 | 6 | −1.67(4) | −0.04(7) | ||
ML(OH)22− | 71.6 | 95(13) | 24 | 2 | −12.15(8) | −1.18(9) | ||
Zn2+ | PPC | ML+ | −13.8 | −13(12) | 1 | 4 | 3.45(2) | −0.19(4) |
ML(OH)2−1 | 72.4 | 82(9) | 10 | 2 | −12.31(2) | −0.68(3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carnamucio, F.; Abate, C.; Cordaro, M.; Foti, C.; Donato, S.; Saija, F.; Cassone, G.; Giuffrè, O. Comprehensive Speciation and Computational Study of Cu2+ and Zn2+ Complexation with O-Phosphorylethanolamine and O-Phosphorylcholine in Aqueous Solution. Molecules 2025, 30, 3923. https://doi.org/10.3390/molecules30193923
Carnamucio F, Abate C, Cordaro M, Foti C, Donato S, Saija F, Cassone G, Giuffrè O. Comprehensive Speciation and Computational Study of Cu2+ and Zn2+ Complexation with O-Phosphorylethanolamine and O-Phosphorylcholine in Aqueous Solution. Molecules. 2025; 30(19):3923. https://doi.org/10.3390/molecules30193923
Chicago/Turabian StyleCarnamucio, Federica, Chiara Abate, Massimiliano Cordaro, Claudia Foti, Salvatore Donato, Franz Saija, Giuseppe Cassone, and Ottavia Giuffrè. 2025. "Comprehensive Speciation and Computational Study of Cu2+ and Zn2+ Complexation with O-Phosphorylethanolamine and O-Phosphorylcholine in Aqueous Solution" Molecules 30, no. 19: 3923. https://doi.org/10.3390/molecules30193923
APA StyleCarnamucio, F., Abate, C., Cordaro, M., Foti, C., Donato, S., Saija, F., Cassone, G., & Giuffrè, O. (2025). Comprehensive Speciation and Computational Study of Cu2+ and Zn2+ Complexation with O-Phosphorylethanolamine and O-Phosphorylcholine in Aqueous Solution. Molecules, 30(19), 3923. https://doi.org/10.3390/molecules30193923