Electric Field Modulation and Ultrafast Photogenerated Electron-Hole Dynamics in MoSe2/WSe2 van der Waals Heterostructures
Abstract
1. Introduction
2. Results and Discussion
2.1. Electronic Structures and Stability
2.2. Effect of External Electric Field
2.3. Optical Absorption
2.4. Photoexcited Carrier Dynamics
3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhong, J.; Yu, J.; Cao, L.; Zeng, C.; Ding, J.; Cong, C.; Liu, Z.; Liu, Y. High-Performance Polarization-Sensitive Photodetector Based on a Few-Layered PdSe2 Nanosheet. Nano Res. 2020, 13, 1780–1786. [Google Scholar] [CrossRef]
- Yu, J.; Kuang, X.; Li, J.; Zhong, J.; Zeng, C.; Cao, L.; Liu, Z.; Zeng, Z.; Luo, Z.; He, T.; et al. Giant Nonlinear Optical Activity in Two-Dimensional Palladium Diselenide. Nat. Commun. 2021, 12, 1083. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; He, J.; Wang, Z.M.; Liu, Z. Recent Progress in the Fabrication, Properties, and Devices of Heterostructures Based on 2D Materials. Nano-Micro Lett. 2019, 11, 13. [Google Scholar] [CrossRef]
- Okada, M.; Kutana, A.; Kureishi, Y.; Kobayashi, Y.; Saito, Y.; Saito, T.; Watanabe, K.; Taniguchi, T.; Gupta, S.; Miyata, Y.; et al. Direct and Indirect Interlayer Excitons in a van Der Waals Heterostructure of hBN/WS2/MoS2/hBN. ACS Nano 2018, 12, 2498–2505. [Google Scholar] [CrossRef]
- Gong, Y.; Lin, J.; Wang, X.; Shi, G.; Lei, S.; Lin, Z.; Zou, X.; Ye, G.; Vajtai, R.; Yakobson, B.I.; et al. Vertical and In-Plane Heterostructures from WS2/MoS2 Monolayers. Nat. Mater. 2014, 13, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Heo, H.; Sung, J.H.; Jin, G.; Ahn, J.; Kim, K.; Lee, M.; Cha, S.; Choi, H.; Jo, M. Rotation-Misfit-Free Heteroepitaxial Stacking and Stitching Growth of Hexagonal Transition-Metal Dichalcogenide Monolayers by Nucleation Kinetics Controls. Adv. Mater. 2015, 27, 3803–3810. [Google Scholar] [CrossRef]
- Zhang, K.; Ding, C.; Pan, B.; Wu, Z.; Marga, A.; Zhang, L.; Zeng, H.; Huang, S. Visualizing Van Der Waals Epitaxial Growth of 2D Heterostructures. Adv. Mater. 2021, 33, 2105079. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Lee, G.-H.; Van Der Zande, A.M.; Chen, W.; Li, Y.; Han, M.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T.F.; et al. Atomically Thin p–n Junctions with van Der Waals Heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681. [Google Scholar] [CrossRef]
- Taghinejad, M.; Xia, C.; Hrton, M.; Lee, K.-T.; Kim, A.S.; Li, Q.; Guzelturk, B.; Kalousek, R.; Xu, F.; Cai, W.; et al. Determining Hot-Carrier Transport Dynamics from Terahertz Emission. Science 2023, 382, 299–305. [Google Scholar] [CrossRef]
- Wu, K.; Chen, J.; McBride, J.R.; Lian, T. Efficient Hot-Electron Transfer by a Plasmon-Induced Interfacial Charge-Transfer Transition. Science 2015, 349, 632–635. [Google Scholar] [CrossRef] [PubMed]
- Mahdikhanysarvejahany, F.; Shanks, D.N.; Muccianti, C.; Badada, B.H.; Idi, I.; Alfrey, A.; Raglow, S.; Koehler, M.R.; Mandrus, D.G.; Taniguchi, T.; et al. Temperature Dependent Moiré Trapping of Interlayer Excitons in MoSe2-WSe2 Heterostructures. NPJ 2D Mater. Appl. 2021, 5, 67. [Google Scholar] [CrossRef]
- Wu, K.; Zhong, H.; Guo, Q.; Tang, J.; Zhang, J.; Qian, L.; Shi, Z.; Zhang, C.; Yuan, S.; Zhang, S.; et al. Identification of Twist-Angle-Dependent Excitons in WS2/WSe2 Heterobilayers. Natl. Sci. Rev. 2022, 9, nwab135. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Ciarrocchi, A.; Tagarelli, F.; Gonzalez Marin, J.F.; Watanabe, K.; Taniguchi, T.; Kis, A. Excitonic Transport Driven by Repulsive Dipolar Interaction in a van Der Waals Heterostructure. Nat. Photonics 2022, 16, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Jauregui, L.A.; Joe, A.Y.; Pistunova, K.; Wild, D.S.; High, A.A.; Zhou, Y.; Scuri, G.; De Greve, K.; Sushko, A.; Yu, C.-H.; et al. Electrical Control of Interlayer Exciton Dynamics in Atomically Thin Heterostructures. Science 2019, 366, 870–875. [Google Scholar] [CrossRef]
- Xia, J.; Yan, J.; Wang, Z.; He, Y.; Gong, Y.; Chen, W.; Sum, T.C.; Liu, Z.; Ajayan, P.M.; Shen, Z. Strong Coupling and Pressure Engineering in WSe2–MoSe2 Heterobilayers. Nat. Phys. 2021, 17, 92–98. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Q.; Wang, H.; Li, D. Interlayer Excitons Diffusion and Transport in van Der Waals Heterostructures. Mater. Futur. 2025, 4, 012701. [Google Scholar] [CrossRef]
- Shanks, D.N.; Mahdikhanysarvejahany, F.; Stanfill, T.G.; Koehler, M.R.; Mandrus, D.G.; Taniguchi, T.; Watanabe, K.; LeRoy, B.J.; Schaibley, J.R. Interlayer Exciton Diode and Transistor. Nano Lett. 2022, 22, 6599–6605. [Google Scholar] [CrossRef]
- Unuchek, D.; Ciarrocchi, A.; Avsar, A.; Watanabe, K.; Taniguchi, T.; Kis, A. Room-Temperature Electrical Control of Exciton Flux in a van Der Waals Heterostructure. Nature 2018, 560, 340–344. [Google Scholar] [CrossRef]
- Taghinejad, H.; Taghinejad, M.; Abdollahramezani, S.; Li, Q.; Woods, E.V.; Tian, M.; Eftekhar, A.A.; Lyu, Y.; Zhang, X.; Ajayan, P.M.; et al. Ion-Assisted Nanoscale Material Engineering in Atomic Layers. Nano Lett. 2025, 25, 10123–10130. [Google Scholar] [CrossRef]
- Ji, Z.; Hong, H.; Zhang, J.; Zhang, Q.; Huang, W.; Cao, T.; Qiao, R.; Liu, C.; Liang, J.; Jin, C.; et al. Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers. ACS Nano 2017, 11, 12020–12026. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Altmann, P.; Gadermaier, C.; Yang, Y.; Li, W.; Ghirardini, L.; Trovatello, C.; Finazzi, M.; Duò, L.; Celebrano, M.; et al. Phonon-Mediated Interlayer Charge Separation and Recombination in a MoSe2/WSe2 Heterostructure. Nano Lett. 2021, 21, 2165–2173. [Google Scholar] [CrossRef]
- Long, R.; Prezhdo, O.V. Quantum Coherence Facilitates Efficient Charge Separation at a MoS2/MoSe2 van Der Waals Junction. Nano Lett. 2016, 16, 1996–2003. [Google Scholar] [CrossRef] [PubMed]
- Dal Conte, S.; Trovatello, C.; Gadermaier, C.; Cerullo, G. Ultrafast Photophysics of 2D Semiconductors and Related Heterostructures. Trends Chem. 2020, 2, 28–42. [Google Scholar] [CrossRef]
- Jin, C.; Ma, E.Y.; Karni, O.; Regan, E.C.; Wang, F.; Heinz, T.F. Ultrafast Dynamics in van Der Waals Heterostructures. Nat. Nanotechnol. 2018, 13, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Bang, J.; Sun, Y.; Liang, L.; West, D.; Meunier, V.; Zhang, S. The Role of Collective Motion in the Ultrafast Charge Transfer in van Der Waals Heterostructures. Nat. Commun. 2016, 7, 11504. [Google Scholar] [CrossRef]
- Wang, F.; Wang, J.; Guo, S.; Zhang, J.; Hu, Z.; Chu, J. Tuning Coupling Behavior of Stacked Heterostructures Based on MoS2, WS2, and WSe2. Sci. Rep. 2017, 7, 44712. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Z.; Yao, W.; Liu, G.-B.; Yu, H. Interlayer Coupling in Commensurate and Incommensurate Bilayer Structures of Transition-Metal Dichalcogenides. Phys. Rev. B 2017, 95, 115429. [Google Scholar] [CrossRef]
- Zhang, F.; Li, W.; Dai, X. Modulation of Electronic Structures of MoSe2/WSe2 van Der Waals Heterostructure by External Electric Field. Solid State Commun. 2017, 266, 11–15. [Google Scholar] [CrossRef]
- Chan, Y.; Naik, M.H.; Haber, J.B.; Neaton, J.B.; Louie, S.G.; Qiu, D.Y.; Da Jornada, F.H. Exciton–Phonon Coupling Induces a New Pathway for Ultrafast Intralayer-to-Interlayer Exciton Transition and Interlayer Charge Transfer in WS2–MoS2 Heterostructure: A First-Principles Study. Nano Lett. 2024, 24, 7972–7978. [Google Scholar] [CrossRef]
- Cai, H.; Rasmita, A.; Tan, Q.; Lai, J.-M.; He, R.; Cai, X.; Zhao, Y.; Chen, D.; Wang, N.; Mu, Z.; et al. Interlayer Donor-Acceptor Pair Excitons in MoSe2/WSe2 Moiré Heterobilayer. Nat. Commun. 2023, 14, 5766. [Google Scholar] [CrossRef]
- Kim, H.; Wang, H.; Wang, Y.; Shinokita, K.; Watanabe, K.; Taniguchi, T.; Konabe, S.; Matsuda, K. Identification of Two-Dimensional Interlayer Excitons and Their Valley Polarization in MoSe2/WSe2 Heterostructure with h-BN Spacer Layer. ACS Nano 2025, 19, 322–330. [Google Scholar] [CrossRef]
- Li, Z.; Lu, X.; Cordovilla Leon, D.F.; Lyu, Z.; Xie, H.; Hou, J.; Lu, Y.; Guo, X.; Kaczmarek, A.; Taniguchi, T.; et al. Interlayer Exciton Transport in MoSe2/WSe2 Heterostructures. ACS Nano 2021, 15, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Yang, W.; Kang, J.; Huang, R.; Li, L.; Wen, Y. Engineering the Band Structure of Type-II MoSe2/WSe2 van Der Waals Heterostructure by Electric Field and Twist Angle: A First Principles Perspective. J. Phys. Condens. Matter 2025, 37, 075502. [Google Scholar] [CrossRef] [PubMed]
- Koda, D.S.; Bechstedt, F.; Marques, M.; Teles, L.K. Tuning Electronic Properties and Band Alignments of Phosphorene Combined with MoSe2 and WSe2. J. Phys. Chem. C 2017, 121, 3862–3869. [Google Scholar] [CrossRef]
- Jameel, M.H.; Roslan, M.S.B.; Mayzan, M.Z.H.B.; Shaaban, I.A.; Rizvi, S.Z.H.; Agam, M.A.B.; Saleem, S.; Assiri, M.A. A Comparative DFT Study of Bandgap Engineering and Tuning of Structural, Electronic, and Optical Properties of 2D WS2, PtS2, and MoS2 between WSe2, PtSe2, and MoSe2 Materials for Photocatalytic and Solar Cell Applications. J. Inorg. Organomet. Polym. Mater. 2024, 34, 322–335. [Google Scholar] [CrossRef]
- Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T.S.; Li, J.; Grossman, J.C.; Wu, J. Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576–5580. [Google Scholar] [CrossRef]
- Baugher, B.W.H.; Churchill, H.O.H.; Yang, Y.; Jarillo-Herrero, P. Optoelectronic Devices Based on Electrically Tunable p–n Diodes in a Monolayer Dichalcogenide. Nat. Nanotechnol. 2014, 9, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Ramzan, M.S.; Kunstmann, J.; Kuc, A.B. Tuning Valleys and Wave Functions of van Der Waals Heterostructures by Varying the Number of Layers: A First-Principles Study. Small 2021, 17, 2008153. [Google Scholar] [CrossRef]
- Hsu, W.-T.; Lu, L.-S.; Wang, D.; Huang, J.-K.; Li, M.-Y.; Chang, T.-R.; Chou, Y.-C.; Juang, Z.-Y.; Jeng, H.-T.; Li, L.-J.; et al. Evidence of Indirect Gap in Monolayer WSe2. Nat. Commun. 2017, 8, 929. [Google Scholar] [CrossRef]
- Silveira, J.F.R.V.; Besse, R.; Da Silva, J.L.F. Stacking Order Effects on the Electronic and Optical Properties of Graphene/Transition Metal Dichalcogenide Van Der Waals Heterostructures. ACS Appl. Electron. Mater. 2021, 3, 1671–1680. [Google Scholar] [CrossRef]
- Zhang, K.; Guo, Y.; Ji, Q.; Lu, A.-Y.; Su, C.; Wang, H.; Puretzky, A.A.; Geohegan, D.B.; Qian, X.; Fang, S.; et al. Enhancement of van Der Waals Interlayer Coupling through Polar Janus MoSSe. J. Am. Chem. Soc. 2020, 142, 17499–17507. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Kim, J.; Shi, S.-F.; Zhang, Y.; Jin, C.; Sun, Y.; Tongay, S.; Wu, J.; Zhang, Y.; Wang, F. Ultrafast Charge Transfer in Atomically Thin MoS2/WS2 Heterostructures. Nat. Nanotechnol. 2014, 9, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Mouhat, F.; Coudert, F.-X. Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems. Phys. Rev. B 2014, 90, 224104. [Google Scholar] [CrossRef]
- Zhang, S.; Xia, Z.; Meng, J.; Cheng, Y.; Jiang, J.; Yin, Z.; Zhang, X. Electronic and Transport Properties of InSe/PtTe2 van Der Waals Heterostructure. Nano Lett. 2024, 24, 8402–8409. [Google Scholar] [CrossRef]
- Li, L.; Yang, H.; Yang, P. WS2/MoSe2 van Der Waals Heterojunctions Applied to Photocatalysts for Overall Water Splitting. J. Colloid Interface Sci. 2023, 650, 1312–1318. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, X.; Bi, J.; Zhang, Y.; Xiao, W.; Wang, G.; Wang, D.; Wang, Z.; Wang, W.; Zhang, Z.; et al. Robust Type-III C3N/Ga2O3 van Der Waals Heterostructures. Vacuum 2024, 224, 113144. [Google Scholar] [CrossRef]
- Peng, B.; Yu, G.; Liu, X.; Liu, B.; Liang, X.; Bi, L.; Deng, L.; Sum, T.C.; Loh, K.P. Ultrafast Charge Transfer in MoS2/WSe2 p–n Heterojunction. 2D Mater. 2016, 3, 025020. [Google Scholar] [CrossRef]
- Nayak, P.K.; Horbatenko, Y.; Ahn, S.; Kim, G.; Lee, J.-U.; Ma, K.Y.; Jang, A.-R.; Lim, H.; Kim, D.; Ryu, S.; et al. Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van Der Waals Heterostructures. ACS Nano 2017, 11, 4041–4050. [Google Scholar] [CrossRef]
- Allain, A.; Kang, J.; Banerjee, K.; Kis, A. Electrical Contacts to Two-Dimensional Semiconductors. Nat. Mater. 2015, 14, 1195–1205. [Google Scholar] [CrossRef]
- Xiao, L.; Guo, G.; Luo, H.; Zhang, M.; You, M.; Luo, S.; Zhong, J. First-Principles Study of Tunable Exciton Lifetime in ZrSSe/SnSSe Heterostructures. Appl. Surf. Sci. 2025, 700, 163221. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Z.; Jia, J.; Robertson, J.; Guo, Y. 2D WSe2/MoSi2N4 Type-II Heterojunction with Improved Carrier Separation and Recombination for Photocatalytic Water Splitting. Appl. Surf. Sci. 2023, 611, 155674. [Google Scholar] [CrossRef]
- Shi, A.; Sun, D.; Guan, R.; Shan, W.; Qin, Z.; Wang, J.; Wei, L.; Zhou, S.; Zhang, X.; Niu, X. Metal-Free Carbon Nitride Nanosheet Supported the Pentacoordinated Silicon Intermediates for Photocatalytic Overall Water Splitting. J. Phys. Chem. Lett. 2023, 14, 1918–1927. [Google Scholar] [CrossRef]
- Yuan, L.; Zheng, B.; Kunstmann, J.; Brumme, T.; Kuc, A.B.; Ma, C.; Deng, S.; Blach, D.; Pan, A.; Huang, L. Twist-Angle-Dependent Interlayer Exciton Diffusion in WS2–WSe2 Heterobilayers. Nat. Mater. 2020, 19, 617–623. [Google Scholar] [CrossRef]
- Liang, Y.; Li, J.; Jin, H.; Huang, B.; Dai, Y. Photoexcitation Dynamics in Janus-MoSSe/WSe2 Heterobilayers: Ab Initio Time-Domain Study. J. Phys. Chem. Lett. 2018, 9, 2797–2802. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.B.; Chauhan, P.; Patel, K.; Sumesh, C.K.; Narayan, S.; Patel, K.D.; Solanki, G.K.; Pathak, V.M.; Jha, P.K.; Patel, V. Solution-Processed Uniform MoSe2–WSe2 Heterojunction Thin Film on Silicon Substrate for Superior and Tunable Photodetection. ACS Sustain. Chem. Eng. 2020, 8, 4809–4817. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, J.; Zhuo, Z.; Kou, L.; Ma, W.; Shao, B.; Du, A.; Meng, S.; Frauenheim, T. Novel Excitonic Solar Cells in Phosphorene–TiO2 Heterostructures with Extraordinary Charge Separation Efficiency. J. Phys. Chem. Lett. 2016, 7, 1880–1887. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First Principles Phonon Calculations in Materials Science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Chu, W.; Zhao, C.; Zhang, L.; Guo, H.; Wang, Y.; Jiang, X.; Zhao, J. Ab Initio Nonadiabatic Molecular Dynamics Investigations on the Excited Carriers in Condensed Matter Systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2019, 9, e1411. [Google Scholar] [CrossRef]
- Prezhdo, O.V. Mean Field Approximation for the Stochastic Schrödinger Equation. J. Chem. Phys. 1999, 111, 8366–8377. [Google Scholar] [CrossRef]
- Gajdoš, M.; Hummer, K.; Kresse, G.; Furthmüller, J.; Bechstedt, F. Linear Optical Properties in the Projector-Augmented Wave Methodology. Phys. Rev. B 2006, 73, 045112. [Google Scholar] [CrossRef]
(Å) | (Å) | (eV) | |||
---|---|---|---|---|---|
WSe2 | 3.290 | — | — | 1.638 | 2.023 |
MoSe2 | 3.294 | — | — | 1.507 | 2.122 |
TMo | 3.278 | 3.654 | −0.211 | 1.293 | 1.705 |
TSe | 3.281 | 3.022 | −0.316 | 1.139 | 1.602 |
TW | 3.281 | 3.013 | −0.317 | 1.183 | 1.752 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, T.-J.; Fan, Z.-Y.; Peng, C.-F.; Xiao, X.; Zhou, Y.; Sun, J.; Zhou, Z.-Y.; Guo, X.; Liu, X.-F.; Niu, X.-H. Electric Field Modulation and Ultrafast Photogenerated Electron-Hole Dynamics in MoSe2/WSe2 van der Waals Heterostructures. Molecules 2025, 30, 3840. https://doi.org/10.3390/molecules30183840
Dai T-J, Fan Z-Y, Peng C-F, Xiao X, Zhou Y, Sun J, Zhou Z-Y, Guo X, Liu X-F, Niu X-H. Electric Field Modulation and Ultrafast Photogenerated Electron-Hole Dynamics in MoSe2/WSe2 van der Waals Heterostructures. Molecules. 2025; 30(18):3840. https://doi.org/10.3390/molecules30183840
Chicago/Turabian StyleDai, Tian-Jun, Zhong-Yuan Fan, Chao-Feng Peng, Xiang Xiao, Yi Zhou, Jian Sun, Zhang-Yu Zhou, Xiang Guo, Xue-Fei Liu, and Xiang-Hong Niu. 2025. "Electric Field Modulation and Ultrafast Photogenerated Electron-Hole Dynamics in MoSe2/WSe2 van der Waals Heterostructures" Molecules 30, no. 18: 3840. https://doi.org/10.3390/molecules30183840
APA StyleDai, T.-J., Fan, Z.-Y., Peng, C.-F., Xiao, X., Zhou, Y., Sun, J., Zhou, Z.-Y., Guo, X., Liu, X.-F., & Niu, X.-H. (2025). Electric Field Modulation and Ultrafast Photogenerated Electron-Hole Dynamics in MoSe2/WSe2 van der Waals Heterostructures. Molecules, 30(18), 3840. https://doi.org/10.3390/molecules30183840