Endophytic and Epiphytic Microorganisms as Biocontrol Agents: Mechanisms, Applications, and Metagenomic Approaches in Tomato Cultivation
Abstract
1. Introduction
2. Pathogens Affecting Tomatoes
2.1. Major Fungal Pathogens
2.2. Major Bacterial Pathogens
3. Microbial Biological Control in Sustainable Agriculture
Advantages and Challenges of Microbial Biocontrol over Chemical Treatments
4. Endophytic and Epiphytic Microorganisms in Biocontrol
4.1. Endophytic Microorganisms in Biocontrol
4.2. Epiphytic Microorganisms in Biocontrol
5. Metabolomics Approach in Tomato Biocontrol
5.1. Biocontrol Mechanisms and Key Metabolites of Microbial Endophytes and Epiphytes
5.1.1. Production of Antimicrobial Compounds
5.1.2. Production of Volatile Organic Compounds
5.1.3. Enzyme Production
5.1.4. Iron Competition and Siderophore
Type | Microorganism | Target Pathogen(s) | Disease(s) Controlled | Volatile Organic Compounds | Antimicrobial Compounds | Lytic/Other Enzymes | Siderophores/Iron Competition | ISR/Other Mechanisms | Effectiveness | References |
---|---|---|---|---|---|---|---|---|---|---|
Epiphyte | B. subtilis strains | B. cinerea, Alternaria, R. solani, Xanthomonas | Gray mold, early blight, etc. | Acetoin, 2,3-butanediol | Surfactin, iturin, fengycin | Proteases, cellulases, glucanases | Bacillibactin | ISR; competition; biofilm | 40–80% reduction | [107] |
B. amyloliquefaciens | F. oxysporum, Botrytis, Alternaria, Pectobacterium carotovorum | Fusarium wilt, gray mold, early blight, soft rot | Acetoin, 2,3-butanediol, 3-hydroxybutan-2-1 | Bacillomycin D, fengycin, C12-C15 surfactin, iturin, fenycin | Proteases, chitinases | Bacillibactin | ISR; root colonization | Strong control, yield boost | [108,109] | |
L. capsici AZ78 | P. infestans | Late blight | Mono- and dialkylated methoxypyrazines | Dihydromaltophilin | Chitinases, proteases | No specification | Leaf colonization | Intermediate temps best | [110,111] | |
Metschnikowia pulcherrima | Botrytis, Alternaria | Gray mold, early blight (some) | Fruity esters, alcohols | Pulcherrimin, killer toxins | β-glucanase | Pulcherrimin (strong iron binding) | Competition | Good on fruit; variable on foliage | [126] | |
B. cereus HRT7.7 | R. solanacearum | Bacterial wilt | VOCs not specified | Zwittermicin A, bacteriocins | Chitinases, proteases | Bacillibactin (reported) | Competition | Strong in vitro inhibition | [56,127] | |
Enterobacter hormaechei | R. solanacearum | Bacterial wilt | Alcohols, ketones | Bacteriocins | Proteases | Enterobactin-type | Biofilm; competition | Reduced pathogen load on surface | [56] | |
Serratia marcescens | Pythium cryptoirregulare | Damping-off | Blend (strain dependent) | Prodigiosin, serratamolide | Chitinases, proteases | Enterobactin-type | Biofilm; competition | Greenhouse suppression variable | [128] | |
Endophyte | T. harzianum | Fusarium spp., R. solani, Pythium spp., B. cinerea | Wilt, gray mold, root rot, damping-off | 6-pentyl-2H-pyran-2-one | Peptaibols, gliotoxin, polyketides | Chitinases, glucanases, proteases | Iron competition | Mycoparasitism; ISR | 50–90% reduction | [10,112] |
Pseudomonas gessardii | Alternaria spp., C. lunata, X. vesicatoria | Early blight, leaf spots | Variable VOCs (no specifications) | Phenazines, pyoluteorin | Proteases, chitinases | Pyoverdine-type (species-dependent) | Competition; colonization | Potent in vitro and leaf assays | [95,129] | |
Streptomyces spp. | F. oxysporum, B. cinerea, R. solanacearum | Wilt, gray mold, root rots | 2-Methylisoborneol, BetaMyrcene and 1-ethenyl-4-methoxy-benzene | Actinomycin D, filipin, others | Chitinases, glucanases, proteases | Hydroxamate, catecholate, and carboxylate | ISR; competition | Strong in vitro; variable field results | [122,130] | |
Paecilomyces formosus | Fusarium spp., Rhizoctonia, Botrytis, Rhizopus | Root rots, damping-off, gray mold | Not specified | Broad-spectrum antifungals | Chitinases (genus) | Not central | Competition | Strong in vitro inhibition | [78] | |
Epiphyte/ endophyte | P. fluorescens | F. oxysporum, A. solani | Wilt, damping-off, early blight | Acetophenone, dimethyl trisulfide, volatile blends | 2,4-DAPG, pyoluteorin, phenazine-1-carboxylic acid, 2-hydroxyphenazine, and phenazine-1-carboxamide | Chitinases, lipases, proteases | Pyoverdine, pyochelin | ISR; rhizosphere competence | Strong, consistent suppression | [113,114] |
B. bassiana | B. cinerea, A. alternate | Gray mold, early blight | Strain-dependent | Beauvericin, bassianolide, oosporein | Chitinases, proteases | Ferricrocin, fusarinine C | Dual action; growth promotion | Multiple isolates strong | [123,131] |
6. Impact of Cultivation Systems on Microbial Effectiveness
Soil-Grown vs. Hydroponic Systems
7. Metagenomic Approach for Antagonistic Microbial Diversity Assessment
Functional Genes Involved in the Mechanisms of Tomato Biocontrol
Organism | Gene | Function | Active Agent | References |
---|---|---|---|---|
P. fluorescens | phlD | Polyketide synthase | 2,4-Diacetylphloroglucinol | [155] |
Trichoderma spp. | Thpg1 | Polygalactuonases; hydrolyzes plant pectins to generate elicitor molecules | Oligogalacturonides | [152] |
P. fluorescens | prnD | Pyrrolnitrin biosynthesis | Pyrrolnitrin | [156] |
Pseudomonas spp. | hcnABC | Hydrogen cyanide synthesis | Hydrogen cyanide | [157] |
B. subtilis | ituD | Iturin biosynthesis | Iturin A | [158] |
B. subtilis | srfAA | Surfactin biosynthesis | Surfactin | [159] |
Trichoderma spp. | chit42; GĴ1 | Degrades chitin; Mediates nutrient competition | Endohitinase | [152] |
B. amyloliquefaciens | bmyB | Bacillomycin biosynthesis | Bacillomycin | [160] |
S. marcescens | chiA | Chitinase biosynthesis | Chitinase | [161] |
T. harzianum | chi1; egl1 | Degrades chitin | Chitinase; Glucanase | [154] |
Pantoea agglomerans | nagB | Chitin degradation | Chitinase | [162] |
Streptomyces murinus NARZ | PKS-I, PKS-II, NRPS | Polyketide synthase, non-ribosomal peptide synthase | Various antifungal compounds (Pentamycin and actinomycin D) | [163] |
Streptomyces hydrogenans and Streptomyces spp. NEAU-HV9 | Act; str | Actinomycin D biosynthesis | Actinomycin D | [99,164] |
8. Application and Commercialization of Endophytic and Epiphytic BCAs of Tomato
9. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramamoorthy, K.; Dhanraj, R.; Vijayakumar, N.; Ma, Y.; Al Obaid, S.; Narayanan, M. Vegetable and fruit wastes: Valuable source for organic fertilizer for effective growth of short-term crops: Solanum lycopersicum and Capsicum annum. Environ. Res. 2024, 251, 118727. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Singh, U.B.; Ilyas, T.; Malviya, D.; Vishwakarma, S.K.; Shafi, Z.; Yadav, B.; Singh, H.V. Bacterial inoculants for control of fungal diseases in Solanum lycopersicum L. (tomatoes): A comprehensive overview. Rhizosphere Microbes Biot. Stress Manag. 2022, 40, 311–339. [Google Scholar] [CrossRef]
- Xiao, Z.; Lu, C.; Wu, Z.; Li, X.; Ding, K.; Zhu, Z.; Han, R.; Zhao, J.; Ge, T.; Li, G. Continuous cropping disorders of eggplants (Solanum melongena L.) and tomatoes (Solanum lycopersicum L.) in suburban agriculture: Microbial structure and assembly processes. Sci. Total Environ. 2024, 909, 168558. [Google Scholar] [CrossRef] [PubMed]
- El-Ganainy, S.M.; El-Abeid, S.E.; Ahmed, Y.; Iqbal, Z. Morphological and molecular characterization of large-spored Alternaria species associated with potato and tomato early blight in Egypt. Int. J. Agric. Biol. 2021, 25, 1101–1110. [Google Scholar] [CrossRef]
- Ahmed, F.A.; Sipes, B.S.; Alvarez, A.M. Postharvest diseases of tomato and natural products for disease management. Afr. J. Agric. Res. 2017, 12, 684–691. [Google Scholar] [CrossRef]
- Koike, S.; Alger, E.; Sepulveda, L.R.; Bull, C. First report of bacterial leaf spot caused by Pseudomonas syringae pv. tomato on kale in California. Plant Dis. 2017, 101, 504. [Google Scholar] [CrossRef]
- Butsenko, L.; Pasichnyk, L.; Kolomiiets, Y.; Kalinichenko, A. The effect of pesticides on the tomato bacterial speck disease pathogen Pseudomonas syringae pv. tomato. Appl. Sci. 2020, 10, 3263. [Google Scholar] [CrossRef]
- Jankowska, M.; Kaczynski, P.; Hrynko, I.; Lozowicka, B. Dissipation of six fungicides in greenhouse-grown tomatoes with processing and health risk. Environ. Sci. Pollut. Res. 2016, 23, 11885–11900. [Google Scholar] [CrossRef]
- Stenberg, J.A.; Sundh, I.; Becher, P.G.; Björkman, C.; Dubey, M.; Egan, P.A.; Friberg, H.; Gil, J.F.; Jensen, D.F.; Jonsson, M. When is it biological control? A framework of definitions, mechanisms, and classifications. J. Pest Sci. 2021, 94, 665–676. [Google Scholar] [CrossRef]
- Geng, L.; Fu, Y.; Peng, X.; Yang, Z.; Zhang, M.; Song, Z.; Guo, N.; Chen, S.; Chen, J.; Bai, B. Biocontrol potential of Trichoderma harzianum against Botrytis cinerea in tomato plants. Biol. Control 2022, 174, 105019. [Google Scholar] [CrossRef]
- Aynalem, B.; Muleta, D.; Jida, M.; Shemekite, F.; Aseffa, F. Biocontrol competence of Beauveria bassiana, Metarhizium anisopliae and Bacillus thuringiensis against tomato leaf miner, Tuta absoluta Meyrick 1917 under greenhouse and field conditions. Heliyon 2022, 8, e09694. [Google Scholar] [CrossRef]
- Ramudingana, P.; Mamphogoro, T.P.; Kamutando, C.N.; Maboko, M.M.; Modika, K.Y.; Moloto, K.W.; Thantsha, M.S. Antagonistic potential of endophytic fungal isolates of tomato (Solanum lycopersicum L.) fruits against post-harvest disease-causing pathogens of tomatoes: An in vitro investigation. Fungal Biol. 2024, 128, 1847–1858. [Google Scholar] [CrossRef] [PubMed]
- Freimoser, F.M.; Rueda-Mejia, M.P.; Tilocca, B.; Migheli, Q. Biocontrol yeasts: Mechanisms and applications. World J. Microbiol. Biotechnol. 2019, 35, 154. [Google Scholar] [CrossRef]
- Cáceres, H.; Barriga-Sánchez, M.; Bendezú, L.; Huamán, E.; Becerra-Canales, B.; Almanza, A.; Ortiz-Campos, J.; Barra-Bucarei, L. Antagonist activity of yeasts and lactic acid bacteria against phytopathogenic strains of economic importance in agriculture. Chil. J. Agric. Res. 2024, 84, 663–673. [Google Scholar] [CrossRef]
- Escobar Rodriguez, C.; Novak, J.; Buchholz, F.; Uetz, P.; Bragagna, L.; Gumze, M.; Antonielli, L.; Mitter, B. The bacterial microbiome of the tomato fruit is highly dependent on the cultivation approach and correlates with flavor chemistry. Front. Plant Sci. 2021, 12, 775722. [Google Scholar] [CrossRef]
- Lanhuang, B.; Yang, Q.; Godana, E.A.; Zhang, H. Efficacy of the yeast Wickerhamomyces anomalus in biocontrol of gray mold decay of tomatoes and study of the mechanisms involved. Foods 2022, 11, 720. [Google Scholar] [CrossRef]
- Mamphogoro, T.P.; Maboko, M.M.; Babalola, O.O.; Aiyegoro, O.A. Bacterial communities associated with the surface of fresh sweet pepper (Capsicum annuum) and their potential as biocontrol. Sci. Rep. 2020, 10, 8560. [Google Scholar] [CrossRef]
- Sivaprakasam, N.; Vaithiyanathan, S.; Gandhi, K.; Narayanan, S.; Kavitha, P.; Rajasekaran, R.; Muthurajan, R. Metagenomics approaches in unveiling the dynamics of Plant Growth-Promoting Microorganisms (PGPM) vis-à-vis Phytophthora sp. suppression in various crop ecological systems. Res. Microbiol. 2024, 175, 104217. [Google Scholar] [CrossRef] [PubMed]
- Larena, I.; Espeso, E.A.; Veloso, J. Impact of novel omic technologies on biological control against plant pathogens. Front. Microbiol. 2023, 14, 1162422. [Google Scholar] [CrossRef]
- Ravinath, R.; Usha, T.; Das, A.J.; Sarangi, A.N.; Kiran, N.S.; Goyal, A.K.; Prasannakumar, M.K.; Ramesh, N.; Middha, S.K. Pomegranate Rhizosphere Microbial Diversity Revealed by Metagenomics: Toward Organic Farming, Plant Growth Promotion and Biocontrol? OMICS J. Integr. Biol. 2024, 28, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Panthee, D.R.; Chen, F. Genomics of fungal disease resistance in tomato. Curr. Genom. 2010, 11, 30–39. [Google Scholar] [CrossRef]
- Maurya, S.; Dubey, S.; Kumari, R.; Verma, R. Management tactics for fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici (Sacc.): A review. Management 2019, 4, 1–7. [Google Scholar]
- Kendrick, J.B. Phytophthora rot of tomato, eggplant, and pepper. Proc. Indiana Acad. Sci. 1922, 32, 299–306. [Google Scholar]
- Boix-Ruiz, A.; Marín-Guirao, J.I.; de Cara-García, M.; Camacho-Ferre, F.; Tello-Marquina, J.C. Pathogenicity of plant and soil isolates of Phytophthora parasitica on tomato and pepper. Eur. J. Plant Pathol. 2017, 148, 607–615. [Google Scholar] [CrossRef]
- Belabess, Z.; Gajjout, B.; Legrifi, I.; Barka, E.A.; Lahlali, R. Exploring the Antifungal Activity of Moroccan Bacterial and Fungal Isolates and a Strobilurin Fungicide in the Control of Cladosporium fulvum, the Causal Agent of Tomato Leaf Mold Disease. Plants 2024, 13, 2213. [Google Scholar] [CrossRef]
- Rhouma, A.; Hajji-Hedfi, L.; Kouadri, M.E.; Atallaoui, K.; Matrood, A.A.; Khrieba, M.I. Botrytis cinerea: The cause of tomatoes gray mold. Egypt. J. Phytopathol. 2023, 51, 68–75. [Google Scholar] [CrossRef]
- Aydın, M.H. Rhizoctonia solani and its biological control. Türk. Tarım. Araştırmalar Derg. 2022, 9, 118–135. [Google Scholar] [CrossRef]
- Mannai, S.; Jabnoun-Khiareddine, H.; Nasraoui, B.; Daami-Remadi, M. Rhizoctonia root rot of pepper (Capsicum annuum): Comparative pathogenicity of causal agent and biocontrol attempt using fungal and bacterial agents. J. Plant Pathol. Microbiol. 2018, 9, 431–439. [Google Scholar] [CrossRef]
- Potnis, N.; Timilsina, S.; Strayer, A.; Shantharaj, D.; Barak, J.D.; Paret, M.L.; Vallad, G.E.; Jones, J.B. Bacterial spot of tomato and pepper: Diverse X anthomonas species with a wide variety of virulence factors posing a worldwide challenge. Mol. Plant Pathol. 2015, 16, 907–920. [Google Scholar] [CrossRef]
- Osdaghi, E.; Jones, J.B.; Sharma, A.; Goss, E.M.; Abrahamian, P.; Newberry, E.A.; Potnis, N.; Carvalho, R.; Choudhary, M.; Paret, M.L. A centenary for bacterial spot of tomato and pepper. Mol. Plant Pathol. 2021, 22, 1500. [Google Scholar] [CrossRef]
- Arshad, S.; Nematollahi, S.; Rouhrazi, K.; Khezrinejad, N. Characterization of Pseudomonas cichorii isolated from tomato and lettuce in Iran. J. Plant Pathol. 2021, 103, 853–861. [Google Scholar] [CrossRef]
- Nagata, T. Effect of Pseudomonas fluorescens inoculation on the improvement of iron deficiency in tomato. Plant Root 2017, 11, 1–9. [Google Scholar] [CrossRef]
- Zheng, X.-Y.; Spivey, N.W.; Zeng, W.; Liu, P.-P.; Fu, Z.Q.; Klessig, D.F.; He, S.Y.; Dong, X. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 2012, 11, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Malliarakis, D.; Pagoulatou, M.G.; Mpalantinaki, E.; Trantas, E.; Ververidis, F.; Goumas, D.E. Phylogenetic diversity of Clavibacter michiganensis subsp. michiganensis isolates causing bacterial canker of tomato in Greece. J. Plant Pathol. 2023, 105, 1403–1419. [Google Scholar] [CrossRef]
- Nandi, M.; Macdonald, J.; Liu, P.; Weselowski, B.; Yuan, Z.C. Clavibacter michiganensis ssp. michiganensis: Bacterial canker of tomato, molecular interactions and disease management. Mol. Plant Pathol. 2018, 19, 2036–2050. [Google Scholar] [CrossRef]
- Dey, P.; Sen, S.K. A review on solanaceous plant diseases caused by ralstonia solanacearum having serious economic impact. Plant Arch. 2023, 23, 09725210. [Google Scholar] [CrossRef]
- Akbar, A.; Ahmad, M.; Khan, S.Z.; Ahmad, Z. Characterization of the causal organism of soft rot of tomatoes and other vegetables and evaluation of its most aggressive isolates. Am. J. Plant Sci. 2015, 6, 511–517. [Google Scholar] [CrossRef]
- Tariq, M.; Khan, A.; Asif, M.; Khan, F.; Ansari, T.; Shariq, M.; Siddiqui, M.A. Biological control: A sustainable and practical approach for plant disease management. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2020, 70, 507–524. [Google Scholar] [CrossRef]
- Sindhu, S.S.; Sehrawat, A.; Sharma, R.; Khandelwal, A. Biological control of insect pests for sustainable agriculture. In Advances in Soil Microbiology: Recent Trends and Future Prospects: Volume 2: Soil-Microbe-Plant Interaction; Springer Nature: Dordrecht, The Netherlands, 2017; pp. 189–218. [Google Scholar] [CrossRef]
- Palmieri, D.; Ianiri, G.; Del Grosso, C.; Barone, G.; De Curtis, F.; Castoria, R.; Lima, G. Advances and perspectives in the use of biocontrol agents against fungal plant diseases. Horticulturae 2022, 8, 577. [Google Scholar] [CrossRef]
- Zhang, L.-N.; Wang, D.-C.; Hu, Q.; Dai, X.-Q.; Xie, Y.-S.; Li, Q.; Liu, H.-M.; Guo, J.-H. Consortium of plant growth-promoting rhizobacteria strains suppresses sweet pepper disease by altering the rhizosphere microbiota. Front. Microbiol. 2019, 10, 1668. [Google Scholar] [CrossRef] [PubMed]
- Baćmaga, M.; Wyszkowska, J.; Kucharski, J. The effect of the Falcon 460 EC fungicide on soil microbial communities, enzyme activities and plant growth. Ecotoxicology 2016, 25, 1575–1587. [Google Scholar] [CrossRef]
- Heflish, A.A.; Abdelkhalek, A.; Al-Askar, A.A.; Behiry, S.I. Protective and curative effects of Trichoderma asperelloides Ta41 on tomato root rot caused by Rhizoctonia solani Rs33. Agronomy 2021, 11, 1162. [Google Scholar] [CrossRef]
- Zhou, C.; Zhu, J.; Qian, N.; Guo, J.; Yan, C. Bacillus subtilis SL18r induces tomato resistance against Botrytis cinerea, involving activation of long non-coding RNA, MSTRG18363, to decoy miR1918. Front. Plant Sci. 2021, 11, 634819. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.; Zeng, L.; Jiang, H.; Mei, L.; Wang, Y. Trichoderma atroviride LZ42 releases volatile organic compounds promoting plant growth and suppressing Fusarium wilt disease in tomato seedlings. BMC Microbiol. 2022, 22, 88. [Google Scholar] [CrossRef]
- Asad, S.A. Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases—A review. Ecol. Complex. 2022, 49, 100978. [Google Scholar] [CrossRef]
- Abada, K.; Attia, A.; Zyton, M. Management of pepper Verticillium wilt by combinations of inducer chemicals for plant resistance, bacterial bioagents and compost. J. Appl. Biotechnol. 2018, 5, 117–127. [Google Scholar] [CrossRef]
- Saylan, M.; Yüzbaşioğlu, E.; Dalyan, E.; Akpinar, I.; Unal, M. Genotoxicity and antioxidant enzyme activities induced by the captan fungicide in the root of bell pepper (Capsicum annuum L. var. grossum L. cv. Kandil). Trak. Univ. J. Nat. Sci. 2019, 20, 97–103. [Google Scholar] [CrossRef]
- Roca-Couso, R.; Flores-Félix, J.D.; Rivas, R. Mechanisms of action of microbial biocontrol agents against Botrytis cinerea. J. Fungi 2021, 7, 1045. [Google Scholar] [CrossRef]
- Spadaro, D.; Droby, S. Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci. Technol. 2016, 47, 39–49. [Google Scholar] [CrossRef]
- Sharma, V.P.; Singh, S.; Dhanjal, D.S.; Singh, J.; Yadav, A.N. Potential strategies for control of agricultural occupational health hazards. In Current Trends in Microbial Biotechnology for Sustainable Agriculture; Springer: Singapore, 2021; pp. 387–402. [Google Scholar] [CrossRef]
- Muñoz-Quezada, M.T.; Lucero, B.A.; Iglesias, V.P.; Muñoz, M.P.; Cornejo, C.A.; Achu, E.; Baumert, B.; Hanchey, A.; Concha, C.; Brito, A.M. Chronic exposure to organophosphate (OP) pesticides and neuropsychological functioning in farm workers: A review. Int. J. Occup. Environ. Health 2016, 22, 68–79. [Google Scholar] [CrossRef]
- Baelum, J.; Larsen, P.; Doekes, G.; Sigsgaard, T. Health effects of selected microbiological control agents. A 3-year follow-up study. Ann. Agric. Environ. Med. 2012, 19, 631–636. [Google Scholar] [PubMed]
- Alori, E.T.; Babalola, O.O. Microbial inoculants for improving crop quality and human health in Africa. Front. Microbiol. 2018, 9, 2213. [Google Scholar] [CrossRef] [PubMed]
- Athanassiou, C.G.; Kavallieratos, N.G.; Rumbos, C.I.; Kontodimas, D.C. Influence of temperature and relative humidity on the insecticidal efficacy of Metarhizium anisopliae against larvae of Ephestia kuehniella (Lepidoptera: Pyralidae) on wheat. J. Insect Sci. 2017, 17, 22. [Google Scholar] [CrossRef]
- Mamphogoro, T.P.; Kamutando, C.N.; Maboko, M.M.; Aiyegoro, O.A.; Babalola, O.O. Epiphytic bacteria from sweet pepper antagonistic in vitro to Ralstonia solanacearum BD 261, a causative agent of bacterial wilt. Microorganisms 2021, 9, 1947. [Google Scholar] [CrossRef]
- Puopolo, G.; Palmieri, M.C.; Giovannini, O.; Pertot, I. Impact of temperature on the survival and the biocontrol efficacy of Lysobacter capsici AZ78 against Phytophthora infestans. BioControl 2015, 60, 681–689. [Google Scholar] [CrossRef]
- Wang, C.; Hu, H.-J.; Li, X.; Wang, Y.-F.; Tang, Y.-Y.; Chen, S.-L.; Yan, S.-Z. Effects of varying environmental factors on the biological control of Meloidogyne incognita in tomato by Bacillus cereus strain BCM2. Biocontrol Sci. Technol. 2018, 28, 359–376. [Google Scholar] [CrossRef]
- Kumar, J.; Singh, D.; Ghosh, P.; Kumar, A. Endophytic and epiphytic modes of microbial interactions and benefits. In Plant-Microbe Interactions in Agro-Ecological Perspectives: Volume 1: Fundamental Mechanisms, Methods and Functions; Springer Nature: Dordrecht, The Netherlands, 2017; pp. 227–253. [Google Scholar] [CrossRef]
- Riera, N.; Davyt, D.; Durán, R.; Iraola, G.; Lemanceau, P.; Bajsa, N. An antibiotic produced by Pseudomonas fluorescens CFBP2392 with antifungal activity against Rhizoctonia solani. Front. Microbiol. 2023, 14, 1286926. [Google Scholar] [CrossRef] [PubMed]
- Rudakova, N.; Khilyas, I.; Danilova, I.; Pudova, D.; Sharipova, M. Evaluating of the potential of Bacillus pumilus 3-19 as a plant growth-promoting Strain. Russ. J. Plant Physiol. 2023, 70, 197. [Google Scholar] [CrossRef]
- Pertot, I.; Giovannini, O.; Benanchi, M.; Caffi, T.; Rossi, V.; Mugnai, L. Combining biocontrol agents with different mechanisms of action in a strategy to control Botrytis cinerea on grapevine. Crop Prot. 2017, 97, 85–93. [Google Scholar] [CrossRef]
- Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front. Plant Sci. 2019, 10, 845. [Google Scholar] [CrossRef]
- Jaiswal, D.K.; Gawande, S.J.; Soumia, P.; Krishna, R.; Vaishnav, A.; Ade, A.B. Biocontrol strategies: An eco-smart tool for integrated pest and diseases management. BMC Microbiol. 2022, 22, 324. [Google Scholar] [CrossRef]
- Chaudhary, R.; Nawaz, A.; Khattak, Z.; Butt, M.A.; Fouillaud, M.; Dufossé, L.; Munir, M.; Haq, I.U.; Mukhtar, H. Microbial bio-control agents: A comprehensive analysis on sustainable pest management in agriculture. J. Agric. Food Res. 2024, 18, 101421. [Google Scholar] [CrossRef]
- De Silva, N.I.; Brooks, S.; Lumyong, S.; Hyde, K.D. Use of endophytes as biocontrol agents. Fungal Biol. Rev. 2019, 33, 133–148. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y. The function of root exudates in the root colonization by beneficial soil rhizobacteria. Biology 2024, 13, 95. [Google Scholar] [CrossRef]
- Hardoim, P.R.; Hardoim, C.C.; van Overbeek, L.S.; van Elsas, J.D. Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS ONE 2012, 7, e30438. [Google Scholar] [CrossRef]
- Mitter, B.; Pfaffenbichler, N.; Flavell, R.; Compant, S.; Antonielli, L.; Petric, A.; Berninger, T.; Naveed, M.; Sheibani-Tezerji, R.; Von Maltzahn, G. A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front. Microbiol. 2017, 8, 11. [Google Scholar] [CrossRef]
- Li, W.; Zhang, H.; Li, P.; Apaliya, M.T.; Yang, Q.; Peng, Y.; Zhang, X. Biocontrol of postharvest green mold of oranges by Hanseniaspora uvarum Y3 in combination with phosphatidylcholine. Biol. Control 2016, 103, 30–38. [Google Scholar] [CrossRef]
- Dong, C.; Wang, L.; Li, Q.; Shang, Q. Epiphytic and endophytic fungal communities of tomato plants. Hortic. Plant J. 2021, 7, 38–48. [Google Scholar] [CrossRef]
- Adeleke, B.S.; Ayilara, M.S.; Akinola, S.A.; Babalola, O.O. Biocontrol mechanisms of endophytic fungi. Egypt. J. Biol. Pest Control 2022, 32, 46. [Google Scholar] [CrossRef]
- Evans, H. The endophyte-enemy release hypothesis: Implications for classical biological control and plant invasions. In Proceedings of the XII International Symposium on Biological Control of Weeds, La Grande Motte, France, 22–27 April 2007; CAB International: Wallingford, UK, 2008. [Google Scholar]
- Card, S.; Johnson, L.; Teasdale, S.; Caradus, J. Deciphering endophyte behaviour: The link between endophyte biology and efficacious biological control agents. FEMS Microbiol. Ecol. 2016, 92, fiw114. [Google Scholar] [CrossRef]
- Rokni, N.; Alizadeh, H.S.; Bazgir, E.; Darvishnia, M.; Mirzaei-Najafgholi, H. The tripartite consortium of Serendipita indica, Trichoderma simmonsii, and bell pepper (Capsicum annum). Biol. Control 2021, 158, 104608. [Google Scholar] [CrossRef]
- Abdelaziz, A.M.; Sharaf, M.H.; Hashem, A.H.; Al-Askar, A.A.; Marey, S.A.; Mohamed, F.A.; Abdelstar, M.N.; Zaki, M.A.; Abdelgawad, H.; Attia, M.S. Biocontrol of Fusarium wilt disease in pepper plant by plant growth promoting Penicillium expansum and Trichoderma harzianum. Not. Bot. Horti Agrobot. Cluj-Napoca 2023, 51, 13302. [Google Scholar] [CrossRef]
- Uddin, M.N.; Rahman, U.U.; Khan, W.; Uddin, N.; Muhammad, M. Effect of Trichoderma harzianum on tomato plant growth and its antagonistic activity against Phythium ultimum and Phytopthora capsici. Egypt. J. Biol. Pest Control. 2018, 28, 32. [Google Scholar] [CrossRef]
- Sallam, N.M.; AbdElfatah, H.-A.S.; Bagy, H.M.K.; Elfarash, A.; Abo-Elyousr, K.A.; Sikora, E.J.; Sallam, A. Exploring the mechanisms of endophytic bacteria for suppressing early blight disease in tomato (Solanum lycopersicum L.). Front. Microbiol. 2023, 14, 1184343. [Google Scholar] [CrossRef]
- Arasu, M.V.; Al-Dhabi, N.A. Biological control of root rot disease-causing Rhizoctonia solani in tomato plant by an endophytic fungus and analysis of growth promoting activities in greenhouse and field. Physiol. Mol. Plant Pathol. 2023, 127, 102080. [Google Scholar] [CrossRef]
- Lanna-Filho, R.; Souza, R.M.; Alves, E. Induced resistance in tomato plants promoted by two endophytic bacilli against bacterial speck. Trop. Plant Pathol. 2017, 42, 96–108. [Google Scholar] [CrossRef]
- Lanna Filho, R.; Romeiro, R.d.S.; Alves, E. Bacterial spot and early blight biocontrol by epiphytic bacteria in tomato plants. Pesqui. Agropecu. Bras. 2010, 45, 1381–1387. [Google Scholar] [CrossRef]
- Latz, M.A.; Jensen, B.; Collinge, D.B.; Jørgensen, H.J. Endophytic fungi as biocontrol agents: Elucidating mechanisms in disease suppression. Plant Ecol. Divers. 2018, 11, 555–567. [Google Scholar] [CrossRef]
- Júnior, V.L.; Maffia, L.A.; da Silva Romeiro, R.; Mizubuti, E.S. Biocontrol of tomato late blight with the combination of epiphytic antagonists and rhizobacteria. Biol. Control 2006, 38, 331–340. [Google Scholar] [CrossRef]
- Sinno, M.; Ranesi, M.; Di Lelio, I.; Iacomino, G.; Becchimanzi, A.; Barra, E.; Molisso, D.; Pennacchio, F.; Digilio, M.C.; Vitale, S. Selection of endophytic Beauveria bassiana as a dual biocontrol agent of tomato pathogens and pests. Pathogens 2021, 10, 1242. [Google Scholar] [CrossRef]
- Panebianco, S.; Lombardo, M.F.; Anzalone, A.; Musumarra, A.; Pellegriti, M.G.; Catara, V.; Cirvilleri, G. Epiphytic and endophytic microorganisms associated to different cultivar of tomato fruits in greenhouse environment and characterization of beneficial bacterial strains for the control of post-harvest tomato pathogens. Int. J. Food Microbiol. 2022, 379, 109861. [Google Scholar] [CrossRef]
- Bastas, K.K.; Kumar, A. Omics technologies in the plant–microbe interactions. In Microbial Biocontrol: Molecular Perspective in Plant Disease Management; Springer: Berlin/Heidelberg, Germany, 2023; pp. 257–282. [Google Scholar]
- Letertre, M.P.; Dervilly, G.; Giraudeau, P. Combined nuclear magnetic resonance spectroscopy and mass spectrometry approaches for metabolomics. Anal. Chem. 2020, 93, 500–518. [Google Scholar] [CrossRef] [PubMed]
- Yeshanew, G.M.; Ingkaninan, K. Chemical Characterization of Metabolites of Medicinal Plants Using Liquid Chromatography Mass Spectrometry (LC-MS) and Gas Chromatography Mass Spectrometry (GC-MS); Naresuan University: Phitsanuloke, Thailand, 2020. [Google Scholar]
- Weisskopf, L.; Schulz, S.; Garbeva, P. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nat. Rev. Microbiol. 2021, 19, 391–404. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, J.; Liu, B.; Zhu, Y.; Xiao, R.; Yang, W.; Ge, C.; Chen, Z. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides. BMC Microbiol. 2020, 20, 160. [Google Scholar] [CrossRef] [PubMed]
- Segovia, R.; Solé, J.; Marqués, A.M.; Cajal, Y.; Rabanal, F. Unveiling the membrane and cell wall action of antimicrobial cyclic lipopeptides: Modulation of the spectrum of activity. Pharmaceutics 2021, 13, 2180. [Google Scholar] [CrossRef]
- Maksimov, I.; Singh, B.; Cherepanova, E.; Burkhanova, G.; Khairullin, R. Prospects and applications of lipopeptide-producing bacteria for plant protection. Appl. Biochem. Microbiol. 2020, 56, 15–28. [Google Scholar] [CrossRef]
- Kulkarni, M.; Gorthi, S.; Banerjee, G.; Chattopadhyay, P. Production, characterization and optimization of actinomycin D from Streptomyces hydrogenans IB310, an antagonistic bacterium against phytopathogens. Biocatal. Agric. Biotechnol. 2017, 10, 69–74. [Google Scholar] [CrossRef]
- Upadhyay, A.; Srivastava, S. Phenazine-1-carboxylic acid is a more important contributor to biocontrol Fusarium oxysporum than pyrrolnitrin in Pseudomonas fluorescens strain Psd. Microbiol. Res. 2017, 166, 323–335. [Google Scholar] [CrossRef]
- Biessy, A.; Filion, M. Phenazines in plant-beneficial Pseudomonas spp.: Biosynthesis, regulation, function and genomics. Environ. Microbiol. 2018, 20, 3905–3917. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Shi, X.-C.; Chen, X.; Laborda, P.; Zhao, Y.-Y.; Liu, F.-Q.; Laborda, P. Biocontrol ability of phenazine-producing strains for the management of fungal plant pathogens: A review. Biol. Control 2021, 155, 104548. [Google Scholar] [CrossRef]
- Taechowisan, T.; Chuen-Im, T.; Ruangrote, B.; Phutdhawong, W.S. Re-Isolation of Endophytic Actinomycete from Root of Alpinia galanga (L.) Willd. and Its Production of Actinomycin D; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Matsumoto, A.; Takahashi, Y. Endophytic actinomycetes: Promising source of novel bioactive compounds. J. Antibiot. 2017, 70, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.; Han, X.; Li, X.; Zhang, X.; Wang, H.; Zhang, L.; Cao, P.; Wu, Y.; Wang, X.; Zhao, J. A Streptomyces sp. NEAU-HV9: Isolation, identification, and potential as a biocontrol agent against Ralstonia solanacearum of tomato plants. Microorganisms 2020, 8, 351. [Google Scholar] [CrossRef]
- Kumar, S.; Abedin, M.M.; Singh, A.K.; Das, S. Role of phenolic compounds in plant-defensive mechanisms. In Plant Phenolics in Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2020; Volume 1, pp. 517–532. [Google Scholar]
- Dadáková, K.; Heinrichová, T.; Lochman, J.; Kašparovský, T. Production of defense phenolics in tomato leaves of different age. Molecules 2020, 25, 4952. [Google Scholar] [CrossRef] [PubMed]
- Srinivasa, C.; Umesha, S.; Pradeep, S.; Ramu, R.; Gopinath, S.; Ansari, M.A.; Alomary, M.N.; Ali, A.; Ahmad, W.; Kollur, S.P. Salicylic acid-mediated enhancement of resistance in tomato plants against Xanthomonas perforans. Saudi J. Biol. Sci. 2022, 29, 2253–2261. [Google Scholar] [CrossRef]
- Mishra, A.K.; Baek, K.-H. Salicylic acid biosynthesis and metabolism: A divergent pathway for plants and bacteria. Biomolecules 2021, 11, 705. [Google Scholar] [CrossRef]
- Beris, D.; Theologidis, I.; Skandalis, N.; Vassilakos, N. Bacillus amyloliquefaciens strain MBI600 induces salicylic acid dependent resistance in tomato plants against Tomato spotted wilt virus and Potato virus Y. Sci. Rep. 2018, 8, 10320. [Google Scholar] [CrossRef]
- Marzouk, T.; Chaouachi, M.; Sharma, A.; Jallouli, S.; Mhamdi, R.; Kaushik, N.; Djébali, N. Biocontrol of Rhizoctonia solani using volatile organic compounds of solanaceae seed-borne endophytic bacteria. Postharvest Biol. Technol. 2021, 181, 111655. [Google Scholar] [CrossRef]
- Hallagan, J.B. The use of diacetyl (2, 3-butanedione) and related flavoring substances as flavorings added to foods—Workplace safety issues. Toxicology 2017, 388, 1–6. [Google Scholar] [CrossRef]
- Bu, S.; Munir, S.; He, P.; Li, Y.; Wu, Y.; Li, X.; Kong, B.; He, P.; He, Y. Bacillus subtilis L1-21 as a biocontrol agent for postharvest gray mold of tomato caused by Botrytis cinerea. Biol. Control 2021, 157, 104568. [Google Scholar] [CrossRef]
- Stocki, M.; Stocka, N.; Borowik, P.; Dudzińska, M.; Staszowska, A.; Okorski, A.; Oszako, T. Use of Volatile Organic Compounds Produced by Bacillus Bacteria for the Biological Control of Fusarium oxysporum. Forests 2025, 16, 1220. [Google Scholar] [CrossRef]
- Zhang, X.; Yue, Q.; Xin, Y.; Ngea, G.L.N.; Dhanasekaran, S.; Luo, R.; Li, J.; Zhao, L.; Zhang, H. The biocontrol potentiality of Bacillus amyloliquefaciens against postharvest soft rot of tomatoes and insights into the underlying mechanisms. Postharvest Biol. Technol. 2024, 214, 112983. [Google Scholar] [CrossRef]
- Brescia, F.; Vlassi, A.; Bejarano, A.; Seidl, B.; Marchetti-Deschmann, M.; Schuhmacher, R.; Puopolo, G. Characterisation of the antibiotic profile of Lysobacter capsici AZ78, an effective biological control agent of plant pathogenic microorganisms. Microorganisms 2021, 9, 1320. [Google Scholar] [CrossRef] [PubMed]
- Vlassi, A.; Nesler, A.; Perazzolli, M.; Lazazzara, V.; Büschl, C.; Parich, A.; Puopolo, G.; Schuhmacher, R. Volatile organic compounds from Lysobacter capsici AZ78 as potential candidates for biological control of soilborne plant pathogens. Front. Microbiol. 2020, 11, 1748. [Google Scholar] [CrossRef]
- Jeleń, H.; Błaszczyk, L.; Chełkowski, J.; Rogowicz, K.; Strakowska, J. Formation of 6-n-pentyl-2H-pyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycol. Prog. 2014, 13, 589–600. [Google Scholar] [CrossRef]
- Mohammed, B.L.; Toama, F.N. Biological control of Fusarium wilt in tomato by endophytic rhizobactria. Energy Procedia 2019, 157, 171–179. [Google Scholar] [CrossRef]
- Naz, R.; Khushhal, S.; Asif, T.; Mubeen, S.; Saranraj, P.; Sayyed, R. Inhibition of bacterial and fungal phytopathogens through volatile organic compounds produced by Pseudomonas sp. In Secondary Metabolites and Volatiles of PGPR in Plant-Growth Promotion; Springer: Berlin/Heidelberg, Germany, 2022; pp. 95–118. [Google Scholar]
- Sandhu, J.S.; Sidhu, M.K.; Yadav, I.S. Control of fungal diseases in agricultural crops by chitinase and glucanase transgenes. Sustain. Agric. Rev. 2017, 22, 163–212. [Google Scholar] [CrossRef]
- Kowalska, J.; Krzymińska, J.; Tyburski, J. Yeasts as a potential biological agent in plant disease protection and yield improvement—A short review. Agriculture 2022, 12, 1404. [Google Scholar] [CrossRef]
- Sasi, A.; Duraipandiyan, N.; Marikani, K.; Dhanasekaran, S.; Al-Dayan, N.; Venugopal, D. Identification and Characterization of a Newly Isolated Chitinase-Producing Strain Bacillus licheniformis SSCL-10 for Chitin Degradation. Archaea 2020, 2020, 8844811. [Google Scholar] [CrossRef]
- Solanki, M.K.; Robert, A.S.; Singh, R.K.; Kumar, S.; Pandey, A.K.; Srivastava, A.K.; Arora, D.K. Characterization of mycolytic enzymes of Bacillus strains and their bio-protection role against Rhizoctonia solani in tomato. Curr. Microbiol. 2012, 65, 330–336. [Google Scholar] [CrossRef]
- Admassie, M.; Woldehawariat, Y.; Alemu, T. In Vitro evaluation of extracellular enzyme activity and its biocontrol efficacy of bacterial isolates from pepper plants for the management of Phytophthora capsici. BioMed Res. Int. 2022, 2022, 6778352. [Google Scholar] [CrossRef]
- Yu, Y.; Gui, Y.; Li, Z.; Jiang, C.; Guo, J.; Niu, D. Induced systemic resistance for improving plant immunity by beneficial microbes. Plants 2022, 11, 386. [Google Scholar] [CrossRef]
- Mattos, A.d.P.; Rissato, B.B.; Itako, A.T.; Tolentino, J.B.; Estrada, K.R.F.S. Bacillus amyloliquefaciens PKM16 acts as an antagonist of white mold and an inducer of defense enzymes in tomato plants. Acta Sci. Agron. 2023, 45, e59586. [Google Scholar] [CrossRef]
- Wang, M.; Li, H. Structure, Function, and Biosynthesis of Siderophores Produced by Streptomyces Species. J. Agric. Food Chem. 2025, 73, 4425–4439. [Google Scholar] [CrossRef]
- Sun, T.-F.; Ge, Z.-W.; Xu, H.-R.; Zhang, H.; Huang, S.-S.; Feng, M.-G.; Ying, S.-H. Unlocking the siderophore biosynthesis pathway and its biological functions in the fungal insect pathogen Beauveria bassiana. J. Agric. Food Chem. 2024, 72, 18455–18464. [Google Scholar] [CrossRef]
- Deb, C.R.; Tatung, M. Siderophore producing bacteria as biocontrol agent against phytopathogens for a better environment: A review. S. Afr. J. Bot. 2024, 165, 153–162. [Google Scholar] [CrossRef]
- Sipiczki, M. Metschnikowia pulcherrima and related pulcherrimin-producing yeasts: Fuzzy species boundaries and complex antimicrobial antagonism. Microorganisms 2020, 8, 1029. [Google Scholar] [CrossRef]
- Saravanakumar, D.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. Detection of enzymatic activity and partial sequence of a chitinase in Metschnikowia pulcherrima strain MACH1 used as postharvest biocontrol agent. Eur. J. Plant Pathol. 2009, 123, 183–193. [Google Scholar] [CrossRef]
- Li, X.; Alfarraj, S.; Ansari, M.J. Biocontrol of Bacterial Wilt Biotic Stress in Tomato Plants by Successful Host Root Colonization and Inducing Host Resistance. J. Crop Health 2024, 76, 783–792. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.; Kabeil, S.S. Biological control of Meloidogyne incognita by Trichoderma harzianum and Serratia marcescens and their related enzymatic changes in tomato roots. Afr. J. Biotechnol. 2012, 11, 16247–16252. [Google Scholar] [CrossRef]
- Strano, C.P.; Bella, P.; Licciardello, G.; Caruso, A.; Catara, V. Role of secondary metabolites in the biocontrol activity of Pseudomonas corrugata and Pseudomonas mediterranea. Eur. J. Plant Pathol. 2017, 149, 103–115. [Google Scholar] [CrossRef]
- Lu, Y.; Song, W.; Wang, J.; Cao, Y.; Han, X.; Xu, C.; Wang, F.; Ge, B. Biocontrol of Botrytis cinerea by Streptomyces noursei C27 and preliminary identification of antimicrobial metabolites. Biol. Control 2024, 196, 105561. [Google Scholar] [CrossRef]
- Barra-Bucarei, L.; Iglesias, A.F.; González, M.G.; Aguayo, G.S.; Carrasco-Fernández, J.; Castro, J.F.; Campos, J.O. Antifungal activity of Beauveria bassiana endophyte against Botrytis cinerea in two solanaceae crops. Microorganisms 2019, 8, 65. [Google Scholar] [CrossRef]
- Verdoliva, S.G.; Gwyn-Jones, D.; Detheridge, A.; Robson, P. Controlled comparisons between soil and hydroponic systems reveal increased water use efficiency and higher lycopene and β-carotene contents in hydroponically grown tomatoes. Sci. Hortic. 2021, 279, 109896. [Google Scholar] [CrossRef]
- Khmelevtsova, L.E.; Sazykin, I.S.; Azhogina, T.N.; Sazykina, M.A. Influence of agricultural practices on bacterial community of cultivated soils. Agriculture 2022, 12, 371. [Google Scholar] [CrossRef]
- Anzalone, A.; Mosca, A.; Dimaria, G.; Nicotra, D.; Tessitori, M.; Privitera, G.F.; Pulvirenti, A.; Leonardi, C.; Catara, V. Soil and soilless tomato cultivation promote different microbial communities that provide new models for future crop interventions. Int. J. Mol. Sci. 2022, 23, 8820. [Google Scholar] [CrossRef] [PubMed]
- Mejia, G.; Jara-Servin, A.; Hernández-Álvarez, C.; Romero-Chora, L.; Peimbert, M.; Cruz-Ortega, R.; Alcaraz, L.D. Rhizosphere microbiome influence on tomato growth under low-nutrient settings. FEMS Microbiol. Ecol. 2025, 101, fiaf019. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.O.; Lechner, S.L.; Ross, H.C.; Joris, B.R.; Glick, B.R.; Stegelmeier, A.A. Friends and foes: Bacteria of the hydroponic plant microbiome. Plants 2024, 13, 3069. [Google Scholar] [CrossRef] [PubMed]
- Kuryntseva, P.; Pronovich, N.; Galieva, G.; Galitskaya, P.; Selivanovskaya, S. Exploring the Role of Vertical and Horizontal Pathways in the Formation of Lettuce Plant Endospheric Bacterial Communities: A Comparative Study of Hydroponic and Soil Systems. Horticulturae 2025, 11, 762. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Q.; Zhou, F.; Fan, S.; Zhao, X.; Zhang, C.; Yan, K.; Wu, X. Effects of different cultivation media on root bacterial community characteristics of greenhouse tomatoes. Front. Microbiol. 2023, 14, 1182347. [Google Scholar] [CrossRef]
- Dinu, M.; Soare, R.; Babeanu, C.; Hoza, G.; Botu, M. Effects of organic farming system on some nutritional parameters of tomatoes fruits at different ripening stages. Chil. J. Agric. Res. 2023, 83, 293–306. [Google Scholar] [CrossRef]
- Fadiji, A.E.; Ayangbenro, A.S.; Akanmu, A.O.; Babalola, O.O. Plant health in the era of metagenomics: Current state and future prospects. In Metagenomics, 2nd ed.; Academic Press: Cambridge, MA, USA, 2025; pp. 399–419. [Google Scholar] [CrossRef]
- Djemiel, C.; Maron, P.-A.; Terrat, S.; Dequiedt, S.; Cottin, A.; Ranjard, L. Inferring microbiota functions from taxonomic genes: A review. GigaScience 2022, 11, giab090. [Google Scholar] [CrossRef]
- Nicotra, D.; Ghadamgahi, F.; Ghosh, S.; Anzalone, A.; Dimaria, G.; Mosca, A.; Massimino, M.E.; Vetukuri, R.R.; Catara, V. Genomic insights and biocontrol potential of ten bacterial strains from the tomato core microbiome. Front. Plant Sci. 2024, 15, 1437947. [Google Scholar] [CrossRef] [PubMed]
- Aplakidou, E.; Vergoulidis, N.; Chasapi, M.; Venetsianou, N.K.; Kokoli, M.; Panagiotopoulou, E.; Iliopoulos, I.; Karatzas, E.; Pafilis, E.; Georgakopoulos-Soares, I. Visualizing metagenomic and metatranscriptomic data: A comprehensive review. Comput. Struct. Biotechnol. J. 2024, 23, 2011–2033. [Google Scholar] [CrossRef]
- Montagne, V.; Capiaux, H.; Barret, M.; Cannavo, P.; Charpentier, S.; Grosbellet, C.; Lebeau, T. Bacterial and fungal communities vary with the type of organic substrate: Implications for biocontrol of soilless crops. Environ. Chem. Lett. 2017, 15, 537–545. [Google Scholar] [CrossRef]
- Babalola, O.O.; Adedayo, A.A.; Fadiji, A.E. Metagenomic survey of tomato rhizosphere microbiome using the shotgun approach. Microbiol. Resour. Announc. 2022, 11, e0113121. [Google Scholar] [CrossRef]
- Blanco-Míguez, A.; Beghini, F.; Cumbo, F.; McIver, L.J.; Thompson, K.N.; Zolfo, M.; Manghi, P.; Dubois, L.; Huang, K.D.; Thomas, A.M. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat. Biotechnol. 2023, 41, 1633–1644. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef]
- Sun, H.; Jiang, F.; Shen, Y.; Li, X.; Hu, X.; Shen, X.; Wei, P. Alteration of the gut microbiota associated with childhood obesity by 16S rRNA gene sequencing. PeerJ 2020, 8, e8317. [Google Scholar] [CrossRef] [PubMed]
- Mamphogoro, T.P.; Kamutando, C.N.; Maboko, M.M.; Aiyegoro, O.A.; Babalola, O.O. De novo Genome Assessment of Serratia marcescens SGT5.3, a Potential Plant Growth-Promoting Bacterium Isolated from the Surface of Capsicum annuum Fruit. Microbiol. Resour. Announc. 2023, 12, e01154-22. [Google Scholar] [CrossRef]
- Arseneault, T.; Filion, M. Phenazine-producing Pseudomonas spp. as biocontrol agents of plant pathogens. In Microbial Inoculants in Sustainable Agricultural Productivity: Vol. 2: Functional Applications; Springer: New Delhi, India, 2016; pp. 53–68. [Google Scholar]
- Paranthaman, L.; Seethapathy, P.; Pandita, D.; Gopalakrishnan, C.; Sankaralingam, S.; Venkatesh, S.; Malaisamy, A.; Pandita, A.; Casini, R.; Alataway, A. Levering proteomic analysis of Pseudomonas fluorescens mediated resistance responses in tomato during pathogenicity of Fusarium oxysporum f. sp. oxysporum. Front. Sustain. Food Syst. 2023, 7, 1157575. [Google Scholar] [CrossRef]
- Abbas, A.; Mubeen, M.; Zheng, H.; Sohail, M.A.; Shakeel, Q.; Solanki, M.K.; Iftikhar, Y.; Sharma, S.; Kashyap, B.K.; Hussain, S. Trichoderma spp. genes involved in the biocontrol activity against Rhizoctonia solani. Front. Microbiol. 2022, 13, 884469. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.; Pontiggia, D.; Raggi, S.; Cheng, Z.; Scaloni, F.; Ferrari, S.; Ausubel, F.M.; Cervone, F.; De Lorenzo, G. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. Proc. Natl. Acad. Sci. USA 2015, 112, 5533–5538. [Google Scholar] [CrossRef]
- Mustafa, G.; Anwar, S.; Joyia, F.; Hayat, M.; Zia, M.; Khan, M. Molecular characterization and mycoparasitic aptitude of indigenous biocontrol agent Trichoderma harzianum. JAPS J. Anim. Plant Sci. 2020, 30, 1508–1515. [Google Scholar] [CrossRef]
- Almario, J.; Bruto, M.; Vacheron, J.; Prigent-Combaret, C.; Moënne-Loccoz, Y.; Muller, D. Distribution of 2, 4-diacetylphloroglucinol biosynthetic genes among the Pseudomonas spp. reveals unexpected polyphyletism. Front. Microbiol. 2017, 8, 1218. [Google Scholar] [CrossRef]
- Pawar, S.; Chaudhari, A.; Prabha, R.; Shukla, R.; Singh, D.P. Microbial pyrrolnitrin: Natural metabolite with immense practical utility. Biomolecules 2019, 9, 443. [Google Scholar] [CrossRef]
- Anand, A.; Falquet, L.; Abou-Mansour, E.; L’Haridon, F.; Keel, C.; Weisskopf, L. Biological hydrogen cyanide emission globally impacts the physiology of both HCN-emitting and HCN-perceiving Pseudomonas. mBio 2023, 14, e00857-23. [Google Scholar] [CrossRef]
- Dang, Y.; Zhao, F.; Liu, X.; Fan, X.; Huang, R.; Gao, W.; Wang, S.; Yang, C. Enhanced production of antifungal lipopeptide iturin A by Bacillus amyloliquefaciens LL3 through metabolic engineering and culture conditions optimization. Microb. Cell Factories 2019, 18, 68. [Google Scholar] [CrossRef] [PubMed]
- Théatre, A.; Cano-Prieto, C.; Bartolini, M.; Laurin, Y.; Deleu, M.; Niehren, J.; Fida, T.; Gerbinet, S.; Alanjary, M.; Medema, M.H. The surfactin-like lipopeptides from Bacillus spp.: Natural biodiversity and synthetic biology for a broader application range. Front. Bioeng. Biotechnol. 2021, 9, 623701. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Li, R.; Shi, C.; Lu, Z.; Meng, F.; Bie, X. The efficient synthesis strategy of bacillomycin D in Bacillus amyloliquefaciens fmbJ. Process Biochem. 2024, 145, 131–138. [Google Scholar] [CrossRef]
- Li, J.; Zheng, J.; Liang, Y.; Yan, R.; Xu, X.; Lin, J. Expression and characterization of a chitinase from Serratia marcescens. Protein Expr. Purif. 2020, 171, 105613. [Google Scholar] [CrossRef] [PubMed]
- Dutkiewicz, J.; Mackiewicz, B.; Lemieszek, M.K.; Golec, M.; Milanowski, J. Pantoea agglomerans: A mysterious bacterium of evil and good. Part IV. Beneficial effects. Ann. Agric. Environ. Med. 2016, 23, 206–222. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Le, T.L.; Nguyen, T.D.H.; Truong, T.T.T.; Nguyen, T.T.T. Biological Control of Streptomyces murinus against Colletotrichum causing Anthracnose Disease on Tomato Fruits. J. Pure Appl. Microbiol. 2025, 19, 542–557. [Google Scholar] [CrossRef]
- Sharma, M.; Jasrotia, S.; Ohri, P.; Manhas, R.K. Nematicidal potential of Streptomyces antibioticus strain M7 against Meloidogyne incognita. AMB Express 2019, 9, 168. [Google Scholar] [CrossRef]
- Byrne, J.; Dianese, A.; Ji, P.; Campbell, H.; Cuppels, D.; Louws, F.; Miller, S.; Jones, J.; Wilson, M. Biological control of bacterial spot of tomato under field conditions at several locations in North America. Biol. Control 2005, 32, 408–418. [Google Scholar] [CrossRef]
- Akram, W.; Waqar, S.; Hanif, S.; Anjum, T.; Aftab, Z.-E.-H.; Li, G.; Ali, B.; Rizwana, H.; Hassan, A.; Rehman, A. Comparative effect of seed coating and biopriming of Bacillus aryabhattai Z-48 on seedling growth, growth promotion, and suppression of Fusarium wilt disease of tomato plants. Microorganisms 2024, 12, 792. [Google Scholar] [CrossRef]
- Dania, V.; Omidiora, J. Combination of biological control agents and garlic (Allium sativum) extract in reducing damping-off disease of tomato. Bangladesh J. Agric. Res. 2019, 44, 553–567. [Google Scholar] [CrossRef]
- Saberi Riseh, R.; Skorik, Y.A.; Thakur, V.K.; Pour, M.M.; Tamanadar, E.; Noghabi, S.S. Encapsulation of plant biocontrol bacteria with alginate as a main polymer material. Int. J. Mol. Sci. 2021, 22, 11165. [Google Scholar] [CrossRef]
- Calvo-Garrido, C.; Roudet, J.; Aveline, N.; Davidou, L.; Dupin, S.; Fermaud, M. Microbial antagonism toward Botrytis bunch rot of grapes in multiple field tests using one Bacillus ginsengihumi strain and formulated biological control products. Front. Plant Sci. 2019, 10, 105. [Google Scholar] [CrossRef]
- Minchev, Z.; Kostenko, O.; Soler, R.; Pozo, M.J. Microbial consortia for effective biocontrol of root and foliar diseases in tomato. Front. Plant Sci. 2021, 12, 756368. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, P.A.; Weselowski, B. Efficacy of Bacillus subtilis QST 713 formulations, copper hydroxide, and their tank mixes on bacterial spot of tomato. Crop Prot. 2015, 74, 70–76. [Google Scholar] [CrossRef]
- Caccavo, V.; Forlano, P.; Mang, S.M.; Fanti, P.; Nuzzaci, M.; Battaglia, D.; Trotta, V. Effects of Trichoderma harzianum strain T22 on the arthropod community associated with tomato plants and on the crop performance in an experimental field. Insects 2022, 13, 418. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Tang, J.; Karuppiah, V.; Li, Y.; Xu, N.; Chen, J. Co-culture of Trichoderma atroviride SG3403 and Bacillus subtilis 22 improves the production of antifungal secondary metabolites. Biol. Control 2020, 140, 104122. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakhalaru, P.; Mampholo, B.M.; Mamphogoro, T.P.; Thantsha, M.S. Endophytic and Epiphytic Microorganisms as Biocontrol Agents: Mechanisms, Applications, and Metagenomic Approaches in Tomato Cultivation. Molecules 2025, 30, 3816. https://doi.org/10.3390/molecules30183816
Rakhalaru P, Mampholo BM, Mamphogoro TP, Thantsha MS. Endophytic and Epiphytic Microorganisms as Biocontrol Agents: Mechanisms, Applications, and Metagenomic Approaches in Tomato Cultivation. Molecules. 2025; 30(18):3816. https://doi.org/10.3390/molecules30183816
Chicago/Turabian StyleRakhalaru, Phathutshedzo, Beverly Mmakatane Mampholo, Tshifhiwa Paris Mamphogoro, and Mapitsi Silvester Thantsha. 2025. "Endophytic and Epiphytic Microorganisms as Biocontrol Agents: Mechanisms, Applications, and Metagenomic Approaches in Tomato Cultivation" Molecules 30, no. 18: 3816. https://doi.org/10.3390/molecules30183816
APA StyleRakhalaru, P., Mampholo, B. M., Mamphogoro, T. P., & Thantsha, M. S. (2025). Endophytic and Epiphytic Microorganisms as Biocontrol Agents: Mechanisms, Applications, and Metagenomic Approaches in Tomato Cultivation. Molecules, 30(18), 3816. https://doi.org/10.3390/molecules30183816