Effect of Different Arnica montana L. Plant Parts on the Essential Oil Composition, Antimicrobial Activity, and Synergistic Interactions with Antibiotics
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemical Characteristics of Essential Oils
2.2. Differentiation of Essential Oils
2.3. Antibacterial Activity of Essential Oils
2.4. Cytotoxic Activity
2.5. Interactions Between Arnica Montana Essential Oils, Their Combinations, and Antibiotics Against Selected Bacteria
3. Materials and Methods
3.1. Collection of Raw Material and Assay of the Essential Oil Content
3.2. GC-MS Analysis
3.3. Qualitative and Quantitative Analysis
3.4. Antibacterial Activity
3.4.1. Microorganisms and Materials
3.4.2. Screening of Plant Essential Oils for Antibacterial Activity-Agar Diffusion Assay
3.4.3. Determination of the Minimum Inhibitory Concentration (MIC) of Essential Oils
3.4.4. Synergistic Interactions Between EO and Antibiotics
3.5. Cytotoxic Activity
3.5.1. Cell Culture Experiments
3.5.2. Cell Viability
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sugier, P.; Sugier, D.; Sozinov, O.; Kołos, A.; Wołkowycki, D.; Plak, A.; Budnyk, O. Characteristics of plant communities, population features, and edaphic conditions of Arnica montana L. populations in pine forests of mid-eastern Europe. Acta Soc. Bot. Pol. 2019, 88, 3640. [Google Scholar] [CrossRef]
- Klaas, C.A.; Wagner, G.; Laufer, S.; Sosa, S.; Della Loggia, R.; Bomme, U.; Pahl, H.L.; Merfort, I. Studies on the anti-inflammatory activity of phytopharmaceuticals prepared from Arnica flowers. Planta Med. 2002, 68, 385–391. [Google Scholar] [CrossRef]
- Craciunescu, O.; Constantin, D.; Gaspar, A.; Toma, L.; Utoiu, E.; Moldovan, L. Evaluation of antioxidant and cytoprotective activities of Arnica montana L. and Artemisia absinthium L. ethanolic extracts. Chem. Cent. J. 2012, 6, 97. [Google Scholar] [CrossRef]
- Gaspar, A.; Craciunescu, O.; Trif, M.; Moisei, M.; Moldovan, L. Antioxidant and anti-inflammatory properties of active compounds from Arnica montana L. Rom. Biotechnol. Lett. 2014, 19, 9353–9365. [Google Scholar]
- Kriplani, P.; Guarve, K.; Baghael, U.S. Arnica montana L.—A plant of healing: Review. J. Pharm. Pharmacol. 2017, 69, 925–945. [Google Scholar] [CrossRef]
- Sugier, D.; Sugier, P.; Kowalski, R.; Kołodziej, B.; Olesińska, K. Foliar boron fertilization as factor affecting the essential oil content and yield of oil components from flower heads of Arnica montana L. and Arnica chamissonis Less. cultivated for industry. Ind. Crops Prod. 2017, 109, 587–597. [Google Scholar] [CrossRef]
- Petrova, M.; Geneva, M.; Trendafilova, A.; Miladinova-Georgieva, K.; Dimitrova, L.; Sichanova, M.; Nikolova, M.; Ivanova, V.; Dimitrova, M.; Sozoniuk, M. Antioxidant capacity and accumulation of caffeoylquinic acids in Arnica montana L. in vitro shoots after elicitation with yeast extract or salicylic acid. Plants 2025, 14, 967. [Google Scholar] [CrossRef]
- Zheleva-Dimitrova, D.; Balabanova, V.; Gevrenova, R.; Doichinova, I.; Vitkova, A. Chemometrics-based approach in analysis of Arnicae flos. Pharmacogn. Mag. 2015, 11, S538–S544. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.J. Arnica montana L.: Doesn’t Origin Matter? Plants 2023, 12, 3532. [Google Scholar] [CrossRef] [PubMed]
- Ganzera, M.; Egger, C.; Zidorn, C.; Stuppner, H. Quantitative analysis of flavonoids and phenolic acids in Arnica montana L. by micellar electrokinetic capillary chromatography. Anal. Chim. Acta 2008, 614, 196–200. [Google Scholar] [CrossRef]
- Sugier, D.; Sugier, P.; Jakubowicz-Gil, J.; Winiarczyk, K.; Kowalski, R. Essential oil from Arnica montana L. achenes: Chemical characteristics and anticancer activity. Molecules 2019, 24, 4158. [Google Scholar] [CrossRef] [PubMed]
- Judžentienė, A.; Būdienė, J. Analysis of the chemical composition of flower essential oils from Arnica montana of Lithuanian origin. Chemija 2009, 20, 190–194. [Google Scholar]
- Pljevljakušić, D.; Rančić, D.; Ristić, M.; Vujisić, L.; Radanović, D.; Dajić-Stevanović, Z. Rhizome and root yield of the cultivated Arnica montana L.: Chemical composition and histochemical localization of essential oil. Ind. Crops Prod. 2012, 39, 177–189. [Google Scholar] [CrossRef]
- Clauser, M.; Aiello, N.; Scartezzini, F.; Innocenti, G.; Dall’Acqua, S. Differences in the chemical composition of Arnica montana flowers from wild populations of north Italy. Nat. Prod. Commun. 2014, 9, 3–6. [Google Scholar] [CrossRef]
- Pljevljakušić, D.; Janković, T.; Jelačić, S.; Novakovič, M.; Menkovič, N.; Beatovič, D.; Dajić-Stevanović, Z. Morphological and chemical characterization of Arnica montana L. under different cultivation models. Ind. Crops Prod. 2014, 52, 233–244. [Google Scholar] [CrossRef]
- Kowalski, R.; Sugier, D.; Sugier, P.; Kołodziej, B. Evaluation of the chemical composition of essential oils with respect to the maturity of flower heads of Arnica montana L. and Arnica chamissonis Less. cultivated for industry. Ind. Crops Prod. 2015, 76, 857–865. [Google Scholar] [CrossRef]
- Sugier, P.; Jakubowicz-Gil, J.; Sugier, D.; Sęczyk, Ł.; Zając, A.; Pięt, M.; Paduch, R. Stages of development and solvents determine the anticancer potential of mountain arnica (Arnica montana L.) inflorescence extracts. Appl. Sci. 2023, 13, 12976. [Google Scholar] [CrossRef]
- Sugier, D.; Sugier, P.; Jakubowicz-Gil, J.; Gawlik-Dziki, U.; Zając, A.; Król, B.; Chmiel, S.; Kończak, M.; Pięt, M.; Paduch, R. Nitrogen fertilization and solvents as factors modifying the antioxidant and anticancer potential of Arnica montana L. flower head extracts. Plants 2023, 12, 142. [Google Scholar] [CrossRef]
- Röhrl, J.; Piqué-Borràs, M.-R.; Jaklin, M.; Werner, M.; Werz, O.; Josef, H.; Hölz, H.; Ammendola, A.; Künstle, G. Anti-inflammatory activities of Arnica montana planta tota versus flower extracts: Analytical, in vitro and in vivo mouse paw oedema model studies. Plants 2023, 12, 1348. [Google Scholar] [CrossRef]
- Sugier, P.; Jakubowicz-Gil, J.; Sugier, D.; Kowalski, R.; Gawlik-Dziki, U.; Kołodziej, B.; Dziki, D. Chemical characteristics and anticancer activity of essential oil from Arnica montana L. rhizomes and roots. Molecules 2020, 25, 1284. [Google Scholar] [CrossRef]
- Shafaghat, A.; Oji, K. Nepetalactone content and antibacterial activity of the essential oils from different parts of Nepeta persica. Nat. Prod. Commun. 2010, 5, 625–628. [Google Scholar] [CrossRef]
- Xiong, L.; Peng, C.; Zhou, Q.-M.; Wan, F.; Xie, X.-F.; Guo, L.; Li, X.-H.; He, C.-J.; Dai, O. Chemical composition and antibacterial activity of essential oils from different parts of Leonurus japonicus Houtt. Molecules 2013, 18, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Al-Sayed, E. Unearthing the chemical composition of Taxodium distichum (L.) Rich. leaf essential oil and its antimicrobial activity. Ind. Crops Prod. 2018, 126, 76–82. [Google Scholar] [CrossRef]
- Sodéré, P.; Somda, M.K.; Zongo, L.; Mihin, H.B.; Mogmenga, I.; Akakpo, A.Y.; Dicko, M.H. Synergy and mechanism of the action of the combination of essential oils and antibiotics against antibiotic-resistant food borne disease bacteria in Burkina Faso. Infect. Drug Resist. 2025, 18, 2743–2763. [Google Scholar] [CrossRef]
- Langeveld, W.T.; Veldhuizen, E.J.A.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit Rev Microbiol. 2013, 40, 76–94. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.S.X.; Lim, S.H.E.; Hu, C.P.; Yiap, B.C. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria. Phytomedicine 2013, 20, 710–713. [Google Scholar] [CrossRef] [PubMed]
- El Atki, Y.; Aouam, I.; El Kamari, F.; Taroq, A.; Nayme, K.; Timinouni, M.; Lyoussi, B.; Abdellaoui, A. Antibacterial activity of cinnamon essential oils and their synergistic potential with antibiotics. J. Adv. Pharm. Technol. Res. 2019, 10, 63–67. [Google Scholar] [CrossRef]
- Iseppi, R.; Mariani, M.; Condò, C.; Sabia, C.; Messi, P. Essential oils: A natural weapon against antibiotic-resistant bacteria responsible for nosocomial infections. Antibiotics 2021, 10, 417. [Google Scholar] [CrossRef]
- Gan, C.; Langa, E.; Valenzuela, A.; Ballestero, D.; Pino-Otín, M.R. Synergistic activity of thymol with commercial antibiotics against critical and high WHO priority pathogenic bacteria. Plants 2023, 12, 1868. [Google Scholar] [CrossRef]
- Taibi, M.; Elbouzidi, A.; Haddou, M.; Loukili, E.H.; Bellaouchi, R.; Asehraou, A.; Douzi, Y.; Addi, M.; Salamatullah, A.M.; Nafidi, H.-A.; et al. Chemical Profiling, Antibacterial Efficacy, and Synergistic Actions of Ptychotis verticillata Duby Essential Oil in Combination with Conventional Antibiotics. Nat. Prod. Commun. 2024, 19, 1934578X231222785. [Google Scholar] [CrossRef]
- Vivas, R.; Barbosa, A.A.T.; Dolabela, S.S.; Jain, S. Multidrug-resistant bacteria and alternative methods to control them: An overview. Microb. Drug Resist. 2019, 25, 890–908. [Google Scholar] [CrossRef] [PubMed]
- Basavegowda, N.; Baek, K.-H. Combination strategies of different antimicrobials: An efficient and alternative tool for pathogen inactivation. Biomedicines 2022, 10, 2219. [Google Scholar] [CrossRef]
- Mráz, P.; Kopecký, M.; Hasoňová, L.; Hoštičková, I.; Vaníčková, A.; Perná, K.; Žabka, M.; Hýbl, M. Antibacterial activity and chemical composition of popular plant essential oils and their positive interactions in combination. Molecules 2025, 30, 1864. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, D.J. A generalization of the retention index system including liner temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–467. [Google Scholar] [CrossRef]
- Ben Marzoug, H.N.; Romdhane, M.; Lebrihi, A.; Mathieu, F.; Couderc, F.; Abderraba, M.; Khouja, M.L.; Bouajila, J. Eucalyptus oleosa essential oils: Chemical composition and antimicrobial and antioxidant activities of the oils from different plant parts (stems, leaves, flowers and fruits). Molecules 2011, 16, 1695–1709. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Chauhan, A. Compositional variation in the essential oils of vegetative and reproductive parts of Laggera crispata (Vahl) Hepper & Wood. Natl. Acad. Sci. Lett. 2013, 36, 447–451. [Google Scholar] [CrossRef]
- Han, F.; Ma, G.-Q.; Yang, M.; Yan, L.; Xiong, W.; Shu, J.-C.; Zhao, Z.-D.; Xu, H.-L. Chemical composition and antioxidant activities of essential oils from different parts of the oregano. J. Zhejiang Univ. B 2017, 18, 79–84. [Google Scholar] [CrossRef]
- Hao, Y.; Kang, J.; Guo, X.; Yang, R.; Chen, Y.; Li, J.; Shi, L. Comparison of Nutritional Compositions and Essential Oil Profiles of Different Parts of a Dill and Two Fennel Cultivars. Foods 2021, 10, 1784. [Google Scholar] [CrossRef]
- Kholiya, S.; Padalia, R.C.; Tiwari, A. Compositional and comparative analysis of essential oil from different plant parts of Cyathocline purpurea. Nat. Prod. Res. 2025, 1–7. [Google Scholar] [CrossRef]
- Ristić, M.; Krivokuća-Dokić, D.; Radanović, D.; Nastovska, T. Essential oil of Arnica montana and Arnica chamissonis. Hem. Ind. 2007, 61, 272–277. [Google Scholar] [CrossRef]
- Vidic, D.; Zeljković, S.Ć.; Dizdar, M.; Maksimović, M. Essential oil composition and antioxidant activity of four Asteraceae species from Bosnia. J. Essent. Oil Res. 2016, 28, 445–457. [Google Scholar] [CrossRef]
- Danila, D.; Stefanache, C.; Bujor, O.; Necula, R.; Tanase, C.; Schiopu, R.; Spac, A. Phytochemical profile of Arnica montana L. root and rhizome samples from several wild populations in the Romanian Eastern Carpathians. Planta Medica 2016, 81, S1–S381. [Google Scholar] [CrossRef]
- Moghrovyan, A.; Parseghyan, L.; Sevoyan, G.; Darbinyan, A.; Sahakyan, N.; Gaboyan, M.; Karabekian, Z.; Voskanyan, A. Antinociceptive, anti-inflammatory, and cytotoxic properties of Origanum vulgare essential oil, rich with β-caryophyllene and β-caryophyllene oxide. Korean J. Pain 2022, 35, 140–151. [Google Scholar] [CrossRef]
- Czaikoski, K.; Mesomo, M.C.; Scheer, A.d.P.; Santa, O.R.D.; Queiroga, C.L.; Corazza, M.L. Kinetics, composition and biological activity of Eupatorium intermedium flower extracts obtained from scCO2 and compressed propane. J. Supercrit. Fluids 2015, 97, 145–153. [Google Scholar] [CrossRef]
- Azadi, B.; Nouri, E. The essential oil composition of Centaurea intricata Boiss. flowering aerial parts. Asian J. Biomed. Pharmaceut. Sci. 2014, 4, 25–27. [Google Scholar]
- de Almeida, L.F.R.; Portella, R.d.O.; Bufalo, J.; Marques, M.O.M.; Facanali, R.; Frei, F.; Chang, I.-F. Non-Oxygenated Sesquiterpenes in the Essential Oil of Copaifera langsdorffii Desf. Increase during the Day in the Dry Season. PLoS ONE 2016, 11, e0149332. [Google Scholar] [CrossRef] [PubMed]
- Trang, V.M.; Giang, P.M.; Son, N.T. Essential oils from Eupatorium triplinerve stem barks and leaves: Chemical profile, molecular docking, and toxicity prediction. J. Essent. Oil Bear. Plants 2025, 28, 403–413. [Google Scholar] [CrossRef]
- Lourens, A.; Reddy, D.; Başer, K.; Viljoen, A.; Van Vuuren, S. In vitro biological activity and essential oil composition of four indigenous South African Helichrysum species. J. Ethnopharmacol. 2004, 95, 253–258. [Google Scholar] [CrossRef]
- Amaral, R.G.; Baldissera, M.D.; Grando, T.H.; Couto, J.C.M.; Posser, C.P.; Ramos, A.P.; Sagrillo, M.R.; Vaucher, R.A.; Da Silva, A.S.; Becker, A.P.; et al. Combination of the essential oil constituents α-pinene and β-caryophyllene as a potentiator of trypanocidal action on Trypanosoma evansi. J. Appl. Biomed. 2016, 14, 265–272. [Google Scholar]
- Fidyt, K.; Fiedorowicz, A.; Strządała1, L.; Szumny, A. β-caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Med. 2016, 5, 3007–3017. [Google Scholar]
- Moghrovyan, A.; Sahakyan, N. Antimicrobial activity and mechanisms of action of Origanum vulgare L. essential oil: Effects on membrane-associated properties. AIMS Biophys. 2024, 11, 508–526. [Google Scholar] [CrossRef]
- Pastor, J.; García, M.; Steinbauer, S.; Setzer, W.N.; Scull, R.; Gille, L.; Monzote, L. Combinations of ascaridole, carvacrol, and caryophyllene oxide against Leishmania. Acta Trop. 2015, 145, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Tabanca, N.; Demirci, B.; Ali, A.; Ali, Z.; Blythe, E.K.; Khan, I.A. Essential oils of green and red Perilla frutescens as potential sources of compounds for mosquito management. Ind. Crops Prod. 2015, 65, 36–44. [Google Scholar]
- Montanari, R.M.; Barbosa, L.C.A.; Demuner, A.J.; Silva, C.J.; Carvalho, L.S.; Andrade, N.J. Chemical composition and antibacterial activity of essential oils from verbenaceae species: Alternative sources of (E)-caryophyllene and germacrene-D. Quim. Nova 2011, 34, 1550–1555. [Google Scholar] [CrossRef]
- Jain, A.; Mittal, P.; Sharma, K.K.; Mishra, V. Therapeutic Potential of 2,5-Dimethoxy-p-Cymene and Thymol methyl ether from Arnica montana Essential Oils: Neuro-protection and Stress Mitigation. Front. Health Inform. 2024, 13, 126–136. [Google Scholar] [CrossRef]
- Widrig, R.; Suter, A.; Saller, R.; Melzer, J. Choosing between NSAID and arnica for topical treatment of hand osteoarthritis in a randomised, double-blind study. Rheumatol. Int. 2007, 27, 585–591. [Google Scholar] [CrossRef]
- Toma, C.-C.; Marrelli, M.; Puticiu, M.; Conforti, F.; Statti, G. Effects of Arnica Phytotherapeutic and Homeopathic Formulations on Traumatic Injuries and Inflammatory Conditions: A Systematic Review. Plants 2024, 13, 3112. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S.; Suter, A.; Merfort, I. Skin penetration studies of Arnica preparations and of their sesquiterpene lactones. Planta Med. 2004, 70, 897–903. [Google Scholar]
- Scientific Committee on Consumer Safety (SCCS). The SCCS Notes of Guidance for the Testing of Cosmetic Ingredients and Their Safety Evaluation, 9th Revision, 29 September 2015, SCCS/1564/15, Revision of 25 April 2016; SCCS: Brussels, Belgium, 2016. [Google Scholar]
- WHO (World Health Organization). Antimicrobial Resistance: Global Report on Surveillance; WHO (World Health Organization): Geneva, Switzerland, 2014. [Google Scholar]
- Mbole, J.; Aba’a, M.; Ndzie, P.; Minyem, A.; Ngolsu, F.; Nga, E. Antimicrobial resistance. Health Sci. Dis. 2023, 24. [Google Scholar]
- Salam, A.; Al-Amin, Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Drioiche, A.; Baammi, S.; Zibouh, K.; Al Kamaly, O.; Alnakhli, A.M.; Remok, F.; Saidi, S.; Amaiach, R.; El Makhoukhi, F.; Elomri, A.; et al. A Study of the Synergistic Effects of Essential Oils from Origanum compactum and Origanum elongatum with Commercial Antibiotics against Highly Prioritized Multidrug-Resistant Bacteria for the World Health Organization. Metabolites 2024, 14, 210. [Google Scholar] [CrossRef] [PubMed]
- Zych, S.; Adaszyńska-Skwirzyńska, M.; Szewczuk, M.A.; Szczerbińska, D. Interaction between Enrofloxacin and Three Essential Oils (Cinnamon Bark, Clove Bud and Lavender Flower)—A Study on Multidrug-Resistant Escherichia coli Strains Isolated from 1-Day-Old Broiler Chickens. Int. J. Mol. Sci. 2024, 25, 5220. [Google Scholar] [CrossRef]
- Raikwar, G.; Kumar, D.; Mohan, S.; Dahiya, P. Synergistic potential of essential oils with antibiotics for antimicrobial resistance with emphasis on mechanism of action: A review. Biocatal. Agric. Biotechnol. 2024, 61, 103384. [Google Scholar] [CrossRef]
- Maggio, F.; Buccioni, F.; Garzoli, S.; Paparella, A.; Serio, A. Modulation of Antimicrobial Resistance in Listeria monocytogenes via Synergistic Interactions Between Thymbra capitata L. (Cav.) Essential Oil and Conventional Antibiotics. Antibiotics 2025, 14, 623. [Google Scholar] [CrossRef] [PubMed]
- Karadağ, A.E.; Çaşkurlu, A.; Demirci, B.; Demirci, F. Binary synergistic combinations of lavender and fennel essential oils with amoxicillin. Planta Med. 2023, 89, 800–807. [Google Scholar] [CrossRef]
- Soulaimani, B.; Abbad, I.; Varoni, E.; Iriti, M.; Mezrioui, N.-E.; Hassani, L.; Abbad, A. Optimization of antibacterial activity of essential oil mixture obtained from three medicinal plants: Evaluation of synergism with conventional antibiotics and nanoemulsion effectiveness. S. Afr. J. Bot. 2022, 151, 900–908. [Google Scholar] [CrossRef]
- Ibrahim, S.M.; Al-Mizraqchi, A.S.; Haider, J. Metronidazole potentiation by Panax Ginseng and Symphytum officinale: A new strategy for P. gingivalis infection control. Antibiotics 2023, 12, 1288. [Google Scholar] [CrossRef]
- Piasecki, B.; Korona-Głowniak, I.; Kiełtyka-Dadasiewicz, A.; Ludwiczuk, A. Composition and anti-Helicobacter pylori properties of essential oils obtained from selected Mentha cultivars. Molecules 2023, 28, 5690. [Google Scholar] [CrossRef]
- Mohamed, S.; Mohamed, M.; Khalil, M.; Azmy, M.; Mabrouk, M. Combination of essential oil and ciprofloxacin to inhibit/eradicate biofilms in multidrug-resistant Klebsiella pneumoniae. J. Appl. Microbiol. 2018, 125, 84–95. [Google Scholar] [CrossRef]
- Siqueira, I.B.; Barbosa, A.A.T.; Jain, S.; Fernandes, R.P.M.; Silva, A.R.S.T.; Barbosa, F.H.F.; Schimieguel, D.M.; Blank, A.F.; Sacramento, A.G.; Nizio, D.A.d.C.; et al. In vitro Antibacterial Activity of Essential Oils of Croton tetradenius Baill. From the Brazilian Caatinga Biome and Its Synergistic Effect with Ciprofloxacin and Meropenem. J. Essent. Oil Bear. Plants 2021, 24, 12–21. [Google Scholar] [CrossRef]
- El Alama, H.; El Aissami, A.; Ait Haj Said, A.; El Alaoui-Faris, F.-E. Antistaphylococcal synergistic interaction between the essential oil of Rosmarinus officinalis L. and ciprofloxacin. J. Chem. Pharm. Res. 2015, 7, 285–289. [Google Scholar]
- Ouedrhiri, W.; Balouiri, M.; Bouhdid, S.; Moja, S.; Chahdi, F.O.; Taleb, M.; Greche, H. Mixture design of Origanum compactum, Origanum majorana and Thymus serpyllum essential oils: Optimization of their antibacterial effect. Ind. Crops Prod. 2016, 89, 1–9. [Google Scholar] [CrossRef]
- Elbouzidi, A.; Haddou, M.; Baraich, A.; Taibi, M.; El Hachlafi, N.; Pareek, A.; Mesnard, F.; Addi, M. Biochemical insights into specialized plant metabolites: Advancing cosmeceutical applications for skin benefits. J. Agric. Food Res. 2025, 19, 101651. [Google Scholar] [CrossRef]
- Alam, M.; Bano, N.; Ahmad, T.; Sharangi, A.B.; Upadhyay, T.K.; Alraey, Y.; Alabdallah, N.M.; Rauf, M.A.; Saeed, M. Synergistic role of plant extracts and essential oils against multidrug resistance and Gram-negative bacterial strains producing extended dpectrum β-lactamases. Antibiotics 2022, 11, 855. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Synergistic interactions of plant essential oils with antimicrobial agents: A new antimicrobial therapy. Crit. Rev. Food Sci. Nutr. 2022, 62, 1740–1751. [Google Scholar] [CrossRef]
- Álvarez-Martínez, F.; Barrajón-Catalán, E.; Herranz-López, M.; Micol, V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine 2021, 90, 153626. [Google Scholar] [CrossRef]
- Hou, T.; Sana, S.S.; Li, H.; Xing, Y.; Nanda, A.; Netala, V.R.; Zhang, Z. Essential oils and its antibacterial, antifungal and anti-oxidant activity applications: A review. Food Biosci. 2022, 47, 101716. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Compounds by Gas Chromatography/Quadrupole Mass Spectroscopy; Allured: Carol Stream, IL, USA, 2001. [Google Scholar]
- McGlynn, D.F.; Yee, L.D.; Garraffo, H.M.; Geer, L.Y.; Mak, T.D.; Mirokhin, Y.A.; Tchekhovskoi, D.V.; Jen, C.N.; Goldstein, A.H.; Kearsley, A.J.; et al. New Library-Based Methods for Nontargeted Compound Identification by GC-EI-MS. J. Am. Soc. Mass Spectrom. 2025, 36, 389–399. [Google Scholar] [CrossRef]
- NIST/EPA/NIH. Mass Spectral Library with Search Program: Data Version: NIST08, Software Version 2.0f; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2005.
- Joulain, D.; König, W.A. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons; E.B. Verlag: Hamburg, Germany, 1998. [Google Scholar]
- Kowalski, R.; Wawrzykowski, J. Effect of ultrasound-assisted maceration on the quality of oil from the leaves of thyme Thymus vulgaris L. Flavour. Fragr. J. 2009, 24, 69–74. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Kovach, W. MVSP—A Multivariate Statistical Package for Windows, Ver. 3.1; Kovach Computing Services: Pentraeth, UK, 1999.
Compounds | IR | FH | RH | RO | |||
---|---|---|---|---|---|---|---|
[%] | ±SD | [%] | ±SD | [%] | ±SD | ||
Cumene | 933 | 4.21 | ±0.173 | - | - | - | - |
α-Pinene | 940 | 2.02 | ±0.063 | - | - | - | - |
Camphene | 956 | 0.52 | ±0.013 | - | - | - | - |
Thuja-2.4(10)-diene | 961 | 0.51 | ±0.012 | - | - | - | - |
β-Pinene | 983 | 0.39 | ±0.011 | - | - | - | - |
dehydro-1.8-Cineole | 995 | 0.69 | ±0.021 | - | - | - | - |
n-Octanal | 1002 | 0.51 | ±0.013 | - | - | - | - |
α-Phellandrene | 1012 | 0.85 | ±0.025 | - | - | - | - |
p-Cymene | 1029 | 0.66 | ±0.017 | - | - | - | - |
Limonene | 1032 | 0.56 | ±0.013 | 0.08 | ±0.002 | - | - |
Linalool | 1106 | 0.81 | ±0.023 | - | - | - | - |
Nonanal | 1113 | 1.87 | ±0.056 | - | - | - | - |
cis-p-Menth-2-en-1-ol | 1130 | 0.13 | ±0.003 | - | - | - | - |
(3Z.5E)-1.3.5-Undecatriene | 1180 | 2.17 | ±0.069 | - | - | - | - |
E.E.Z 1.3.5.8-Undecatetraene | 1185 | 2.18 | ±0.074 | - | - | - | - |
γ-Terpineol | 1198 | - | - | 0.18 | ±0.004 | 0.20 | ±0.003 |
Decanal | 1215 | 5.46 | ±0.202 | - | - | - | - |
trans-Carveol | 1220 | - | - | 0.40 | ±0.018 | 0.42 | ±0.006 |
Thymol methyl ether | 1238 | 2.45 | ±0.093 | 6.53 | ±0.230 | 1.45 | ±0.001 |
Carvacrol methyl ether | 1249 | 0.57 | ±0.015 | 0.17 | ±0.005 | - | - |
Thymol | 1304 | 1.12 | ±0.037 | 0.41 | ±0.008 | 0.46 | ±0.002 |
Carvacrol | 1313 | 2.00 | ±0.074 | 1.53 | ±0.066 | 1.56 | ±0.058 |
Silphiperfol-5-ene | 1326 | - | - | 0.11 | ±0.003 | 0.23 | ±0.003 |
Presilphiperphol-7-ene | 1345 | - | - | 0.07 | ±0.002 | 0.15 | ±0.002 |
7-epi-silphiperfol-5-ene | 1348 | 0.48 | ±0.018 | 0.24 | ±0.010 | 0.41 | ±0.003 |
α-Longipinene | 1354 | 0.16 | ±0.004 | - | - | - | - |
Silphiperfol-6-ene | 1375 | - | - | 0.07 | ±0.000 | 0.13 | ±0.003 |
Eugenol | 1383 | 1.64 | ±0.052 | - | - | - | - |
Modheph-2-ene | 1384 | - | - | 0.08 | ±0.003 | 0.14 | ±0.002 |
β-Maaliene | 1385 | 0.32 | ±0.008 | - | - | - | - |
α-Isocomene | 1394 | 1.65 | ±0.056 | 0.99 | ±0.009 | 2.23 | ±0.027 |
Longifolene | 1416 | 0.12 | ±0.003 | - | - | - | - |
2,5-dimethoxy-p-cymene | 1417 | - | - | 49.84 | ±1.679 | 52.21 | ±0.656 |
Dodecanal | 1419 | 6.24 | ±0.212 | - | - | - | - |
E-Caryophyllene | 1427 | 15.84 | ±0.649 | 0.91 | ±0.010 | 0.36 | ±0.014 |
α-trans-Bergamothene | 1439 | 1.08 | ±0.033 | 0.44 | ±0.000 | 0.47 | ±0.018 |
2.6-diisopropylanisole | 1439 | - | - | 19.30 | ±0.396 | 20.76 | ±0.108 |
(Z)β-Farnesene | 1445 | 1.29 | ±0.036 | - | - | - | - |
(E)β-Farnesene | 1459 | 1.06 | ±0.028 | - | - | - | - |
α-Humulene | 1467 | 2.18 | ±0.070 | 0.09 | ±0.000 | 0.08 | ±0.001 |
p-methoxyheptanophenone | 1478 | - | - | 14.64 | ±0.351 | 12.43 | ±0.170 |
Germacrene D | 1483 | 6.87 | ±0.257 | 0.22 | ±0.017 | - | - |
α-Amorphene | 1487 | 1.36 | ±0.041 | - | - | - | - |
methyl-γ-Ionone | 1489 | 0.21 | ±0.005 | - | - | - | - |
Bicyclogermacrene | 1518 | 2.62 | ±0.076 | - | - | - | - |
Isobornyl isovalerate | 1519 | - | - | 0.17 | ±0.004 | 0.19 | 0.002 |
δ-Amorphene | 1529 | 0.13 | ±0.004 | - | - | - | - |
Zonarene | 1531 | 0.60 | ±0.014 | - | - | - | - |
β-sesquiphellandrene | 1535 | 0.09 | ±0.002 | 0.28 | ±0.003 | 0.56 | 0.006 |
Lippifoli-1(6)-en-5-one | 1567 | 0.58 | ±0.016 | 0.55 | ±0.008 | 1.82 | 0.025 |
Caryophyllene alcohol | 1588 | 0.75 | ±0.022 | - | - | - | - |
Caryophyllene oxide | 1593 | 7.86 | ±0.195 | 0.22 | ±0.021 | 0.45 | 0.022 |
n-Heksadecane | 1600 | 0.97 | ±0.026 | - | - | - | - |
Humulene epoxide II | 1623 | 0.50 | ±0.014 | - | - | - | - |
epi-α-Muurolol | 1658 | 0.38 | ±0.010 | - | - | - | - |
Z-Amyl cinnamaldehyde | 1661 | 0.16 | ±0.004 | - | - | - | - |
α-Cadinol | 1670 | 1.84 | ±0.064 | - | - | - | - |
14-hydroxy-9-epi-E-Caryophyllene | 1676 | 0.31 | ±0.009 | - | - | - | - |
Cadalene | 1688 | 0.24 | ±0.007 | - | - | - | - |
Valeranone | 1692 | 0.85 | ±0.025 | - | - | - | - |
n-heptadecane | 1700 | 1.86 | ±0.067 | - | - | - | - |
Pentadecanal | 1728 | 0.89 | ±0.025 | - | - | - | - |
Farnesyl acetate | 1844 | 6.68 | ±0.265 | - | - | - | |
Monoterpene hydrocarbons | 10.41 | 0.49 | 0.49 | ||||
Oxygenated monoterpenes | 7.28 | 8.98 | 8.98 | ||||
Sesquiterpene hydrocarbons | 55.43 | 4.27 | 4.27 | ||||
Oxygenated sesquiterpenes | 2.22 | 0.00 | 0.00 | ||||
Aliphatic hydrocarbons | 7.18 | 0.00 | 0.00 | ||||
Oxygenated aliphatic hydrocarbons | 14.97 | 0.00 | 0.00 | ||||
Aromatic phenyl compounds and ketones | 0.00 | 83.77 | 83.00 | ||||
Summary | 97.49 | 97.51 | 96.74 |
SA | SE | EF | EFC | EC | PA | CA | |
---|---|---|---|---|---|---|---|
FH | 200 | 200 | 200 | 200 | 400 | 400 | 200 |
RH | 100 | 50 | 200 | 200 | 200 | 400 | 100 |
RO | 200 | 200 | 200 | 200 | 200 | 800 | 200 |
FH1:RH1 | 200 | 100 | 200 | 200 | 400 | 800 | 400 |
FH1:RH3 | 200 | 100 | 200 | 200 | 200 | 800 | 200 |
FH3:RH1 | 400 | 200 | 200 | 200 | 400 | 800 | 200 |
Bacteria | Antibiotic | FH | RH | RO | FH1:RH1 | FH1:RH3 | FH3:RH1 |
---|---|---|---|---|---|---|---|
Amoxicillin | 1.5n | 1.06n | 0.562p | 1.06n | 0.5s | 1.5n | |
S. aureus ATCC | Ciprofloxacin | 1.06n | 1.06n | 1.06n | 1.06n | 0.75p | 1.06n |
25923 | Metronidazole | 1.06n | 0.375s | 0.75p | 1.06n | 0.5s | 1.06n |
Amoxicillin | 1.06n | 0.562p | 0.562p | 0.562p | 0.5s | 0.562p | |
S. epidermidis ATCC | Ciprofloxacin | 1.5n | 0.75p | 1.5n | 1.5n | 0.75p | 1.06n |
12228 | Metronidazole | 1.06n | 0.375s | 0.75p | 0.75p | 0.5s | 1.06n |
Amoxicillin | 1.5n | 1.06n | 1.06n | 1.06n | 0.75p | 1.06n | |
E. faecalis PCM 896 | Ciprofloxacin | 1.5n | 1.5n | 1.5n | 1.5n | 1.5n | 1.5n |
Metronidazole | 1.06n | 1.5n | 0.562p | 1.06n | 0.5s | 1.5n | |
Amoxicillin | 1.5n | 0.75p | 0.562p | 1.25n | 1.25n | 1.5n | |
C. acnes ATCC 11827 | Ciprofloxacin | 1.06n | 0.375s | 1.25n | 0.562p | 0.75p | 1.06n |
Metronidazole | 1.5n | 0.75p | 0.562p | 1.5n | 1.06n | 1.06n |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugier, P.; Sugier, D.; Miazga-Karska, M.; Nurzyńska, A.; Król, B.; Sęczyk, Ł.; Kowalski, R. Effect of Different Arnica montana L. Plant Parts on the Essential Oil Composition, Antimicrobial Activity, and Synergistic Interactions with Antibiotics. Molecules 2025, 30, 3812. https://doi.org/10.3390/molecules30183812
Sugier P, Sugier D, Miazga-Karska M, Nurzyńska A, Król B, Sęczyk Ł, Kowalski R. Effect of Different Arnica montana L. Plant Parts on the Essential Oil Composition, Antimicrobial Activity, and Synergistic Interactions with Antibiotics. Molecules. 2025; 30(18):3812. https://doi.org/10.3390/molecules30183812
Chicago/Turabian StyleSugier, Piotr, Danuta Sugier, Małgorzata Miazga-Karska, Aleksandra Nurzyńska, Beata Król, Łukasz Sęczyk, and Radosław Kowalski. 2025. "Effect of Different Arnica montana L. Plant Parts on the Essential Oil Composition, Antimicrobial Activity, and Synergistic Interactions with Antibiotics" Molecules 30, no. 18: 3812. https://doi.org/10.3390/molecules30183812
APA StyleSugier, P., Sugier, D., Miazga-Karska, M., Nurzyńska, A., Król, B., Sęczyk, Ł., & Kowalski, R. (2025). Effect of Different Arnica montana L. Plant Parts on the Essential Oil Composition, Antimicrobial Activity, and Synergistic Interactions with Antibiotics. Molecules, 30(18), 3812. https://doi.org/10.3390/molecules30183812