Premna puberula P. Ethyl Acetate Extract Treats Ulcerative Colitis by Regulating the Intestinal Flora and Improving Serum Metabolism
Abstract
1. Introduction
2. Results
2.1. Identification of the Principal Components of PPEAC
2.2. Therapeutic Effects of PPEAC in Mice
2.2.1. Effect of PPEAC on DAI in Mice
2.2.2. Effects of PPEAC on the Liver, Spleen, and Colon of Mice
2.2.3. Effect of PPEAC on the Level of Oxidative Stress in Mouse Colon Tissues
2.2.4. H&E Staining Results
2.3. PPEAC Regulates Intestinal Flora in Mice
2.3.1. Alpha Diversity and Beta Diversity of Mouse Intestinal Flora
2.3.2. Composition and Abundance of Mouse Intestinal Flora
2.4. Metabolomic Analysis of PPEAC on Mouse Serum
2.5. Effect of PPEAC on Inflammatory Factors in Mouse Serum
2.6. Correlation Analysis of Differential Metabolites with Key Strains of Bacteria
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of PPEAC
4.3. Metabolomic Analysis of PPEAC
4.4. Experimental Design
4.4.1. Modeling Methods for UC Mice
4.4.2. Measurement of DAI in Mice
4.4.3. Determination of Liver and Spleen Ratio and Colon Length in Mice
4.4.4. Measurement of Oxidative Stress Levels in Mice Colons
4.4.5. Hematoxylin & Eosin (H&E) Stain
4.5. Intestinal Flora Studies in Mice
4.6. Serum Metabolomics Studies
4.7. Measurement of Serum Inflammatory Factor Levels in Mice
4.8. Data Processing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feuerstein, J.D.; Moss, A.C.; Farraye, F.A. Ulcerative Colitis. Mayo Clin. Proc. 2019, 94, 1357–1373. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.-T.; Meng, S.-Y.; Pan, B.-R. Drug Therapy for Ulcerative Colitis. World J. Gastroenterol. 2004, 10, 2311–2317. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Jia, X.; Yang, Y.; Niu, J.; Wu, X.; Ding, F.; Tian, M.; Tang, D. Premna puberula Root Petroleum Ether Extract Inhibits Proliferation, Migration and Invasion, and Induces Apoptosis through Mitochondrial Pathway in Non-Small Cell Lung Cancer A549 Cells. Arab. J. Chem. 2024, 17, 105409. [Google Scholar] [CrossRef]
- Khan, M.; Manzoor, Z.; Rafiq, M.; Munawar, S.H.; Waqas, M.Y.; Majeed, H.; Ali Shah, S.Z.; Hussain, R.; Hussain, H.I.; Tahir, T.; et al. Phytochemical Screening, Anti-Inflammatory, and Antidiabetic Activities of Different Extracts from Caralluma Edulis Plant. Molecules 2022, 27, 5346. [Google Scholar] [CrossRef]
- Garnevi Fávero, A.; Cordeiro, T.S.; Silva, K.N.; Cardili, L.; Silva, M.J.D.; Paiotti, A.P.R. P055 Effect of Mimosa Caesalpiniifolia Extract on DSS-Induced Colitis in Wistar Rats. J. Crohn’s Colitis 2020, 14, S161–S162. [Google Scholar] [CrossRef]
- Liu, K.; Guo, Y.; Chen, X.; Duan, J.; Li, B.; Liu, M.; Chen, L.; Li, M.; Feng, Y.; Li, H.; et al. Quality Control, Preparation Process Optimizing and Anti-Inflammatory Effects of Premna puberula Pamp. Pectin. Heliyon 2022, 8, e11082. [Google Scholar] [CrossRef]
- Chesnel, L.; Acton, S. P080 ADS024 Attenuates Weight Loss and Decreases Disease Activity in DSS-Induced Colitis. J. Crohn’s Colitis 2022, 16, i181. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, M.; Pan, J.; Ren, J.; Tang, F.; Dai, J.; Xue, F.; Ji, D. Combined Therapy of Probiotic Microcapsules and Bomidin in Vibrio Parahaemolyticus–Infected Rats. Life 2022, 12, 1740. [Google Scholar] [CrossRef]
- Christou, C.; Agapiou, A.; Kokkinofta, R. Use of FTIR Spectroscopy and Chemometrics for the Classification of Carobs Origin. J. Adv. Res. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Wang, L.; Qin, Y.; Wang, Y.; Zhou, Y. Changes of Anthocyanin and Amino Acid Metabolites in Saffron Petals (Crocus sativus L.) during Fermentation Based on Untargeted Metabolomics. LWT 2024, 192, 115724. [Google Scholar] [CrossRef]
- Liu, X.; Piao, C.; Ju, M.; Zhang, J.; Zhang, W.; Cui, F.; Li, G.; Cui, M. Effects of Low Salt on Lipid Oxidation and Hydrolysis, Fatty Acids Composition and Volatiles Flavor Compounds of Dry-Cured Ham during Ripening. LWT 2023, 187, 115347. [Google Scholar] [CrossRef]
- Liso, M.; Verna, G.; Cavalcanti, E.; De Santis, S.; Armentano, R.; Tafaro, A.; Lippolis, A.; Campiglia, P.; Gasbarrini, A.; Mastronardi, M.; et al. Interleukin 1β Blockade Reduces Intestinal Inflammation in a Murine Model of Tumor Necrosis Factor–Independent Ulcerative Colitis. Cell. Mol. Gastroenterol. Hepatol. 2022, 14, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Parisinos, C.A.; Serghiou, S.; Katsoulis, M.; George, M.J.; Patel, R.S.; Hemingway, H.; Hingorani, A.D. Variation in Interleukin 6 Receptor Gene Associates with Risk of Crohn’s Disease and Ulcerative Colitis. Gastroenterology 2018, 155, 303–306.e2. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Zhu, X.; Shen, J.; Chen, H.; Zhou, G. Mechanism of Nicotiflorin in San-Ye-Qing Rhizome for Anti-Inflammatory Effect in Ulcerative Colitis. Phytomedicine 2024, 129, 155564. [Google Scholar] [CrossRef] [PubMed]
- Lopresti, M.W.; Cui, W.; Abernathy, B.E.; Fredrickson, G.; Barrow, F.; Desai, A.S.; Revelo, X.S.; Mashek, D.G. Hepatic Lysosomal Acid Lipase Overexpression Worsens Hepatic Inflammation in Mice Fed a Western Diet. J. Lipid Res. 2021, 62, 100133. [Google Scholar] [CrossRef]
- Jing, W.; Guo, X.; Qin, F.; Li, Y.; Wang, G.; Bi, Y.; Jin, X.; Han, L.; Dong, X.; Zhao, Y. G-CSF Shifts Erythropoiesis from Bone Marrow into Spleen in the Setting of Systemic Inflammation. Life Sci. Alliance 2021, 4, e202000737. [Google Scholar] [CrossRef]
- Chen, J.; Yang, C.; Xu, Y.; Zhao, Y.; Wu, J.; Liu, Y.; Chen, N. P1204 Oral Streptococcus Mutans Isolates Aggravated Colitis in Mice. J. Crohn’s Colitis 2024, 18, i2143–i2144. [Google Scholar] [CrossRef]
- Chen, S.; Wu, X.; Yu, Z. Juglone Suppresses Inflammation and Oxidative Stress in Colitis Mice. Front. Immunol. 2021, 12, 674341. [Google Scholar] [CrossRef]
- Zhang, A.; Sun, H.; Wang, X. Serum Metabolomics as a Novel Diagnostic Approach for Disease: A Systematic Review. Anal. Bioanal. Chem. 2012, 404, 1239–1245. [Google Scholar] [CrossRef]
- Diab, J.; Hansen, T.; Goll, R.; Stenlund, H.; Jensen, E.; Moritz, T.; Florholmen, J.; Forsdahl, G. Mucosal Metabolomic Profiling and Pathway Analysis Reveal the Metabolic Signature of Ulcerative Colitis. Metabolites 2019, 9, 291. [Google Scholar] [CrossRef]
- Yang, J.; Liu, S.; Zhao, Q.; Li, X.; Jiang, K. Gut Microbiota-Related Metabolite Alpha-Linolenic Acid Mitigates Intestinal Inflammation Induced by Oral Infection with Toxoplasma Gondii. Microbiome 2023, 11, 273. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Chung, K.-S.; Shin, J.-S.; Jung, S.-H.; Lee, S.; Lee, M.-K.; Hong, H.-D.; Rhee, Y.K.; Lee, K.-T. Anti-Colitic Effect of an Exopolysaccharide Fraction from Pediococcus Pentosaceus KFT-18 on Dextran Sulfate Sodium-Induced Colitis through Suppression of Inflammatory Mediators. Polymers 2022, 14, 3594. [Google Scholar] [CrossRef]
- Pickard, J.M.; Zeng, M.Y.; Caruso, R.; Núñez, G. Gut Microbiota: Role in Pathogen Colonization, Immune Responses, and Inflammatory Disease. Immunol. Rev. 2017, 279, 70–89. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Qiu, Q.; Luo, X.; Liu, X.; Sun, J.; Wang, C.; Lin, X.; Deng, Y.; Song, Y. Phyto-Phospholipid Complexes (Phytosomes): A Novel Strategy to Improve the Bioavailability of Active Constituents. Asian J. Pharm. Sci. 2019, 14, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Huang, H.; Zhou, P.; Zhang, J.; Dai, Y.; Yang, D.; Fan, X.; Pan, H. Oral Phosphatidylcholine Improves Intestinal Barrier Function in Drug-Induced Liver Injury in Rats. Gastroenterol. Res. Pract. 2019, 2019, 8723460. [Google Scholar] [CrossRef]
- Stremmel, W.; Staffer, S.; Gehrke, S. The Detergent Effect of Mesalazine Interferes with Phosphatidylcholine Binding to Mucin 2. Inflamm. Intest. Dis. 2018, 3, 107–115. [Google Scholar] [CrossRef]
- Sokol, H.; Seksik, P.; Furet, J.P.; Firmesse, O.; Nion-Larmurier, I.; Beaugerie, L.; Cosnes, J.; Corthier, G.; Marteau, P.; Doré, J. Low Counts of Faecalibacterium Prausnitzii in Colitis Microbiota. Inflamm. Bowel Dis. 2009, 15, 1183–1189. [Google Scholar] [CrossRef]
- Huang, C.; Mei, Q.; Lou, L.; Huang, Z.; Fu, Y.; Fan, J.; Wang, J.; Yin, N.; Zheng, Y.; Lu, Y.; et al. Ulcerative Colitis in Response to Fecal Microbiota Transplantation via Modulation of Gut Microbiota and Th17/Treg Cell Balance. Cells 2022, 11, 1851. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, B.; Zhang, X.; Akbar, M.T.; Wu, T.; Zhang, Y.; Zhi, L.; Shen, Q. Exploration of the Muribaculaceae Family in the Gut Microbiota: Diversity, Metabolism, and Function. Nutrients 2024, 16, 2660. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Hao, H.; Bi, J.; Hou, H.; Zhang, G. Benzyl Isothiocyanate and Resveratrol Synergistically Alleviate Dextran Sulfate Sodium-Induced Colitis in Mice. Foods 2024, 13, 2078. [Google Scholar] [CrossRef]
- Ye, X.; Cen, Y.; Wu, K.; Xu, L.; Ni, J.; Zheng, W.; Liu, W. Gas-Mediated Intestinal Microbiome Regulation Prompts the Methanol Extract of Schizonepetae Spica to Relieve Colitis. Nutrients 2023, 15, 519. [Google Scholar] [CrossRef]
- Wang, S.-T.; Wang, Y.-Y.; Huang, J.-R.; Shu, Y.-B.; He, K.; Shi, Z. THZ2 Ameliorates Mouse Colitis and Colitis-Associated Colorectal Cancer. Biomedicines 2024, 12, 679. [Google Scholar] [CrossRef]
- Guo, H.-X.; Ji, Z.-H.; Wang, B.-B.; Ren, J.-W.; Gao, W.; Yuan, B. Walnut Peptide Ameliorates DSS-Induced Colitis in Mice by Inhibiting Inflammation and Modulating Gut Microbiota. J. Funct. Foods 2024, 119, 106344. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, W.; Dai, K.; Liu, N.; Wang, J.; Lu, X.; Ma, J.; Zhang, M.; Xu, M.; Long, X.; et al. Inflammatory Response of Gut, Spleen, and Liver in Mice Induced by Orally Administered Porphyromonas Gingivalis. J. Oral Microbiol. 2022, 14, 2088936. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Dun, W.; Han, W.; Ning, T.; Sun, Q.; Wang, Z. Effect of Polysaccharide Extracted from Gynostemma Pentaphyllum on the Body Weight and Gut Microbiota of Mice. Front. Nutr. 2022, 9, 916425. [Google Scholar] [CrossRef]
Index | Weight Loss/% | Fecal Trait | Fecal Blood |
---|---|---|---|
0 | 0% | Normal | Negative |
1 | 1–5% | Loose and tangible | Weak positive |
2 | 5–10% | Loose | Positive |
3 | 10–15% | Very loose; damp | Strong positive |
4 | >15% | Loose stools | Bloody stool |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhang, Y.; Huang, Y.; Xiao, Q.; Zhu, Y.; Zhou, D. Premna puberula P. Ethyl Acetate Extract Treats Ulcerative Colitis by Regulating the Intestinal Flora and Improving Serum Metabolism. Molecules 2025, 30, 3809. https://doi.org/10.3390/molecules30183809
Wang Z, Zhang Y, Huang Y, Xiao Q, Zhu Y, Zhou D. Premna puberula P. Ethyl Acetate Extract Treats Ulcerative Colitis by Regulating the Intestinal Flora and Improving Serum Metabolism. Molecules. 2025; 30(18):3809. https://doi.org/10.3390/molecules30183809
Chicago/Turabian StyleWang, Zhichao, Yanmei Zhang, Yun Huang, Qiang Xiao, Yuchang Zhu, and Dazhai Zhou. 2025. "Premna puberula P. Ethyl Acetate Extract Treats Ulcerative Colitis by Regulating the Intestinal Flora and Improving Serum Metabolism" Molecules 30, no. 18: 3809. https://doi.org/10.3390/molecules30183809
APA StyleWang, Z., Zhang, Y., Huang, Y., Xiao, Q., Zhu, Y., & Zhou, D. (2025). Premna puberula P. Ethyl Acetate Extract Treats Ulcerative Colitis by Regulating the Intestinal Flora and Improving Serum Metabolism. Molecules, 30(18), 3809. https://doi.org/10.3390/molecules30183809