Colorimetric Revealing of Ethanol–Water Cluster (E-Wc) Transitions in Binary Solution Based on Starch–I2 Crystallization
Abstract
1. Introduction
2. Results
2.1. The Colorimetry Responses of the I2/I− System to Starch Crystals Formed in Various Ethanol–Water Solutions (E-Ws)
2.2. Structure and Morphology Characterizations of Starch Crystal
2.2.1. Long-Range Helical Structures Revealed by X-Ray Diffraction (XRD)
2.2.2. Granular Morphologies of Starches Revealed by SEM Images
2.2.3. Fine Structural Differences in Native and Annealed Starch Samples Revealed by FT-IR Spectroscopy
3. Discussion
3.1. Small Molecule Interference on Amylose Crystallinity
3.2. Macromolecule Interference on the Amylose Crystallinity
3.3. Interference of Supramolecular Complex with Starch Crystallinity
3.4. Intrinsic Mechanism of Starch–I2 to Show Different Colors
3.4.1. Phase Transition Behavior of 40–45 vol% in E-Ws?
- (I)
- When the ethanol concentration is below 40 vol%, the E-W system is primarily composed of (H2O)m(EtOH) clusters, where ethanol molecules are embedded within cage-like (H2O)m clusters formed by numerous water molecules, exhibiting internal hydrophobicity and external hydrophilicity [51,52,53,54,55]. Upon heating at 95 °C in aqueous solution followed by annealing in such E-W systems, non-covalent interactions occur between these clusters and the hydroxyl groups of liberated amylose. These interactions do not hinder the formation of single-helix amylose structures or their encapsulation of I2 within the helical cavity, resulting in a characteristic blue solution, as illustrated in Figure 7 (I).
- (II)
- When the ethanol concentration ranges from 45 to 75 vol%, larger and more structurally complex (H2O)m(EtOH)n clusters predominantly form in the E-W system. Under these conditions, the clusters may interact with either the hydrophobic or hydrophilic regions of the amylose chain and localize either on the exterior or interior of the helix following annealing. However, due to steric constraints imposed by the E-W system, the iodine–helix interaction is likely attenuated, leading to partial or complete decolorization of the blue coloration, as illustrated in Figure 7 (II).
3.4.2. Phase Transition Behavior of 75–77 vol% in E-Ws?
- (III)
- Within the ethanol volume fraction range of 45–75%, the predominant aggregates in E-Ws exist as (H2O)m(EtOH)n (m > n) configurations. Owing to the persistent exposure of hydroxyl groups from water molecules, these aggregates maintain pronounced hydrophilic characteristics. During the thermal treatment of starch in E-Ws, as temperature progressively increases, amylose initially dissolves and leaches from the starch granules. At this stage, supramolecular E-Wc engages in interactions with the extended starch chains, facilitating the formation of a composite structure.
- (IV)
- When the ethanol concentration rises to 75–77 vol%, the E-Ws systems contain both hydrophilic and hydrophobic (H2O)m(EtOH)n clusters. These clusters can selectively interact with the hydrophilic hydroxyl groups and hydrophobic hydroxymethyl groups of the α [1→4] glucan helix through specific recognition mechanisms. During the annealing process, a composite structure forms where hydrophilic clusters localize on the outer surface of the helix, while hydrophobic clusters embed within the helical cavity. This structural reorganization of starch helices may lead to an increase in the helical pitch [59]. Simultaneously, the larger molecular dimensions of (H2O)m(EtOH)n, compared to (H2O)(EtOH)n [60], not only augment the overall helix diameter but also attenuate its binding affinity with iodine molecules. Ultimately, the diminished formation of starch–I2 complexes leads to a noticeable weakening of the blue coloration in the solution, as illustrated in Figure 7 (IV).
- (V)
- When the ethanol concentration exceeds 77 vol%, the hydrophobic clusters (H2O)m(EtOH)n (m < n) in solution reorganize into an externally hydrophobic and internally hydrophilic structure, (H2O)(EtOH)n [51]. Compared to the original (H2O)m(EtOH)n clusters, the reduced size of (H2O)(EtOH)n leads to a decrease in helix spacing during amylose chain helix formation. Upon iodine binding, the interaction sites between iodine and the hydrophobic spiral cavities are re-established, restoring the characteristic blue complex, as illustrated in Figure 7 (V).
4. Materials and Methods
4.1. Materials
4.2. Heating in Water and Annealing in E-Ws of Soluble Starch (Approach I)
4.3. Thermal Heating and Annealing of PS and PTS in E-Ws (Approach II)
4.4. UV-Vis Absorption Spectrum
4.5. XRD
4.6. SEM
4.7. FT-IR Spectroscopy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
E-Wc | Ethanol–water cluster(s) |
E-Ws | Ethanol–water solution(s) |
starch-I2 | starch–iodine (system) |
HB(s) | hydrogen bonding(s) |
I2 | iodine molecules |
I3− | triiodide ions |
PS | pea starch |
PTS | potato starch |
I2/I− | iodine/iodide solution |
RT | room temperature |
HPH | high-pressure homogenization |
HK | honokiol |
AC | arctin |
XRD | X-ray diffraction |
RC | relative crystallinity |
SEM | scanning electron microscopy |
FT-IR | Fourier transform infrared |
References
- Hu, N.; Schaefer, D.W. Effect of Impurity Compounds on Ethanol Hydration. J. Mol. Liq. 2010, 155, 29–36. [Google Scholar] [CrossRef]
- Miller, M.A.; Jimenez-Ruiz, M.; Bermejo, F.J.; Birge, N.O. Comparison of the Structural and Orientational Glass-Transition Dynamics in Ethanol. Phys. Rev. B 1998, 57, R13977–R13980. [Google Scholar] [CrossRef][Green Version]
- Wakisaka, A.; Komatsu, S.; Usui, Y. Solute-Solvent and Solvent-Solvent Interactions Evaluated through Clusters Isolated from Solutions: Preferential Solvation in Water-Alcohol Mixtures. J. Mol. Liq. 2001, 90, 175–184. [Google Scholar] [CrossRef]
- Nishi, N.; Takahashi, S.; Matsumoto, M.; Tanaka, A.; Muraya, K.; Takamuku, T.; Yamaguchi, T. Hydrogen-Bonded Cluster Formation and Hydrophobic Solute Association in Aqueous Solutions of Ethanol. J. Phys. Chem. 1995, 99, 462–468. [Google Scholar] [CrossRef]
- Egashira, K.; Nishi, N. Low-Frequency Raman Spectroscopy of Ethanol−Water Binary Solution: Evidence for Self-Association of Solute and Solvent Molecules. J. Phys. Chem. B 1998, 102, 4054–4057. [Google Scholar] [CrossRef]
- Snow, J.B.; Qian, S.-X.; Chang, R.K. Stimulated Raman Scattering from Individual Water and Ethanol Droplets at Morphology-Dependent Resonances. Opt. Lett. 1985, 10, 37. [Google Scholar] [CrossRef]
- Mizuno, K.; Miyashita, Y.; Shindo, Y.; Ogawa, H. NMR and FT-IR Studies of Hydrogen Bonds in Ethanol-Water Mixtures. J. Phys. Chem. 1995, 99, 3225–3228. [Google Scholar] [CrossRef]
- Dixit, S.; Crain, J.; Poon, W.C.K.; Finney, J.L.; Soper, A.K. Molecular Segregation Observed in a Concentrated Alcohol–Water Solution. Nature 2002, 416, 829–832. [Google Scholar] [CrossRef] [PubMed]
- Soper, A.K.; Dougan, L.; Crain, J.; Finney, J.L. Excess Entropy in Alcohol−Water Solutions: A Simple Clustering Explanation. J. Phys. Chem. B 2006, 110, 3472–3476. [Google Scholar] [CrossRef] [PubMed]
- Dougan, L.; Bates, S.P.; Hargreaves, R.; Fox, J.P.; Crain, J.; Finney, J.L.; Réat, V.; Soper, A.K. Methanol-Water Solutions: A Bi-Percolating Liquid Mixture. J. Chem. Phys. 2004, 121, 6456–6462. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, K.; Hayashi, H.; Iijima, T. Temperature Dependence of the Concentration Fluctuation, the Kirkwood-Buff Parameters, and the Correlation Length of Tert-Butyl Alcohol and Water Mixtures Studied by Small-Angle x-Ray Scattering. J. Phys. Chem. 1989, 93, 6559–6565. [Google Scholar] [CrossRef]
- Alavi, S.; Takeya, S.; Ohmura, R.; Woo, T.K.; Ripmeester, J.A. Hydrogen-Bonding Alcohol-Water Interactions in Binary Ethanol, 1-Propanol, and 2-Propanol+methane Structure II Clathrate Hydrates. J. Chem. Phys. 2010, 133, 074505. [Google Scholar] [CrossRef] [PubMed]
- Sobczyk, L.; Grabowski, S.J.; Krygowski, T.M. Interrelation between H-Bond and Pi-Electron Delocalization. Chem. Rev. 2005, 105, 3513–3560. [Google Scholar] [CrossRef]
- Alavi, S.; Ohmura, R.; Ripmeester, J.A. A Molecular Dynamics Study of Ethanol–Water Hydrogen Bonding in Binary Structure I Clathrate Hydrate with CO2. J. Chem. Phys. 2011, 134, 054702. [Google Scholar] [CrossRef]
- Perera, A.; Sokolić, F.; Zoranić, L. Microstructure of Neat Alcohols. Phys. Rev. E 2007, 75, 060502. [Google Scholar] [CrossRef]
- Mejía, S.M.; Espinal, J.F.; Restrepo, A.; Mondragón, F. Molecular Interaction of (Ethanol)2−Water Heterotrimers. J. Phys. Chem. A 2007, 111, 8250–8256. [Google Scholar] [CrossRef]
- Masella, M.; Flament, J.P. Relation between Cooperative Effects in Cyclic Water, Methanol/Water, and Methanol Trimers and Hydrogen Bonds in Methanol/Water, Ethanol/Water, and Dimethylether/Water Heterodimers. J. Chem. Phys. 1998, 108, 7141–7151. [Google Scholar] [CrossRef]
- Sun, X.; Cai, L.; He, W.; Cao, X.; Liu, B.; Wang, H. A Novel Ratiometric Fluorescent Probe for Water Content in Ethanol and Temperature Sensing. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 264, 120266. [Google Scholar] [CrossRef]
- Passos, W.E.; Oliveira, I.P.; Michels, F.S.; Trindade, M.A.G.; Falcão, E.A.; Marangoni, B.S.; Oliveira, S.L.; Caires, A.R.L. Quantification of Water in Bioethanol Using Rhodamine B as an Efficient Molecular Optical Probe. Renew. Energy 2021, 165, 42–51. [Google Scholar] [CrossRef]
- Yulianti, R.; Liao, H.-J. V-Amylose Nanocarriers Complexed with Debranched Sweet Potato Starch: Structural Characteristics and Digestibility. Food Biophys. 2023, 18, 389–401. [Google Scholar] [CrossRef]
- Yang, Y.; Li, T.; Li, Y.; Qian, H.; Qi, X.; Zhang, H.; Wang, L. Understanding the Molecular Weight Distribution, in Vitro Digestibility and Rheological Properties of the Deep-Fried Wheat Starch. Food Chem. 2020, 331, 127315. [Google Scholar] [CrossRef] [PubMed]
- Pesek, S.; Silaghi-Dumitrescu, R. The Iodine/Iodide/Starch Supramolecular Complex. Molecules 2024, 29, 641. [Google Scholar] [CrossRef]
- Dries, D.M.; Gomand, S.V.; Delcour, J.A.; Goderis, B. V-Type Crystal Formation in Starch by Aqueous Ethanol Treatment: The Effect of Amylose Degree of Polymerization. Food Hydrocoll. 2016, 61, 649–661. [Google Scholar] [CrossRef]
- Li, J.; Zhou, X.; Jin, Z. Effect of High-Temperatures and Aqueous Ethanol Treatment on the Formation Process and Properties of V-Type Granular Starch (VGS). Carbohydr. Polym. 2021, 258, 117713. [Google Scholar] [CrossRef]
- Chen, Y.; Dai, G.; Gao, Q. Preparation and Properties of Granular Cold-Water-Soluble Porous Starch. Int. J. Biol. Macromol. 2020, 144, 656–662. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Ji, N.; Li, M.; Wang, Y.; Xiong, L.; Sun, Q. The Effect of Ethanol Solution Annealing on the Physicochemical Properties of Pea and Potato Starches. Food Hydrocoll. 2022, 125, 107428. [Google Scholar] [CrossRef]
- Gardner, J.M.; Abrahamsson, M.; Farnum, B.H.; Meyer, G.J. Visible Light Generation of Iodine Atoms and I−I Bonds: Sensitized I− Oxidation and I3− Photodissociation. J. Am. Chem. Soc. 2009, 131, 16206–16214. [Google Scholar] [CrossRef]
- Lu, H.; Xiong, L.; Li, M.; Chen, H.; Xiao, J.; Wang, S.; Qiu, L.; Bian, X.; Sun, C.; Sun, Q. Separation and Characterization of Linear Glucans Debranched from Normal Corn, Potato and Sweet Potato Starches. Food Hydrocoll. 2019, 89, 196–206. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, B.; Li, J.; Shu, Z.; Wang, P.; Zeng, X. Structure and Properties of Octenyl Succinic Anhydride-Modified High-Amylose Japonica Rice Starches. Polymers 2021, 13, 1325. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xie, H.; Shi, M. Effect of Ethanol–Water Solution on the Crystallization of Short Chain Amylose from Potato Starch. Starch-Stärke 2016, 68, 683–690. [Google Scholar] [CrossRef]
- Lopez-Silva, M.; Bello-Perez, L.A.; Agama-Acevedo, E.; Alvarez-Ramirez, J. Effect of Amylose Content in Morphological, Functional and Emulsification Properties of OSA Modified Corn Starch. Food Hydrocoll. 2019, 97, 105212. [Google Scholar] [CrossRef]
- Ijaz; Uddin, M.; Khan, N.M.; Ali, F.; Khan, Z.U.; Muhammad, N.; Iqbal, J.; Rehman, N.; Jan, A.K.; Ahmad, S. Green Production and Structural Evaluation of Maize Starch–Fatty Acid Complexes Through High Speed Homogenization. J. Polym. Environ. 2020, 28, 3110–3115. [Google Scholar] [CrossRef]
- van Soest, J.J.G.; Tournois, H.; de Wit, D.; Vliegenthart, J.F.G. Short-Range Structure in (Partially) Crystalline Potato Starch Determined with Attenuated Total Reflectance Fourier-Transform IR Spectroscopy. Carbohydr. Res. 1995, 279, 201–214. [Google Scholar] [CrossRef]
- Guo, T.; Hou, H.; Liu, Y.; Chen, L.; Zheng, B. In Vitro Digestibility and Structural Control of Rice Starch-Unsaturated Fatty Acid Complexes by High-Pressure Homogenization. Carbohydr. Polym. 2021, 256, 117607. [Google Scholar] [CrossRef]
- Mutungi, C.; Passauer, L.; Onyango, C.; Jaros, D.; Rohm, H. Debranched Cassava Starch Crystallinity Determination by Raman Spectroscopy: Correlation of Features in Raman Spectra with X-Ray Diffraction and 13C CP/MAS NMR Spectroscopy. Carbohydr. Polym. 2012, 87, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Julian McClements, D.; Wang, L.; Li, C. Formation and Characterization of Starch-Based Spherulite: Effect of Molecular Weight of Potato Amylose Starch. Food Chem. 2022, 371, 131060. [Google Scholar] [CrossRef]
- Chen, J.; Cai, H.; Yang, S.; Zhang, M.; Wang, J.; Chen, Z. The Formation of Starch-Lipid Complexes in Instant Rice Noodles Incorporated with Different Fatty Acids: Effect on the Structure, in Vitro Enzymatic Digestibility and Retrogradation Properties during Storage. Food Res. Int. 2022, 162, 111933. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Chen, L.; McClements, D.J.; Zhao, J.; Zhou, X.; Qiu, C.; Long, J.; Ji, H.; Xu, Z.; Meng, M.; et al. Starch-Guest Complexes Interactions: Molecular Mechanisms, Effects on Starch and Functionality. Crit. Rev. Food Sci. Nutr. 2023, 64, 7550–7562. [Google Scholar] [CrossRef]
- Liu, H.; Yao, Y.; Zhang, Y.; Zheng, B.; Zeng, H. Ultrasonication-Mediated Formation of V-Type Lotus Seed Starch for Subsequent Complexation with Butyric Acid. Int. J. Biol. Macromol. 2023, 236, 124000. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Li, S.; Tan, C.P.; Feng, Y.; Zhang, B.; Fu, X.; Huang, Q. Solid Encapsulation of Lauric Acid into “Empty” V-Type Starch: Structural Characteristics and Emulsifying Properties. Carbohydr. Polym. 2021, 267, 118181. [Google Scholar] [CrossRef]
- Pesek, S.; Lehene, M.; Brânzanic, A.M.V.; Silaghi-Dumitrescu, R. On the Origin of the Blue Color in The Iodine/Iodide/Starch Supramolecular Complex. Molecules 2022, 27, 8974. [Google Scholar] [CrossRef]
- Li, W.; Sun, S.; Gu, Z.; Cheng, L.; Li, Z.; Li, C.; Hong, Y. Effect of Protein on the Gelatinization Behavior and Digestibility of Corn Flour with Different Amylose Contents. Int. J. Biol. Macromol. 2023, 249, 125971. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, S.; Zhao, R.; Wang, N.; Kan, J.; Zhang, F. Effect of Four Viscous Soluble Dietary Fibers on the Physicochemical, Structural Properties, and in Vitro Digestibility of Rice Starch: A Comparison Study. Food Chem. 2021, 362, 130181. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Zhang, H.; Xing, J.; Sang, S.; Zhan, X.; Liu, Y.; Jia, L.; Li, J.; Luo, X. Long-Term Retrogradation Properties and In Vitro Digestibility of Waxy Rice Starch Modified with Pectin. Foods 2023, 12, 3981. [Google Scholar] [CrossRef]
- Guo, T.; Zheng, B.; He, H.; Chen, L. Effects of Non-Covalent Binding of Lignans with Rice Starch Driven by High-Pressure Homogenization on the Starch Structure and in Vitro Nutritional Characteristics. Food Funct. 2022, 13, 9243–9253. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.-H.; Yen, T.-C.; Chen, C.-C.; Yang, C.-W.; Fang, C.-K.; Hwang, I.-S. Observation of Mesoscopic Clathrate Structures in Ethanol-Water Mixtures. J. Mol. Liq. 2022, 366, 120299. [Google Scholar] [CrossRef]
- Frank, H.S.; Evans, M.W. Free Volume and Entropy in Condensed Systems III. Entropy in Binary Liquid Mixtures; Partial Molal Entropy in Dilute Solutions; Structure and Thermodynamics in Aqueous Electrolytes. J. Chem. Phys. 1945, 13, 507–532. [Google Scholar] [CrossRef]
- Guo, J.-H.; Luo, Y.; Augustsson, A.; Kashtanov, S.; Rubensson, J.-E.; Shuh, D.K.; Ågren, H.; Nordgren, J. Molecular Structure of Alcohol-Water Mixtures. Phys. Rev. Lett. 2003, 91, 157401. [Google Scholar] [CrossRef]
- Gereben, O.; Pusztai, L. Cluster Formation and Percolation in Ethanol-Water Mixtures. Chem. Phys. 2017, 496, 1–8. [Google Scholar] [CrossRef]
- Jia, X.-Q.; Li, Y.; Zhang, C.-X.; Gao, Y.-C.; Wu, Y. Supramolecular Clusters Clarification in Ethanol-Water Mixture by Using Fluorescence Spectroscopy and 2D Correlation Analysis. J. Mol. Struct. 2020, 1219, 128569. [Google Scholar] [CrossRef]
- Wu, B.; Liu, Y.; Han, C. Hydration of Liquid Ethanol Probed by Raman Spectra. Spectrosc. Spectr. Anal. 2011, 31, 2738–2741. [Google Scholar]
- Zeinalipour-Yazdi, C.D.; Loizidou, E.Z. An Experimental FTIR-ATR and Computational Study of H-Bonding in Ethanol/Water Mixtures. Chem. Phys. 2021, 550, 111295. [Google Scholar] [CrossRef]
- Dong, Q.; Yu, C.; Li, L.; Nie, L.; Li, D.; Zang, H. Near-Infrared Spectroscopic Study of Molecular Interaction in Ethanol-Water Mixtures. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 222, 117183. [Google Scholar] [CrossRef]
- Li, R.; D’Agostino, C.; McGregor, J.; Mantle, M.D.; Zeitler, J.A.; Gladden, L.F. Mesoscopic Structuring and Dynamics of Alcohol/Water Solutions Probed by Terahertz Time-Domain Spectroscopy and Pulsed Field Gradient Nuclear Magnetic Resonance. J. Phys. Chem. B 2014, 118, 10156–10166. [Google Scholar] [CrossRef]
- Hu, X.; Yu, J.; Jiang, M.; Tian, J.; Chen, M.; Huang, D. Investigation of Liquor Microstructure (Ethanol-Water Clusters): Molecular Dynamics Simulation and Density Functional Theory. J. Mol. Graph. Model. 2024, 133, 108864. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chao, C.; Cai, J.; Niu, B.; Copeland, L.; Wang, S. Starch–Lipid and Starch–Lipid–Protein Complexes: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1056–1079. [Google Scholar] [CrossRef] [PubMed]
- Biliaderis, C.G.; Galloway, G. Crystallization Behavior of Amylose-V Complexes: Structure-Property Relationships. Carbohydr. Res. 1989, 189, 31–48. [Google Scholar] [CrossRef]
- Gessler, K.; Usón, I.; Takaha, T.; Krauss, N.; Smith, S.M.; Okada, S.; Sheldrick, G.M.; Saenger, W. V-Amylose at Atomic Resolution: X-Ray Structure of a Cycloamylose with 26 Glucose Residues (Cyclomaltohexaicosaose). Proc. Natl. Acad. Sci. USA 1999, 96, 4246–4251. [Google Scholar] [CrossRef]
- Peng, M.; Ruan, X.; Fan, H.; Chen, Z. AFM Probing on the Microstructure of the Starch and the Starch-Iodine Complex. Polym. Mater. Sci. Eng. 2009, 25, 102–104. [Google Scholar] [CrossRef]
- Pothoczki, S.; Pethes, I.; Pusztai, L.; Temleitner, L.; Ohara, K.; Bakó, I. Properties of Hydrogen-Bonded Networks in Ethanol–Water Liquid Mixtures as a Function of Temperature: Diffraction Experiments and Computer Simulations. J. Phys. Chem. B 2021, 125, 6272–6279. [Google Scholar] [CrossRef]
- Ji, N.; Ge, S.; Li, M.; Wang, Y.; Xiong, L.; Qiu, L.; Bian, X.; Sun, C.; Sun, Q. Effect of Annealing on the Structural and Physicochemical Properties of Waxy Rice Starch Nanoparticles: Effect of Annealing on the Properties of Starch Nanoparticles. Food Chem. 2019, 286, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; He, X.; Zhang, B.; Fu, X.; Li, L.; Huang, Q. Structure, Physicochemical and in Vitro Digestion Properties of Ternary Blends Containing Swollen Maize Starch, Maize Oil and Zein Protein. Food Hydrocoll. 2018, 76, 88–95. [Google Scholar] [CrossRef]
Name | ν1 (cm−1) | A1 | ν2 (cm−1) | A2 | ν3 (cm−1) | A3 | A1/A2 | A2/A3 | R2 |
---|---|---|---|---|---|---|---|---|---|
Native PS | 1056 | 4.425 | 1021 | 9.018 | 980 | 9.989 | 0.4907 | 0.9028 | 0.9989 |
75%PS | 1048 | 9.255 | 1015 | 7.034 | 980 | 11.98 | 1.316 | 0.5871 | 0.9988 |
77%PS | 1054 | 7.378 | 1017 | 9.606 | 980 | 10.35 | 0.7681 | 0.9281 | 0.9994 |
Native PTS | 1052 | 4.627 | 1024 | 6.274 | 989 | 11.85 | 0.7375 | 0.5295 | 0.9990 |
75%PTS | 1051 | 8.327 | 1023 | 5.785 | 990 | 14.59 | 1.439 | 0.3965 | 0.9993 |
77%PTS | 1053 | 6.927 | 1026 | 9.095 | 990 | 17.50 | 0.7616 | 0.5198 | 0.9990 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.-S.; Bai, H.-J.; Li, H.-W.; Wu, Y.-Q. Colorimetric Revealing of Ethanol–Water Cluster (E-Wc) Transitions in Binary Solution Based on Starch–I2 Crystallization. Molecules 2025, 30, 3785. https://doi.org/10.3390/molecules30183785
Li H-S, Bai H-J, Li H-W, Wu Y-Q. Colorimetric Revealing of Ethanol–Water Cluster (E-Wc) Transitions in Binary Solution Based on Starch–I2 Crystallization. Molecules. 2025; 30(18):3785. https://doi.org/10.3390/molecules30183785
Chicago/Turabian StyleLi, Hui-Shuang, Hao-Jie Bai, Hong-Wei Li, and Yu-Qing Wu. 2025. "Colorimetric Revealing of Ethanol–Water Cluster (E-Wc) Transitions in Binary Solution Based on Starch–I2 Crystallization" Molecules 30, no. 18: 3785. https://doi.org/10.3390/molecules30183785
APA StyleLi, H.-S., Bai, H.-J., Li, H.-W., & Wu, Y.-Q. (2025). Colorimetric Revealing of Ethanol–Water Cluster (E-Wc) Transitions in Binary Solution Based on Starch–I2 Crystallization. Molecules, 30(18), 3785. https://doi.org/10.3390/molecules30183785