Bismuth-Based Oxyfluorides as Emergent Photocatalysts: A Review
Abstract
1. Introduction
2. Crystal and Electronic Structures of Bismuth-Based Oxyfluorides
2.1. BiOF
2.2. Bi7O5F11
2.3. β-BiOxF3−2x
2.4. The Less-Described BiOxF3−2x
2.4.1. α-BiOxF3−2x
2.4.2. β′-BiOxF3−2x
2.4.3. γ-BiOxF3−2x
2.4.4. Other BiOxFy Structures
2.5. The Aurivillius Structure
3. Challenges in Characterizing BiOxF3−2x
4. Bismuth-Based Oxyfluorides as Photocatalysts and Strategies to Enhance Their Activity
4.1. Bismuth-Based Oxyfluorure Photocatalysts
4.2. Facet Selection and Oxygen Vacancies
4.3. Metal/Non-Metal Doping
Materials | Synthesis Method | Precursors | Application | References |
---|---|---|---|---|
Ag-doped BiOF–rGO | Solvothermal | GO, Bi(NO3)3·5H2O, AgNO3, NH4F, C2H6O2 | The photodegradation of MB and MO dyes under UV-light and sunlight irradiation | [78] |
Er3+/Yb3+-codoped BiOF | Solid-state | Bi2O3, NH4F, Yb2O3, Er2O3 | The photodegradation of RhB and MB under visible-light and NIR-light irradiation | [76] |
Y-BiOF/RGO | Solvothermal | Bi(NO3)3·5H2O, Y(NO3)3·6H2O, PVP mw40.000, C2H6O2 | The degradation of MB under visible-light irradiation | [63] |
Sm3+-doped BiOF | Solid-state | Bi2O3, NH4F, Sm2O3 | The decomposition of RhB dye under visible-light irradiation | [75] |
Eu3+doped BiOF | Solid-state | Bi2O3, NH4F, Eu2O3 | The degradation of RhB dye under visible-light irradiation | [64] |
4.4. The Formation of Heterostructures with Other Photocatalysts
4.4.1. With Semiconductors and Carbon Materials
4.4.2. Other Bismuth Oxyhalides
4.4.3. Metal Nanoparticles
Materials | Synthesis Method | Precursors | Application | References |
---|---|---|---|---|
Ag-BiOF/g-C3N4 | Solvothermal | g-C3N4, Bi(NO3)3·5H2O, AgNO3, C6H12N4, NaF, C2H6O2 | Photodegradation of MB under visible light | [87] |
Bi/BiOF/Bi2O2CO3 | Hydrothermal | Bi(NO3)3·5H2O, NaF, C2H6O2/H2O (1:1) | Photodegradation of ciprofloxacin under UV-Vis light | [112] |
Bi/BiOI1−xFx | Hydrothermal | Bi(NO3)3·5H2O, NaF, KI, C2H6O2 | Photodecomposition of perfluorooctanoic acid | [88] |
BiO0.5F2/Bi | Magnetron sputtering | Bi target, Ar/O2/CF4 atmosphere | Photodegradation of MO | [111] |
Ag2O/BiOF | Solvothermal | Bi(NO3)3·5H2O, NH4F | Photodegradation of RhB under UV-Vis light | [85] |
BiOF/Bi2O3/RGO | Precipitation/calcination/reduction | Bi(NO3)3·5H2O, NaF, GO | Photodegradation of RhB under natural sunlight | [86] |
BiVO4/BiO0.67F1.66 | Two-step hydrothermal synthesis | Bi(NO3)3·5H2O, C2H6O2, NaVO3, NH4F | Photodegradation of RhB and phenol molecules | [82] |
BiVO4/BiOF | Hydrothermal | Bi(NO3)3·5H2O, C2H6O2, Na3VO4, NH4F | Photodegradation of MB under visible light | [81] |
BiOF/TiO2 | Solid-state and sintering | Bi2O3, HF, TiO2 | Photodegradation of RhB and MB under visible light | [83] |
BiOF@ZIF-8 | Hydrothermal | Bi(NO3)3·5H2O, terephthalic acid, NH4F, HF, Zn(NO3)2·6H2O, H-MeIM, DMF, CHCl3, DCM | Oxidation of benzylalcohols | [89] |
BiOF/Bi2O3 | Hydrothermal | Bi(NO3)3·5H2O, HF/NH3·H2O | Photodegradation of RhB under UV–visible light | [84] |
BiO0.51F1.98 coated SrO-Bi2O3-B2O3 glass ceramic | Fluorination through controlled etching | SBBO, HF | Photodegradation of MB under visible light | [91] |
BiO0.1F2.8 coated 2Bi2O3-Bi2O3 (BBO) glass | Wet etching | BBO, HF | Photodegradation of Rh6G dye | [90] |
BiOBr/BiOF | Solvothermal | CTAB, NaF, HF, Bi(NO3)3·5H2O, C2H6O2 | Photodegradation of MB under visible light | [94] |
BiOBr/BiOF | Hydrothermal | CTAB, NH4F, Bi(NO3)3·5H2O | Photodegradation of RhB and nitrobenzene under visible light | [113] |
BiOCl/BiOF | Solvothermal | BiCl3, NH4F, Bi(NO3)3·5H2O, C4H10O2 | Photocatalytic degradation of methyl orange (MO) under UV–Vis.-light irradiation | [95] |
BiO0.51F1.98/BiOF | Solvothermal | NaF, Bi(NO3)3·5H2O, C2H6O2 | MO degradation under light irradiation | [97] |
Bi7O5F11/BiOF | Solvothermal | NH4F, Bi(NO3)3·5H2O, C2H6O2, H2O | Photodegradation of PFOA under UV-light irradiation | [98] |
Bi7F11O5/BiOCl | Hydrothermal | BiOCl, NH4F, C2H6O/H2O | Photodegradation of MO under UV light | [96] |
BiOmFn/BiOxIy/GO | Hydrothermal | C Graphite, NaNO3, H2SO4., KMnO4, Bi(NO3)3·5H2O, NaOH, KI, KF | Photodegradation of CV and HBA under visible light | [51] |
BiOF/BiOI/Bi26O38F2/g-C3N4 | Hydrothermal | Melamine, Bi(NO3)3·5H2O, NaOH, HNO3, KF, KI | Photodegradation of CV under visible light and photoconversion of CO2 into CH4 under visible light | [49] |
Bi2TiO4F2/BiOBr | Solvothermal | Bi(NO3)3·5H2O, (NH4)2TiF6, C2H6O2 | Photocatalytic O2 evolution | [100] |
BiF3/Bi2NbO5F | Solvothermal | Bi(NO3)3·5H2O, Nb2O5, C2H6O2 | Photodegradation of RhB under visible-light irradiation | [92] |
4.5. The Use of Sensitizers
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Shahi, S.K.; Kaur, N.; Sandhu, S.; Shahi, J.S.; Singh, V. Influences of a New Templating Agent on the Synthesis of Coral-like TiO2 Nanoparticles and Their Photocatalytic Activity. J. Sci. Adv. Mater. Devices 2017, 2, 347–353. [Google Scholar] [CrossRef]
- Kim, J.H.; Noh, B.H.; Lee, G.-D.; Hong, S.-S. Hydrothermal Synthesis of Titanium Dioxide Using Acidic Peptizing Agents and Their Photocatalytic Activity. Korean J. Chem. Eng. 2005, 22, 370–374. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, P.; Liu, J.; Yu, J. New Understanding of the Difference of Photocatalytic Activity among Anatase, Rutile and Brookite TiO2. Phys. Chem. Chem. Phys. 2014, 16, 20382–20386. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, X.; Liu, H.; Liu, C.; Wan, Y.; Long, Y.; Cai, Z. Recent Advances and Applications of Semiconductor Photocatalytic Technology. Appl. Sci. 2019, 9, 2489. [Google Scholar] [CrossRef]
- Shi, H.; Ming, W.; Du, M.-H. Bismuth Chalcohalides and Oxyhalides as Optoelectronic Materials. Phys. Rev. B 2016, 93, 104108. [Google Scholar] [CrossRef]
- Łaczka, M.; Stoch, L.; Górecki, J. Bismuth-Containing Glasses as Materials for Optoelectronics. J. Alloys Compd. 1992, 186, 279–291. [Google Scholar] [CrossRef]
- Sears, W.M. The Gas-Sensing Properties of Sintered Bismuth Iron Molybdate Catalyst. Sens. Actuators 1989, 19, 351–370. [Google Scholar] [CrossRef]
- Poghossian, A.; Abovian, H.; Avakian, P.; Mkrtchian, S.; Haroutunian, V. Bismuth Ferrites: New Materials for Semiconductor Gas Sensors. Sens. Actuators B Chem. 1991, 4, 545–549. [Google Scholar] [CrossRef]
- Ratova, M.; Marcelino, R.B.P.; De Souza, P.P.; Amorim, C.C.; Kelly, P.J. Reactive Magnetron Sputter Deposition of Bismuth Tungstate Coatings for Water Treatment Applications under Natural Sunlight. Catalysts 2017, 7, 283. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, Z. Bismuth-Based Photocatalytic Semiconductors: Introduction, Challenges and Possible Approaches. J. Mol. Catal. A Chem. 2016, 423, 533–549. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, C.; Huang, R.; Peng, H.; Tang, X. Investigation of Optical and Photocatalytic Properties of Bismuth Nanospheres Prepared by a Facile Thermolysis Method. J. Phys. Chem. C 2014, 118, 1155–1160. [Google Scholar] [CrossRef]
- Iyyapushpam, S.; Nishanthi, S.T.; Pathinettam Padiyan, D. Synthesis of Room Temperature Bismuth Oxide and Its Photocatalytic Activity. Mater. Lett. 2012, 86, 25–27. [Google Scholar] [CrossRef]
- Jiang, H.; Endo, H.; Natori, H.; Nagai, M.; Kobayashi, K. Fabrication and Photoactivities of Spherical-Shaped BiVO4 Photocatalysts through Solution Combustion Synthesis Method. J. Eur. Ceram. Soc. 2008, 28, 2955–2962. [Google Scholar] [CrossRef]
- Bi, J.; Wu, L.; Li, J.; Li, Z.; Wang, X.; Fu, X. Simple Solvothermal Routes to Synthesize Nanocrystalline Bi2MoO6 Photocatalysts with Different Morphologies. Acta Mater. 2007, 55, 4699–4705. [Google Scholar] [CrossRef]
- Wu, L.; Bi, J.; Li, Z.; Wang, X.; Fu, X. Rapid Preparation of Bi2WO6 Photocatalyst with Nanosheet Morphology via Microwave-Assisted Solvothermal Synthesis. Catal. Today 2008, 131, 15–20. [Google Scholar] [CrossRef]
- Cheng, H.; Huang, B.; Dai, Y. Engineering BiOX (X = Cl, Br, I) Nanostructures for Highly Efficient Photocatalytic Applications. Nanoscale 2014, 6, 2009–2026. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, L.; Zhou, Z. First-Principles Studies on Facet-Dependent Photocatalytic Properties of Bismuth Oxyhalides (BiOXs). RSC Adv. 2012, 2, 9224–9229. [Google Scholar] [CrossRef]
- Hu, J.; Weng, S.; Zheng, Z.; Pei, Z.; Huang, M.; Liu, P. Solvents Mediated-Synthesis of BiOI Photocatalysts with Tunable Morphologies and Their Visible-Light Driven Photocatalytic Performances in Removing of Arsenic from Water. J. Hazard. Mater. 2014, 264, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.; Zhang, J.; Miao, M.; Jin, Y. Solvothermal Synthesis of Flower-like BiOBr Microspheres with Highly Visible-Light Photocatalytic Performances. Appl. Catal. B Environ. 2012, 111–112, 334–341. [Google Scholar] [CrossRef]
- Wang, Q.; Hui, J.; Huang, Y.; Ding, Y.; Cai, Y.; Yin, S.; Li, Z.; Su, B. The Preparation of BiOCl Photocatalyst and Its Performance of Photodegradation on Dyes. Mater. Sci. Semicond. Process. 2014, 17, 87–93. [Google Scholar] [CrossRef]
- Li, G.; Jiang, B.; Xiao, S.; Lian, Z.; Zhang, D.; Yu, J.C.; Li, H. An Efficient Dye-Sensitized BiOCl Photocatalyst for Air and Water Purification under Visible Light Irradiation. Environ. Sci. Process. Impacts 2014, 16, 1975–1980. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, P.; Huang, B.; Dai, Y.; Qin, X.; Zhang, X.; Wang, Z.; Liu, Y. Enhancing Charge Separation in Photocatalysts with Internal Polar Electric Fields. ChemPhotoChem 2017, 1, 136–147. [Google Scholar] [CrossRef]
- Guo, Y.; Shi, W.; Zhu, Y. Internal Electric Field Engineering for Steering Photogenerated Charge Separation and Enhancing Photoactivity. EcoMat 2019, 1, e12007. [Google Scholar] [CrossRef]
- Yang, M.; Yang, Q.; Zhong, J.; Li, J.; Huang, S.; Li, X. PVA-Assisted Hydrothermal Preparation of BiOF with Remarkably Enhanced Photocatalytic Performance. Mater. Lett. 2017, 201, 35–38. [Google Scholar] [CrossRef]
- Zou, S.; Teng, F.; Chang, C.; Liu, Z.; Wang, S. Controllable Synthesis of Uniform BiOF Nanosheets and Their Improved Photocatalytic Activity by an Exposed High-Energy (002) Facet and Internal Electric Field. RSC Adv. 2015, 5, 88936–88942. [Google Scholar] [CrossRef]
- Zhang, A.; Teng, F.; Zhai, Y.; Liu, Z.; Hao, W.; Liu, Z.; Yang, Z.; Gu, W. Controllable Synthesis and Efficient Photocatalytic Activity of BiOF Nanodisks Exposed with {101} Facets, Instead of {001} Facets. J. Alloys Compd. 2019, 794, 127–136. [Google Scholar] [CrossRef]
- Xiong, J.; Song, P.; Di, J.; Li, H. Bismuth-Rich Bismuth Oxyhalides: A New Opportunity to Trigger High-Efficiency Photocatalysis. J. Mater. Chem. A 2020, 8, 21434–21454. [Google Scholar] [CrossRef]
- Ye, L.; Su, Y.; Jin, X.; Xie, H.; Zhang, C. Recent Advances in BiOX (X = Cl, Br and I) Photocatalysts: Synthesis, Modification, Facet Effects and Mechanisms. Environ. Sci. Nano 2014, 1, 90–112. [Google Scholar] [CrossRef]
- Jin, X.; Ye, L.; Xie, H.; Chen, G. Bismuth-Rich Bismuth Oxyhalides for Environmental and Energy Photocatalysis. Coord. Chem. Rev. 2017, 349, 84–101. [Google Scholar] [CrossRef]
- Vinoth, S.; Pandikumar, A. Recent Advances in Bismuth Oxyfluoride-Based Photocatalysts for Energy and Environmental Remediation. Mater. Today Chem. 2024, 36, 101924. [Google Scholar] [CrossRef]
- Aurivillius, B.; Lundqvist, T. X-Ray Studies of the System BiF3-Bi2O3. II. A Bismuth Oxide Fluoride of Defective Tysonite Type. Acta Chem. Scand. 1955, 9, 1209–1212. [Google Scholar] [CrossRef]
- Aurivillius, B. The Crystal Structure of Bismuth Oxide Fluoride. Acta Chem. Scand. 1964, 18, 1823–1830. [Google Scholar] [CrossRef]
- Aurivillius, B. X-Ray Studies on the System BiF3–Bi2O3 I. Preliminary Phase Analysis and a Note on the Structure of BiF3. Acta Chem. Scand. (Den.) Divid. Acta Chem. Scand. Ser. A Ser. B 1955, 9, 7. [Google Scholar] [CrossRef]
- Morell, A.; Tanguy, B.; Portier, J. Le Système Bi2O3–BiF3. Bull. Société Chim. Fr. 1971, 7, 2502–2504. [Google Scholar]
- Chen, X.; Chen, P.; Yang, S.; Gao, H. Recent Advances in Bismuth Oxyhalides Photocatalysts and Their Applications. Nanotechnology 2022, 34, 052001. [Google Scholar] [CrossRef]
- Ren, X.; Gao, M.; Zhang, Y.; Zhang, Z.; Cao, X.; Wang, B.; Wang, X. Photocatalytic Reduction of CO2 on BiOX: Effect of Halogen Element Type and Surface Oxygen Vacancy Mediated Mechanism. Appl. Catal. B Environ. 2020, 274, 119063. [Google Scholar] [CrossRef]
- Huang, W.L. Electronic Structures and Optical Properties of BiOX (X = F, Cl, Br, I) via DFT Calculations. J. Comput. Chem. 2009, 30, 1882–1891. [Google Scholar] [CrossRef]
- Wang, G.; Luo, X.; Huang, Y.; Kuang, A.; Yuan, H.; Chen, H. BiOX/BiOY (X, Y = F, Cl, Br, I) Superlattices for Visible Light Photocatalysis Applications. RSC Adv. 2016, 6, 91508–91516. [Google Scholar] [CrossRef]
- Erbland, T.; Ibrahim, S.; Monier, G.; Bonnet, P.; Bousquet, A. On the Identification of BiOF, Bi7O5F11and β-BiO0.5F2 Bismuth Oxyfluorides. 2025. Available online: https://hal.science/hal-05261692v1 (accessed on 3 September 2025).
- Li, S.; Zhang, C.; Min, F.; Dai, X.; Pan, C.; Cheng, W. Electronic Structural Properties of BiOF Crystal and Its Oxygen Vacancy from First-Principles Calculations. Russ. J. Phys. Chem. 2017, 91, 2425–2430. [Google Scholar] [CrossRef]
- Laval, J.P.; Champarnaud-Mesjard, J.-C.; Frit, B.; Britel, A.; Mikou, A. Bi7F11O5: A New Ordered Anion-Excess Fluorite-Related Structure with Columnar Clusters. Eur. J. Solid State Inorg. Chem. 1994, 31, 943–956. [Google Scholar] [CrossRef]
- Hu, W.; Shan, P.; Sun, T.; Liu, H.; Zhang, J.; Liu, X.; Kong, Y.; Xu, J. Preparation, Nonlinear Optical Properties, and Theoretical Analysis of the Non-Centrosymmetric Bismuth Oxyfluoride, Bi7F11O5. J. Alloys Compd. 2016, 658, 788–794. [Google Scholar] [CrossRef]
- Zhan, J.; Lei, Z.; Zhang, Y. Influence of Graphene Oxide Surface on the Synthesis and Structure of BiOxFy at Ambient Conditions. Adv. Mater. Interfaces 2022, 9, 2102042. [Google Scholar] [CrossRef]
- Ren, M.; Teng, F.; Yang, Y.; Zhai, Y.; Gu, W.; Liu, Z.; Liu, Z.; Teng, Y. Influence of O/F Ratio on Oxygen Defect and Photochemical Properties of BixOyFz. Mater. Des. 2017, 131, 402–409. [Google Scholar] [CrossRef]
- Laval, J.P.; Champarnaud-Mesjard, J.C.; Britel, A.; Mikou, A. Bi(F, O)2.45: An Anion-Excess Fluorite Defect Structure Deriving from Rhombohedral LnFO Type. J. Solid State Chem. 1999, 146, 51–59. [Google Scholar] [CrossRef]
- Gu, W.; Zhang, G.; Teng, F.; Teng, Y.; Zhao, Z.; Fan, W. Effect of F/O Atomic Ratio on Photocatalytic Activity of BixOyFz. Chem. Phys. Lett. 2016, 659, 221–224. [Google Scholar] [CrossRef]
- Wang, M.; Huang, Q.-L.; Chen, X.-T.; You, X.-Z. Room Temperature Synthesis of Bismuth Oxyfluoride Nanosheets and Nanorods. Mater. Lett. 2007, 61, 4666–4669. [Google Scholar] [CrossRef]
- Lin, Y.-Y.; Hung, K.-Y.; Liu, F.-Y.; Dai, Y.-M.; Lin, J.-H.; Chen, C.-C. Photocatalysts of Quaternary Composite, Bismuth Oxyfluoride/Bismuth Oxyiodide/Graphitic Carbon Nitride: Synthesis, Characterization, and Photocatalytic Activity. Mol. Catal. 2022, 528, 112463. [Google Scholar] [CrossRef]
- Chen, C.-C.; Fu, J.-Y.; Chang, J.-L.; Huang, S.-T.; Yeh, T.-W.; Hung, J.-T.; Huang, P.-H.; Liu, F.-Y.; Chen, L.-W. Bismuth Oxyfluoride/Bismuth Oxyiodide Nanocomposites Enhance Visible-Light-Driven Photocatalytic Activity. J. Colloid Interface Sci. 2018, 532, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.-Y.; Chen, L.-W.; Dai, Y.-M.; Liu, F.-Y.; Huang, S.-T.; Chen, C.-C. BiOmFn/BiOxIy/GO Nanocomposites: Synthesis, Characterization, and Photocatalytic Activity. Mol. Catal. 2018, 455, 214–223. [Google Scholar] [CrossRef]
- Moure, A. Review and Perspectives of Aurivillius Structures as a Lead-Free Piezoelectric System. Appl. Sci. 2018, 8, 62. [Google Scholar] [CrossRef]
- Giddings, A.T.; Scott, E.A.S.; Stennett, M.C.; Apperley, D.C.; Greaves, C.; Hyatt, N.C.; McCabe, E.E. Symmetry and the Role of the Anion Sublattice in Aurivillius Oxyfluoride Bi2TiO4F2. Inorg. Chem. 2021, 60, 14105–14115. [Google Scholar] [CrossRef]
- McDowell, N.A.; Knight, K.S.; Lightfoot, P. Unusual High-Temperature Structural Behaviour in Ferroelectric Bi2WO6. Chem.—Eur. J. 2006, 12, 1493–1499. [Google Scholar] [CrossRef]
- Akopjan, A.V.; Serov, T.V.; Dolgikh, V.A.; Ardaschnikova, E.I.; Lightfoot, P. A New Anion Conductive Bismuth–Vanadium Oxyfluoride. J. Mater. Chem. 2002, 12, 1490–1494. [Google Scholar] [CrossRef]
- Needs, R.L.; Dann, S.E.; Weller, M.T.; Cherryman, J.C.; Harris, R.K. The Structure and Oxide/Fluoride Ordering of the Ferroelectrics Bi2TiO4F2 and Bi2NbO5F. J. Mater. Chem. 2005, 15, 2399–2407. [Google Scholar] [CrossRef]
- Wang, S.; Huang, B.; Wang, Z.; Liu, Y.; Wei, W.; Qin, X.; Zhang, X.; Dai, Y. A New Photocatalyst: Bi2TiO4F2 Nanoflakes Synthesized by a Hydrothermal Method. Dalton Trans. 2011, 40, 12670–12675. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, J.; Wang, K.; Gong, J.; Li, Y.; Zhang, G. Controlled Synthesis of Bi2NbO5F Plates with Exposed {010} Facet by Molten Salt Method and Their Photocatalytic Mechanism Insights. J. Alloys Compd. 2019, 776, 586–593. [Google Scholar] [CrossRef]
- Asahi, R.; Taga, Y.; Mannstadt, W.; Freeman, A.J. Electronic and Optical Properties of Anatase TiO2. Phys. Rev. B 2000, 61, 7459–7465. [Google Scholar] [CrossRef]
- Jiang, H.-Y.; Liu, J.; Cheng, K.; Sun, W.; Lin, J. Enhanced Visible Light Photocatalysis of Bi2O3 upon Fluorination. J. Phys. Chem. C 2013, 117, 20029–20036. [Google Scholar] [CrossRef]
- Gmitter, A.J.; Halajko, A.; Sideris, P.J.; Greenbaum, S.G.; Amatucci, G.G. Subsurface Diffusion of Oxide Electrolyte Decomposition Products in Metal Fluoride Nanocomposite Electrodes. Electrochim. Acta 2013, 88, 735–744. [Google Scholar] [CrossRef]
- Wei, D.; Huang, Y.; Seo, H.J. Eu3+-Doped Bi7O5F11 Microplates with Simultaneous Luminescence and Improved Photocatalysis. APL Mater. 2020, 8, 081109. [Google Scholar] [CrossRef]
- Vadivel, S.; Paul, B.; Maruthamani, D.; Kumaravel, M.; Vijayaraghavan, T.; Hariganesh, S.; Pothu, R. Synthesis of Yttrium Doped BiOF/RGO Composite for Visible Light: Photocatalytic Applications. Mater. Sci. Energy Technol. 2019, 2, 112–116. [Google Scholar] [CrossRef]
- Saraf, R.; Shivakumara, C.; Behera, S.; Dhananjaya, N.; Nagabhushana, H. Synthesis of Eu3+-Activated BiOF and BiOBr Phosphors: Photoluminescence, Judd–Ofelt Analysis and Photocatalytic Properties. RSC Adv. 2015, 5, 9241–9254. [Google Scholar] [CrossRef]
- Ren, C.; Ni, W.; Li, H. Recent Progress in Electrocatalytic Reduction of CO2. Catalysts 2023, 13, 644. [Google Scholar] [CrossRef]
- Lei, S.; Gao, X.; Cheng, D.; Fei, L.; Lu, W.; Zhou, J.; Xiao, Y.; Cheng, B.; Wang, Y.; Huang, H. A Novel Hierarchically Porous Hollow Structure of Layered Bi2TiO4F2 for Efficient Photocatalysis. Eur. J. Inorg. Chem. 2024, 2017, 1892–1899. [Google Scholar] [CrossRef]
- Lei, S.; Cheng, D.; Gao, X.; Fei, L.; Lu, W.; Zhou, J.; Xiao, Y.; Cheng, B.; Wang, Y.; Huang, H. A New Low-Temperature Solution Route to Aurivillius-Type Layered Oxyfluoride Perovskites Bi2MO5F (M = Nb, Ta) as Photocatalysts. Appl. Catal. B Environ. 2017, 205, 112–120. [Google Scholar] [CrossRef]
- Yin, X.; Li, Y.; Yang, D.; Shen, J.; Han, W.; Zhang, M.; Zhuang, M.; Tang, X.; Gao, R.; Li, X.; et al. Gentle Preparation of Layered Perovskite Oxyfluoride Nanosheets and Exploration of Excellent Catalytic Activity. Surf. Interfaces 2025, 58, 105898. [Google Scholar] [CrossRef]
- Mitoudi Vagourdi, E.; Müllner, S.; Lemmens, P.; Kremer, R.K.; Johnsson, M. Synthesis and Characterization of the Aurivillius Phase CoBi2O2F4. Inorg. Chem. 2018, 57, 9115–9121. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Mitoudi-Vagourdi, E.; Johnsson, M. The Aurivillius Compound CoBi2O2F4—An Efficient Catalyst for Electrolytic Water Oxidation after Liquid Exfoliation. ChemCatChem 2019, 11, 6105–6110. [Google Scholar] [CrossRef]
- Sano, M.; Kamigaito, A.; Wakayama, Y.; Shigematsu, K.; Katayama, T.; Hirose, Y.; Chikamatsu, A. Topochemical Fluorination of Epitaxial Thin Films of Barium-Doped Bismuth Iron Oxyfluoride. Cryst. Growth Des. 2024, 24, 9344–9349. [Google Scholar] [CrossRef]
- Gao, W.; Liang, S.; Wang, R.; Jiang, Q.; Zhang, Y.; Zheng, Q.; Xie, B.; Toe, C.Y.; Zhu, X.; Wang, J.; et al. Industrial Carbon Dioxide Capture and Utilization: State of the Art and Future Challenges. Chem. Soc. Rev. 2024, 49, 8584–8686. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, Y.; Yu, Y.; Zhang, B. Oxygen Vacancy Engineering in Photocatalysis. Solar RRL 2020, 4, 2000037. [Google Scholar] [CrossRef]
- Mehtab, A.; Ahmed, J.; Alshehri, S.M.; Mao, Y.; Ahmad, T. Rare Earth Doped Metal Oxide Nanoparticles for Photocatalysis: A Perspective. Nanotechnology 2022, 33, 142001. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ran, W.; Du, P.; Li, W.; Luo, L.; Wang, D. Enhanced Visible Light-Driven Photocatalytic Activities and Photoluminescence Characteristics of BiOF Nanoparticles Determined via Doping Engineering. Inorg. Chem. 2020, 59, 11801–11813. [Google Scholar] [CrossRef]
- Du, P.; Ran, W.; Wang, C.; Luo, L.; Li, W. Facile Realization of Boosted Near-Infrared-Visible Light Driven Photocatalytic Activities of BiOF Nanoparticles through Simultaneously Exploiting Doping and Upconversion Strategy. Adv. Mater. Interfaces 2021, 8, 2100749. [Google Scholar] [CrossRef]
- Zhou, S.; Shi, T.; Chen, Z.; Kilin, D.S.; Shui, L.; Jin, M.; Yi, Z.; Yuan, M.; Li, N.; Yang, X.; et al. First-Principles Study of Optoelectronic Properties of the Noble Metal (Ag and Pd) Doped BiOX (X = F, Cl, Br, and I) Photocatalytic System. Catalysts 2019, 9, 198. [Google Scholar] [CrossRef]
- Elias, M.; Alam, R.; Sarker, S.; Hossain, M.A. Fabrication of Ag-Doped BiOF-Reduced Graphene Oxide Composites for Photocatalytic Elimination of Organic Dyes. Heliyon 2024, 10, e34921. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Garlisi, C.; Guan, Q.; Anwer, S.; Al-Ali, K.; Palmisano, G.; Zheng, L. A Review of Material Aspects in Developing Direct Z-Scheme Photocatalysts. Mater. Today 2021, 47, 75–107. [Google Scholar] [CrossRef]
- Wang, X.; Sayed, M.; Ruzimuradov, O.; Zhang, J.; Fan, Y.; Li, X.; Bai, X.; Low, J. A Review of Step-Scheme Photocatalysts. Appl. Mater. Today 2022, 29, 101609. [Google Scholar] [CrossRef]
- Razavi-Khosroshahi, H.; Mohammadzadeh, S.; Hojamberdiev, M.; Kitano, S.; Yamauchi, M.; Fuji, M. BiVO4/BiOX (X = F, Cl, Br, I) Heterojunctions for Degrading Organic Dye under Visible Light. Adv. Powder Technol. 2019, 30, 1290–1296. [Google Scholar] [CrossRef]
- Feng, X.; Zhao, X.; Chen, L. BiVO4/BiO0.67F1.66 Heterojunction Enhanced Charge Carrier Separation to Boost Photocatalytic Activity. J. Nanopart. Res. 2019, 21, 61. [Google Scholar] [CrossRef]
- Nasr, M.; Huang, W.; Bittencourt, C.; Cui, D.; Sun, Y.; Wang, L.; Caperaa, N.G.; Ning, Y.; Song, P.; Bonnet, P.; et al. Synthesis of BiOF/TiO2 Heterostructures and Their Enhanced Visible-Light Photocatalytic Activity. Eur. J. Inorg. Chem. 2020, 2020, 253–260. [Google Scholar] [CrossRef]
- Qiang, Z.; Zhu, S.; Li, T.; Li, F. Excellent Photo- and Sono- Catalytic BiOF/Bi2O3 Heterojunction Nanoflakes Synthesized via pH-Dependent and Ionic Liquid Assisted Solvothermal Method. Mater. Today Commun. 2020, 23, 100980. [Google Scholar] [CrossRef]
- Yang, M.; Yang, Q.; Zhong, J.; Huang, S.; Li, J.; Song, J.; Burda, C. Enhanced Photocatalytic Performance of Ag2O/BiOF Composite Photocatalysts Originating from Efficient Interfacial Charge Separation. Appl. Surf. Sci. 2017, 416, 666–671. [Google Scholar] [CrossRef]
- Hu, L.; Dong, S.; Li, Q.; Feng, J.; Pi, Y.; Liu, M.; Sun, J.; Sun, J. Facile Synthesis of BiOF/Bi2O3/Reduced Graphene Oxide Photocatalyst with Highly Efficient and Stable Natural Sunlight Photocatalytic Performance. J. Alloys Compd. 2015, 633, 256–264. [Google Scholar] [CrossRef]
- Vadivel, S.; Kamalakannan, V.P.; Kavitha, N.P.; Santhoshini Priya, T.; Balasubramanian, N. Development of Novel Ag Modified BiOF Squares/g-C3N4 Composite for Photocatalytic Applications. Mater. Sci. Semicond. Process. 2016, 41, 59–66. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Cao, C.; Zhang, Y.; Zhang, Y.; Zhu, L. Decomposition of Highly Persistent Perfluorooctanoic Acid by Hollow Bi/BiOI1−xFx: Synergistic Effects of Surface Plasmon Resonance and Modified Band Structures. J. Hazard. Mater. 2021, 402, 123459. [Google Scholar] [CrossRef]
- Ghayoumian, N.; Aliyan, H.; Fazaeli, R. A Novel Nano-Cotton-like Bismuth Oxyfluoride (NC-BiOF) and a Novel Nanosheet Heterogeneous Compound BiOF@ZIF-8 as Catalyst for the Selective and Green Oxidation of Benzylic Alcohols. J. Chin. Chem. Soc. 2019, 66, 363–370. [Google Scholar] [CrossRef]
- Sharma, S.K.; Singh, V.P.; Chauhan, V.S.; Kushwaha, H.S.; Vaish, R. Photocatalytic Active Bismuth Fluoride/Oxyfluoride Surface Crystallized 2Bi2O3-B2O3 Glass–Ceramics. J. Electron. Mater. 2018, 47, 3490–3496. [Google Scholar] [CrossRef]
- Singh, V.P.; Vaish, R. Controlled Crystallization of Photocatalytic Active Bismuth Oxyfluoride/Bismuth Fluoride on SrO-Bi2O3-B2O3transparent Glass Ceramic. J. Eur. Ceram. Soc. 2018, 38, 3635–3642. [Google Scholar] [CrossRef]
- Lei, S.; Wang, C.; Cheng, D.; Gao, X.; Chen, L.; Yan, Y.; Zhou, J.; Xiao, Y.; Cheng, B. Hierarchical BiF3–Bi2NbO5F Core–Shell Structure and Its Application in the Photosensitized Degradation of Rhodamine B under Visible Light Irradiation. J. Phys. Chem. C 2015, 119, 502–511. [Google Scholar] [CrossRef]
- Zhao, Z.-Y.; Liu, Q.-L.; Dai, W.-W. Structural, Electronic and Optical Properties of BiOX1−xYx (X, Y = F, Cl, Br and I) Solid Solutions from DFT Calculations. Sci. Rep. 2016, 6, 31449. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.; Feng, H.; Hu, M.; Huang, F.; Jin, T.; Liu, Y.; Li, Q.; Qiang, Y. Influence of CTAB Surfactant on the Phase, Morphology, Light Absorption and Photocatalytic Performance of BiOF Nanomaterials. Mater. Res. Express 2019, 6, 105541. [Google Scholar] [CrossRef]
- Cheng, J.; Frezet, L.; Bonnet, P.; Wang, C. Preparation and Photocatalytic Properties of a Hierarchical BiOCl/BiOF Composite Photocatalyst. Catal. Lett. 2018, 148, 1281–1288. [Google Scholar] [CrossRef]
- Kan, Y.; Yang, Y.; Teng, F.; Yang, L.; Xu, J.; Teng, Y. Synthesis of Bi7F11O5/BiOCl Nanosheets by a Simple Post-Synthesis Method and the Improved Charge Separation by the Heterojunction. Catal. Commun. 2016, 87, 10–13. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, S.; Li, Z.; Ding, X.; Wu, M.; Zhang, M.; Yu, W. Polycrystalline Bismuth Oxyfluoride of BiO0.51F1.98 with Self-Doped BiOF Achieving Distinctly Enhanced Photocatalytic Activity. Mater. Lett. 2020, 262, 127197. [Google Scholar] [CrossRef]
- Wang, J.; Cao, C.-S.; Zhang, Y.; Zhu, L. Insights into the Intrinsic Mechanisms Underlying the Ultra-Highly Efficient Degradation of PFOA over S-Scheme Heterojunction of Bi7O5F11/BiOF. Appl. Catal. B Environ. 2023, 336, 122899. [Google Scholar] [CrossRef]
- Kodama, H.; Izumi, F.; Watanabe, A. New Members of a Family of Layered Bismuth Compounds. J. Solid State Chem. 1981, 36, 349–355. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H.; Zhu, L.; Fu, Z.; Lu, Y. One-Pot Synthesis of Bi2TiO4F2/BiOBr Ferroelectric Heterostructure for Photocatalytic Oxygen Evolution. J. Alloys Compd. 2021, 873, 159847. [Google Scholar] [CrossRef]
- Amirjani, A.; Amlashi, N.B.; Ahmadiani, Z.S. Plasmon-Enhanced Photocatalysis Based on Plasmonic Nanoparticles for Energy and Environmental Solutions: A Review. ACS Appl. Nano Mater. 2023, 6, 9085–9123. [Google Scholar] [CrossRef]
- Hou, W.; Cronin, S.B. A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619. [Google Scholar] [CrossRef]
- Singh, A.N.; Devnani, H.; Jha, S.; Ingole, P.P. Fermi Level Equilibration of Ag and Au Plasmonic Metal Nanoparticles Supported on Graphene Oxide. Phys. Chem. Chem. Phys. 2018, 20, 26719–26733. [Google Scholar] [CrossRef]
- Subramanian, V.; Wolf, E.E.; Kamat, P.V. Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration. J. Am. Chem. Soc. 2004, 126, 4943–4950. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.; Xu, Z.; Loo, J.S.C. Hybrid Catalysts for Photoelectrochemical Reduction of Carbon Dioxide: A Prospective Review on Semiconductor/Metal Complex Co-Catalyst Systems. J. Mater. Chem. A 2014, 2, 15228–15233. [Google Scholar] [CrossRef]
- Liu, J.; He, H.; Xiao, D.; Yin, S.; Ji, W.; Jiang, S.; Luo, D.; Wang, B.; Liu, Y. Recent Advances of Plasmonic Nanoparticles and Their Applications. Materials 2018, 11, 1833. [Google Scholar] [CrossRef]
- McMahon, J.M.; Schatz, G.C.; Gray, S.K. Plasmonics in the Ultraviolet with the Poor Metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys. Chem. Chem. Phys. 2013, 15, 5415–5423. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Z.; Fang, J.; Wu, S.; Xu, W. Synthesis and Characterization of Mesoporous Bi/TiO2 Nanoparticles with High Photocatalytic Activity under Visible Light. J. Mater. Res. 2013, 28, 1334–1342. [Google Scholar] [CrossRef]
- Li, N.; Zhao, W.; Zhang, J.; Liu, X.; Gao, Y.; Ge, L. Plasmonic Bi-Modified Bi2Sn2O7 Nanosheets for Efficient Photocatalytic NO Removal. Catalysts 2024, 14, 275. [Google Scholar] [CrossRef]
- Bian, Z.; Lu, B.; Yang, Y.; Zhang, Q. Bi/BiVO4 Tailoring Molecular Oxygen Activation for SPR-Promoted Photocatalytic Contaminant Removal. Surf. Interfaces 2024, 47, 104210. [Google Scholar] [CrossRef]
- Ibrahim, S.; Minasyan, L.; Bonnet, P.; Monier, G.; Tomasella, E.; Sauvage, T.; Richard-Plouet, M.; Le Granvalet, M.; Bonduelle, A.; Pagis, C.; et al. Photocatalytic Properties of Bismuth Oxyfluoride Thin Films Deposited by Reactive Magnetron Sputtering in Ar/O2/CF4 Atmosphere. Preprints 2023. [Google Scholar]
- Ai, L.; Yin, H.; Wang, S.; Wang, J.; Gao, X.; Yin, X.; Dou, K.; Ju, P.; Sun, H. One-Pot Preparation of Bi/BiOF/Bi2O2CO3 Z-Scheme Heterojunction with Enhanced Photocatalysis Activity for Ciprofloxacin Degradation under Simulated Sunlight. Mater. Today Nano 2024, 25, 100446. [Google Scholar] [CrossRef]
- Jiang, T.; Li, J.; Gao, Y.; Li, L.; Lu, T.; Pan, L. BiOBr/BiOF Composites for Efficient Degradation of Rhodamine B and Nitrobenzene under Visible Light Irradiation. J. Colloid Interface Sci. 2017, 490, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Garg, S.; Chandra, A.; Hernadi, K. Quercetin-Sensitized BiOF Nanostructures: An Investigation on Photoinduced Charge Transfer and Regeneration Process for Degradation of Organic Pollutants. J. Photochem. Photobiol. A Chem. 2019, 383, 112014. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erbland, T.; Ibrahim, S.; Pelat, L.; Lemoine, K.; Bousquet, A.; Bonnet, P. Bismuth-Based Oxyfluorides as Emergent Photocatalysts: A Review. Molecules 2025, 30, 3784. https://doi.org/10.3390/molecules30183784
Erbland T, Ibrahim S, Pelat L, Lemoine K, Bousquet A, Bonnet P. Bismuth-Based Oxyfluorides as Emergent Photocatalysts: A Review. Molecules. 2025; 30(18):3784. https://doi.org/10.3390/molecules30183784
Chicago/Turabian StyleErbland, Thomas, Sara Ibrahim, Lucas Pelat, Kevin Lemoine, Angélique Bousquet, and Pierre Bonnet. 2025. "Bismuth-Based Oxyfluorides as Emergent Photocatalysts: A Review" Molecules 30, no. 18: 3784. https://doi.org/10.3390/molecules30183784
APA StyleErbland, T., Ibrahim, S., Pelat, L., Lemoine, K., Bousquet, A., & Bonnet, P. (2025). Bismuth-Based Oxyfluorides as Emergent Photocatalysts: A Review. Molecules, 30(18), 3784. https://doi.org/10.3390/molecules30183784