Physicochemical Changes and Antioxidant Metabolism of Actinidia arguta Fruit (Kiwiberry) Under Various Cold-Storage Conditions
Abstract
1. Introduction
2. Results and Discussion
2.1. Basic Physicochemical Parameters
2.2. Fruit Chemical Composition
2.2.1. Ascorbate
2.2.2. Thiol Compounds: L-Cysteine (L-CYS) and Total Glutathione (tGSH)
2.2.3. Phenolics
2.3. In Vitro Antioxidant/Antiradical Activities
2.4. Multivariate PCA Biplot Assessment
3. Materials and Methods
3.1. Fruit Samples, Weather Conditions, and Experimental Design
3.2. Basic Fruit Physicochemical Parameters
3.3. Fruit Chemical Analyses
3.4. Determination of In Vitro Antioxidant/Antiradical Activities
3.4.1. Preparation of Methanolic Extract and Method of Measurements
3.4.2. ABTS•+ Assay
3.4.3. CUPRAC Assay
3.4.4. CBA
3.4.5. Fe(II) Chelating Activity
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Musacchi, S.; Serra, S. Apple Fruit Quality: Overview on Pre-Harvest Factors. Sci. Hortic. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- Tiwari, U.; Cummins, E. Factors Influencing Levels of Phytochemicals in Selected Fruit and Vegetables during Pre- and Post-Harvest Food Processing Operations. Food Res. Int. 2013, 50, 497–506. [Google Scholar] [CrossRef]
- Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z.; Mbili, N. Postharvest Quality and Composition of Organically and Conventionally Produced Fruits: A Review. Sci. Hortic. 2017, 216, 148–159. [Google Scholar] [CrossRef]
- Liang, X.; Qian, G.; Pan, S.; Wang, J.; Cong, X.; Ye, T.; Yan, M.; Xu, H.; Xin, G. A Shelf Life Prediction Model of Actinidia arguta ‘Chang Jiang No.1’ Based on Postharvest Quality Evaluation Combined with Fuzzy Mathematics. J. Stored Prod. Res. 2024, 108, 102396. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, F.; Feng, X.; MacArthur, R.L. Modulation of Actinidia arguta Fruit Ripening by Three Ethylene Biosynthesis Inhibitors. Food Chem. 2015, 173, 405–413. [Google Scholar] [CrossRef]
- Fisk, C.L.; McDaniel, M.R.; Strik, B.C.; Zhao, Y. Physicochemical, Sensory, and Nutritive Qualities of Hardy Kiwifruit (Actinidia arguta ‘Ananasnaya’) as Affected by Harvest Maturity and Storage. J. Food Sci. 2006, 71, S204–S210. [Google Scholar] [CrossRef]
- Figiel-Kroczyńska, M.; Ochmian, I. Effect on Phytochemical Content and Microbial Contamination of Actinidia Fruit after Shock Cooling and Storage. Acta Univ. Cibiniensis. Ser. E Food Technol. 2021, 25, 155–166. [Google Scholar] [CrossRef]
- Stefaniak, J.; Stasiak, A.; Latocha, P.; Łata, B. Seasonal Changes in Macronutrients in the Leaves and Fruit of Kiwiberry: Nitrogen Level and Cultivar Effects. Commun. Soil Sci. Plant Anal. 2019, 50, 2913–2926. [Google Scholar] [CrossRef]
- Latocha, P.; Łata, B.; Jankowski, P. Variation of Chemical Composition and Antioxidant Properties of Kiwiberry (Actinidia arguta) in a Three-Year Study. Molecules 2023, 28, 455. [Google Scholar] [CrossRef] [PubMed]
- Wannemuehler, S.D.; Luby, J.J.; Yue, C. Consumer Preferences for Kiwiberries: Implications of Experimental Auctions. HortScience 2023, 58, 739–746. [Google Scholar] [CrossRef]
- Macedo, C.; Silva, A.M.; Ferreira, A.S.; Cádiz-Gurrea, M.d.l.L.; Fernández-Ochoa, Á.; Segura-Carretero, A.; Delerue-Matos, C.; Costa, P.; Rodrigues, F. Insights into the Polyphenols Extraction from Actinidia arguta Fruit (Kiwiberry): A Source of pro-Healthy Compounds. Sci. Hortic. 2023, 313, 111910. [Google Scholar] [CrossRef]
- Garcia-Herrera, P.; Maieves, H.A.; Vega, E.N.; Perez-Rodriguez, M.L.; Fernandez-Ruiz, V.; Iriondo-DeHond, A.; Castillo, M.D.d.; Sanchez-Mata, M.C. Dwarf Kiwi (Actinidia arguta Miq.), a Source of Antioxidants for a Healthy and Sustainable Diet. Molecules 2022, 27, 5495. [Google Scholar] [CrossRef]
- Zhang, H.; Teng, K.; Zang, H. Actinidia arguta (Sieb. et Zucc.) Planch. Ex Miq. A Review of Phytochemistry and Pharmacology. Molecules 2023, 28, 7820. [Google Scholar] [CrossRef]
- Latocha, P.; Debersaques, F.; Decorte, J. Varietal Differences in the Mineral Composition of Kiwiberry—Actinidia arguta (Siebold Et Zucc.) Planch. Ex. Miq. Acta Hortic. 2015, 1096, 479–486. [Google Scholar] [CrossRef]
- Cotrut, R.; Udriste, A. A Review of How to Optimize Storage and Shelf Life Extending Technology of Kiwifruit (Actinidia Sp.) by Using 1-Methylcyclopropene to Measurably Reduce Fruit Waste. Sci. Pap.—Ser. B Hortic. 2017, 2017, 33–38. [Google Scholar]
- White, A.; Nihal de Silva, H.; Requejo-Tapia, C.; Roger Harker, F. Evaluation of Softening Characteristics of Fruit from 14 Species of Actinidia. Postharvest Biol. Technol. 2005, 35, 143–151. [Google Scholar] [CrossRef]
- Xiong, S.; Zhou, F.; Jiang, A.; Yang, L.; Hu, W. Ethanol Vapor Ameliorates Chilling Injury and Maintains Postharvest Quality by Increasing Antioxidant Capacity of Hardy Kiwifruit (Actinidia arguta). Sci. Hortic. 2024, 327, 112796. [Google Scholar] [CrossRef]
- Wang, T.; Sui, Y.; Du, X.; Zhang, S.; Chen, L. A Comprehensive Review of Post-Harvest Ripening, Preservation and Processing for Actinidia arguta (Mini Kiwi). J. Stored Prod. Res. 2025, 111, 102582. [Google Scholar] [CrossRef]
- Eo, H.J.; Kim, C.-W.; Lee, U.; Kim, Y. Comparative Analysis of the Characteristics of Two Hardy Kiwifruit Cultivars (Actinidia arguta Cv. Cheongsan and Daebo) Stored at Low Temperatures. Plants 2024, 13, 2201. [Google Scholar] [CrossRef]
- Xia, Y.; Wu, D.-T.; Ali, M.; Liu, Y.; Zhuang, Q.-G.; Wadood, S.A.; Liao, Q.-H.; Liu, H.-Y.; Gan, R.-Y. Innovative Postharvest Strategies for Maintaining the Quality of Kiwifruit during Storage: An Updated Review. Food Front. 2024, 5, 1933–1950. [Google Scholar] [CrossRef]
- Jeong, H.-R.; Cho, H.-S.; Cho, Y.-S.; Kim, D.-O. Changes in Phenolics, Soluble Solids, Vitamin C, and Antioxidant Capacity of Various Cultivars of Hardy Kiwifruits during Cold Storage. Food Sci. Biotechnol. 2020, 29, 1763–1770. [Google Scholar] [CrossRef] [PubMed]
- Paulauskienė, A.; Tarasevičienė, Ž.; Žebrauskienė, A.; Pranckietienė, I. Effect of Controlled Atmosphere Storage Conditions on the Chemical Composition of Super Hardy Kiwifruit. Agronomy 2020, 10, 822. [Google Scholar] [CrossRef]
- Krupa, T.; Tomala, K. Effect of Oxygen and Carbon Dioxide Concentration on the Quality of Minikiwi Fruits after Storage. Agronomy 2021, 11, 2251. [Google Scholar] [CrossRef]
- Krupa, T.; Klimek, K.; Zaraś-Januszkiewicz, E. Nutritional Values of Minikiwi Fruit (Actinidia arguta) after Storage: Comparison between DCA New Technology and ULO and CA. Molecules 2022, 27, 4313. [Google Scholar] [CrossRef]
- Fisk, C.L.; Silver, A.M.; Strik, B.C.; Zhao, Y. Postharvest Quality of Hardy Kiwifruit (Actinidia Arguta ‘Ananasnaya’) Associated with Packaging and Storage Conditions. Postharvest Biol. Technol. 2008, 47, 338–345. [Google Scholar] [CrossRef]
- Stefaniak, J.; Sawicka, M.; Krupa, T.; Latocha, P.; Łata, B. Effect of Kiwiberry Pre-Storage Treatments on the Fruit Quality during Cold Storage. Zemdirbyste-Agriculture 2017, 104, 235–242. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, F.; Gu, S.; Feng, K.; Hu, W.; Zhang, J.; Sun, X.; Liang, X.; Jiang, A. 1-Methylcyclopropene Maintains the Postharvest Quality of Hardy Kiwifruit (Actinidia arguta). Food Meas. 2021, 15, 3036–3044. [Google Scholar] [CrossRef]
- Xiong, S.; Sun, X.; Tian, M.; Xu, D.; Jiang, A. 1-Methylcyclopropene Treatment Delays the Softening of Actinidia arguta Fruit by Reducing Cell Wall Degradation and Modulating Carbohydrate Metabolism. Food Chem. 2023, 411, 135485. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, Y.; Ye, L.; Shi, Y.; Luo, A. Ozone Treatment Modulates Reactive Oxygen Species Levels in Kiwifruit through the Antioxidant System: Insights from Transcriptomic Analysis. J. Plant Physiol. 2023, 291, 154135. [Google Scholar] [CrossRef]
- Piechowiak, T.; Grzelak-Błaszczyk, K.; Sójka, M.; Balawejder, M. One-Time Ozone Treatment Improves the Postharvest Quality and Antioxidant Activity of Actinidia arguta Fruit. Phytochemistry 2022, 203, 113393. [Google Scholar] [CrossRef]
- Guerreiro, A.C.; Gago, C.; Passos, D.; Martins, J.; Cruz, S.; Veloso, F.; Guerra, R.; Antunes, M.D. Edible Coatings Enhance Storability and Preserve Quality of Kiwiberry (Actinidia arguta L.) Cv. Ken’s Red. Horticulturae 2025, 11, 105. [Google Scholar] [CrossRef]
- Wang, J.; Qian, G.; Pan, S.; Ye, T.; Yan, M.; Liang, X.; Hui, L.; Cong, X.; Yang, R.; Xu, H.; et al. Evaluation Storage Capacity of Six Kind Late-Maturing Actinidia arguta Resources. J. Stored Prod. Res. 2023, 104, 102205. [Google Scholar] [CrossRef]
- Zheng, Q.; Tian, W.; Wang, S.; Chen, Z.; Wang, H.; Yue, L.; Yan, W.; Qi, W.; Zhang, C.; Xu, X.; et al. Electron Beam Irradiation Maintains Postharvest Quality of Actinidia arguta by Regulating the Cell Wall, Starch Degradation, and Antioxidant Capacity. Postharvest Biol. Technol. 2025, 223, 113442. [Google Scholar] [CrossRef]
- Hui, L.; Pan, S.; Qian, G.; Yan, M.; Li, Y.; Yang, R.; Ye, T.; Liang, X.; Cong, X.; Xu, H.; et al. Postharvest Short-Time Partial Dehydration Extends Shelf-Life and Improves the Quality of Actinidia arguta during Low Temperature Storage. J. Future Foods 2025, 5, 200–207. [Google Scholar] [CrossRef]
- Ying, L.; Bian, J.; Zhao, F.; Chen, X.; Tang, J.; Jiang, F.; Sun, B. Short-Term Anaerobic Treatment Maintained the Quality of Actinidia arguta by Activating the Antioxidant Defense System. J. Sci. Food Agric. 2024, 104, 4320–4330. [Google Scholar] [CrossRef] [PubMed]
- Pathare, P.B.; Rahman, M.S. (Eds.) Nondestructive Quality Assessment Techniques for Fresh Fruits and Vegetables; Springer Nature: Singapore, 2022; ISBN 978-981-19-5421-4. [Google Scholar]
- Yu, Y.; Yao, M. A Portable NIR System for Nondestructive Assessment of SSC and Firmness of Nanguo Pears. LWT 2022, 167, 113809. [Google Scholar] [CrossRef]
- Latocha, P.; Krupa, T.; Jankowski, P.; Radzanowska, J. Changes in Postharvest Physicochemical and Sensory Characteristics of Hardy Kiwifruit (Actinidia arguta and its Hybrid) after Cold Storage under Normal versus Controlled Atmosphere. Postharvest Biol. Technol. 2014, 88, 21–33. [Google Scholar] [CrossRef]
- Han, Y.; East, A.; Nicholson, S.; Jeffery, P.; Glowacz, M.; Heyes, J. Benefits of Modified Atmosphere Packaging in Maintaining ‘Hayward’ Kiwifruit Quality at Room Temperature Retail Conditions. N. Z. J. Crop Hortic. Sci. 2022, 50, 242–258. [Google Scholar] [CrossRef]
- Brizzolara, S.; Manganaris, G.A.; Fotopoulos, V.; Watkins, C.B.; Tonutti, P. Primary Metabolism in Fresh Fruits During Storage. Front. Plant Sci. 2020, 11, 80. [Google Scholar] [CrossRef]
- Sarron, E.; Gadonna-Widehem, P.; Aussenac, T. Ozone Treatments for Preserving Fresh Vegetables Quality: A Critical Review. Foods 2021, 10, 605. [Google Scholar] [CrossRef]
- Li, X.; Zeng, Y.; Wang, T.; Jiang, B.; Liao, M.; Lv, Y.; Li, J.; Zhong, Y. Dynamic Analysis of the Fruit Sugar-Acid Profile in a Fresh-Sweet Mutant and Wild Type in ‘Shatangju’ (Citrus Reticulata Cv.). Plants 2024, 13, 2722. [Google Scholar] [CrossRef] [PubMed]
- Giuggioli, N.R.; Briano, R.; Baudino, C.; Peano, C. Post-Harvest Warehouse Management of Actinidia arguta Fruits. Pol. J. Food Nutr. Sci. 2019, 69, 63–70. [Google Scholar] [CrossRef]
- Kabaluk, J.T.; Kempler, C.; Toivonen, P.M.A. Actinidia arguta—Characteristics Relevant to Commercial Production. Fruit Var. J. 1997, 51, 117–122. [Google Scholar]
- Baldwin, E.A.; Nisperos-Carriedo, M.O.; Baker, R.A. Use of Edible Coatings to Preserve Quality of Lightly (and Slightly) Processed Products. Crit. Rev. Food Sci. Nutr. 1995, 35, 509–524. [Google Scholar] [CrossRef]
- Fenech, M.; Amaya, I.; Valpuesta, V.; Botella, M.A. Vitamin C Content in Fruits: Biosynthesis and Regulation. Front. Plant Sci. 2019, 9, 2006. [Google Scholar] [CrossRef]
- Wang, C.; García-Caparros, P.; Li, Z.; Chen, F.; Wang, C.; García-Caparros, P.; Li, Z.; Chen, F. A Comprehensive Review on Plant Ascorbic Acid. Trop. Plants 2024, 3, e042. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Anee, T.I.; Parvin, K.; Nahar, K.; Mahmud, J.A.; Fujita, M. Regulation of Ascorbate-Glutathione Pathway in Mitigating Oxidative Damage in Plants under Abiotic Stress. Antioxidants 2019, 8, 384. [Google Scholar] [CrossRef]
- Yin, X.; Chen, K.; Cheng, H.; Chen, X.; Feng, S.; Song, Y.; Liang, L. Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology. Antioxidants 2022, 11, 153. [Google Scholar] [CrossRef]
- You, J.; Chan, Z. ROS Regulation During Abiotic Stress Responses in Crop Plants. Front. Plant Sci. 2015, 6, 1092. [Google Scholar] [CrossRef]
- Krupa, T.; Latocha, P.; Liwińska, A. Changes of Physicochemical Quality, Phenolics and Vitamin C Content in Hardy Kiwifruit (Actinidia arguta and Its Hybrid) during Storage. Sci. Hortic. 2011, 130, 410–417. [Google Scholar] [CrossRef]
- Zhang, R.; Guo, X.; Zhang, Y.; Tian, C. Influence of Modified Atmosphere Treatment on Post-Harvest Reactive Oxygen Metabolism of Pomegranate Peels. Natural Prod. Res. 2020, 34, 740–744. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, J.; Zhuo, Q.; Zhang, K.; Yan, J.; Tang, B.; Wei, X.; Lin, L.; Liu, K. Exogenous Glutathione Maintains the Postharvest Quality of Mango Fruit by Modulating the Ascorbate-Glutathione Cycle. PeerJ 2023, 11, e15902. [Google Scholar] [CrossRef]
- Stefaniak, J.; Przybył, J.L.; Latocha, P.; Łata, B. Bioactive Compounds, Total Antioxidant Capacity and Yield of Kiwiberry Fruit under Different Nitrogen Regimes in Field Conditions. J. Sci. Food Agric. 2020, 100, 3832–3840. [Google Scholar] [CrossRef]
- Piechowiak, T.; Grzelak-Błaszczyk, K.; Sójka, M.; Balawejder, M. Changes in Phenolic Compounds Profile and Glutathione Status in Raspberry Fruit during Storage in Ozone-Enriched Atmosphere. Postharvest Biol. Technol. 2020, 168, 111277. [Google Scholar] [CrossRef]
- Yao, M.; Ge, W.; Zhou, Q.; Zhou, X.; Luo, M.; Zhao, Y.; Wei, B.; Ji, S. Exogenous Glutathione Alleviates Chilling Injury in Postharvest Bell Pepper by Modulating the Ascorbate-Glutathione (AsA-GSH) Cycle. Food Chem. 2021, 352, 129458. [Google Scholar] [CrossRef]
- Wołosiak, R.; Drużyńska, B.; Derewiaka, D.; Piecyk, M.; Majewska, E.; Ciecierska, M.; Worobiej, E.; Pakosz, P. Verification of the Conditions for Determination of Antioxidant Activity by ABTS and DPPH Assays—A Practical Approach. Molecules 2022, 27, 50. [Google Scholar] [CrossRef]
- Szpadzik, E.; Zaraś-Januszkiewicz, E.; Krupa, T. Storage Quality Characteristic of Two Minikiwi Fruit (Actinidia arguta (Siebold & Zucc.) Planch. Ex Miq.) Cultivars: ‘Ananasnaya’ and ‘Bingo’—A New One Selected in Poland. Agronomy 2021, 11, 134. [Google Scholar] [CrossRef]
- Choi, H.R.; Baek, M.W.; Tilahun, S.; Jeong, C.S. Long-Term Cold Storage Affects Metabolites, Antioxidant Activities, and Ripening and Stress-Related Genes of Kiwifruit Cultivars. Postharvest Biol. Technol. 2022, 189, 111912. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Teleszko, M.; Sokół-Łętowska, A. Composition and Quantification of Major Polyphenolic Compounds, Antioxidant Activity and Colour Properties of Quince and Mixed Quince Jams. Int. J. Food Sci. Nutr. 2013, 64, 749–756. [Google Scholar] [CrossRef]
- Dong, X.; He, Y.; Yuan, C.; Cheng, X.; Li, G.; Shan, Y.; Zhu, X. Controlled Atmosphere Improves the Quality, Antioxidant Activity and Phenolic Content of Yellow Peach during the Shelf Life. Antioxidants 2022, 11, 2278. [Google Scholar] [CrossRef] [PubMed]
- Tavarini, S.; Degl’Innocenti, E.; Remorini, D.; Massai, R.; Guidi, L. Antioxidant Capacity, Ascorbic Acid, Total Phenols and Carotenoids Changes during Harvest and after Storage of Hayward Kiwifruit. Food Chem. 2008, 107, 282–288. [Google Scholar] [CrossRef]
- Abd-Elbaset, A.A.A.; Soliman, M.A.E.; El-Sherpiny, M.A.; Baddour, A.G.; Ghazi, D.A.; Abdelgawad, Z.A.; Abdein, M.A.; Alzuaibr, F.M.; Alasmari, A.; Albogami, A.; et al. AOAC International Official Methods of Analysis, 18th ed.; AOAC International: Rockville, MD, USA, 2000. [Google Scholar]
- PN-EN 12143:2000; Soki Owocowe i Warzywne—Oznaczanie Zawartości Substancji Rozpuszczalnych Metodą Refraktometryczną. Comité Européen de Normalisation: Brussels, Belgium, 2000.
- PN-EN 12147:2000; Soki Owocowe i Warzywne—Oznaczanie Kwasowości Miareczkowej. Comité Européen de Normalisation: Brussels, Belgium, 2000.
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Çelik, S.E. Mechanism of Antioxidant Capacity Assays and the CUPRAC (Cupric Ion Reducing Antioxidant Capacity) Assay. Microchim. Acta 2008, 160, 413–419. [Google Scholar] [CrossRef]
- Bountagkidou, O.G.; Ordoudi, S.A.; Tsimidou, M.Z. Structure–Antioxidant Activity Relationship Study of Natural Hydroxybenzaldehydes Using in Vitro Assays. Food Res. Int. 2010, 43, 2014–2019. [Google Scholar] [CrossRef]
- Di Majo, D.; La Neve, L.; La Guardia, M.; Casuccio, A.; Giammanco, M. The Influence of Two Different pH Levels on the Antioxidant Properties of Flavonols, Flavan-3-Ols, Phenolic Acids and Aldehyde Compounds Analysed in Synthetic Wine and in a Phosphate Buffer. J. Food Comp. Anal. 2011, 24, 265–269. [Google Scholar] [CrossRef]
- Lai, L.-S.; Chou, S.-T.; Chao, W.-W. Studies on the Antioxidative Activities of Hsian-Tsao (Mesona Procumbens Hemsl) Leaf Gum. J. Agric. Food Chem. 2001, 49, 963–968. [Google Scholar] [CrossRef]
Variant | NA | MA | NA+O | CA | Average |
---|---|---|---|---|---|
WL | |||||
V1 | 2.1b | 0.2a | 2.1b | 2.4cd | 1.7A |
V2 | 2.1b | 0.2a | 2.2bc | 2.5d | 1.8A |
Average | 2.1B | 0.2A | 2.2B | 2.5C | |
FF | |||||
V1 | 31.6bc | 31.9c | 25.3a | 34.8d | 30.9A |
V2 | 31.2bc | 30.8bc | 29.6b | 35.9d | 31.9B |
Average | 31.4B | 31.4B | 27.5A | 35.3C |
Variant | NA | MA | NA+O | CA | Average |
---|---|---|---|---|---|
SSC | |||||
V1 | 10.64d | 10.22bc | 10.69d | 10.00b | 10.39B |
V2 | 10.00b | 10.36cd | 10.14bc | 9.64a | 10.03A |
Average | 10.32B | 10.29B | 10.42B | 9.82A | |
TA | |||||
V1 | 1.08bc | 1.07bc | 1.03ab | 1.11c | 1.07B |
V2 | 1.07bc | 0.98a | 0.99a | 1.06bc | 1.02A |
Average | 1.08B | 1.02A | 1.01A | 1.08B | |
pH | |||||
V1 | 3.62abc | 3.58ab | 3.67d | 3.60ab | 3.62A |
V2 | 3.58ab | 3.63bcd | 3.66cd | 3.57a | 3.61A |
Average | 3.60A | 3.61A | 3.66B | 3.58A | |
DM | |||||
V1 | 17.4c | 17.0abc | 17.3bc | 17.0abc | 17.2B |
V2 | 17.3bc | 17.1abc | 16.7a | 16.8ab | 16.9A |
Average | 17.3B | 17.1AB | 17.0A | 16.9A |
Component | Source of Variation | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Storage Variant 1 (A) | Cold Storage Conditions 2 (B) | Time of Storage 3 (C) | Interactions | |||||||||||
AB | AC | BC | ABC | |||||||||||
df | 1 | 3 | 5 | 3 | 5 | 15 | 15 | |||||||
WL | 3.46 | ns | 913.1 | *** | 965.3 | *** | 1.23 | ns | 4.75 | *** | 91.26 | *** | 1.48 | ns |
FF | 7.75 | *** | 89.17 | *** | 1162.3 | *** | 12.59 | *** | 13.01 | *** | 28.38 | *** | 6.02 | *** |
DM | 6.9 | * | 5.5 | ** | 40.5 | *** | 3.1 | * | 4.6 | *** | 3.5 | *** | 5.8 | *** |
SSC | 39.4 | *** | 22.4 | *** | 1104.4 | *** | 9.6 | *** | 3.5 | ** | 5.1 | *** | 11.2 | *** |
TA | 17.86 | *** | 11.79 | ** | 739.7 | *** | 1.9 | ns | 4.54 | *** | 4.51 | ns | 2.81 | ** |
pH | 1.3 | ns | 18.5 | *** | 274.2 | *** | 5.1 | ** | 4.8 | *** | 6.1 | *** | 7.9 | ns |
TPC | 506.2 | *** | 52.6 | *** | 460.1 | *** | 57.3 | *** | 77.6 | *** | 12.6 | *** | 19.0 | *** |
tASC | 3.34 | ns | 0.78 | ns | 30.86 | *** | 3.78 | * | 1.94 | ns | 4.79 | *** | 1.59 | ns |
tGSH | 2.22 | ns | 16.75 | *** | 32.55 | *** | 2.22 | ns | 7.81 | *** | 2.79 | ** | 3.63 | *** |
L-CYS | 11.04 | ** | 3.77 | * | 63.64 | *** | 1.30 | ns | 2.38 | * | 2.21 | * | 3.81 | *** |
ABTS | 5.15 | * | 7.72 | *** | 356.0 | *** | 2.87 | * | 13.82 | *** | 2.36 | * | 0.59 | ns |
CUPRAC | 0.32 | ns | 6.62 | *** | 266.72 | *** | 1.33 | ns | 25.91 | *** | 1.59 | ns | 0.94 | ns |
CBA | 17.87 | *** | 10.40 | *** | 15.93 | *** | 6.51 | *** | 7.00 | *** | 3.56 | *** | 1.88 | * |
CHEL | 0.04 | ns | 7.93 | *** | 166.34 | *** | 4.57 | ** | 5.58 | *** | 2.47 | ** | 3.48 | *** |
Variant | NA | MA | NA+O | CA | Average |
---|---|---|---|---|---|
tASC | |||||
V1 | 1.70a | 1.93a | 1.89a | 1.59a | 1.78A |
V2 | 1.83a | 1.49a | 1.61a | 1.66a | 1.65A |
Average | 1.76A | 1.72A | 1.75A | 1.62A | |
L-CYS | |||||
V1 | 6.96b | 7.78b | 6.12ab | 5.69ab | 6.64B |
V2 | 5.93ab | 5.44ab | 5.87ab | 4.22a | 5.37A |
Average | 6.45B | 6.61B | 5.99AB | 4.96A | |
tGSH | |||||
V1 | 271c | 246c | 237bc | 184ab | 236A |
V2 | 238bc | 222bc | 265c | 162a | 222A |
Average | 257A | 234B | 252B | 173A | |
TPC | |||||
V1 | 7.41ab | 7.04a | 7.43b | 7.21ab | 7.27Aa |
V2 | 7.48b | 8.21d | 8.63e | 7.92c | 8.06B |
Average | 7.45A | 7.63B | 8.03C | 7.56AB |
Variant | NA | MA | NA+O | CA | Average |
---|---|---|---|---|---|
CUPRAC | |||||
V1 | 20.08b | 19.54ab | 18.61ab | 16.39a | 18.65A |
V2 | 20.64b | 18.16ab | 19.16ab | 17.83ab | 18.95A |
Average | 20.36B | 18.85AB | 18.88AB | 17.11A | |
ABTS | |||||
V1 | 8.84b | 8.81b | 8.04ab | 6.86a | 8.14B |
V2 | 7.89ab | 7.32a | 8.24ab | 6.92a | 7.59A |
Average | 8.36B | 8.07B | 8.14B | 6.89A | |
CHEL | |||||
V1 | 0.68abc | 0.58abc | 0.83bc | 0.56abc | 0.66A |
V2 | 0.42a | 0.93c | 0.83c | 0.46ab | 0.67A |
Average | 0.55AB | 0.76BC | 0.85C | 0.51A | |
CBA | |||||
V1 | 14.46b | 14.49b | 14.15b | 12.10a | 13.80A |
V2 | 15.27b | 14.21b | 14.84b | 14.44b | 14.69B |
Average | 14.86B | 14.35B | 14.50B | 13.27A |
2021 | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Average temperature (°C) | −1.1 | −1.8 | 3.8 | 7.4 | 13.2 | 20.8 | 22.4 | 17.6 | 14.1 | 9.8 | 5.6 | −0.7 |
Sum of precipitation (mm) | 42.9 | 42.4 | 17.4 | 65 | 110.2 | 73.3 | 201.1 | 203.1 | 42 | 10.2 | 48.9 | 28.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łata, B.; Wołosiak, R.; Majewska, E.; Drużyńska, B.; Piecyk, M.; Najman, K.; Sadowska, A.; Latocha, P. Physicochemical Changes and Antioxidant Metabolism of Actinidia arguta Fruit (Kiwiberry) Under Various Cold-Storage Conditions. Molecules 2025, 30, 3742. https://doi.org/10.3390/molecules30183742
Łata B, Wołosiak R, Majewska E, Drużyńska B, Piecyk M, Najman K, Sadowska A, Latocha P. Physicochemical Changes and Antioxidant Metabolism of Actinidia arguta Fruit (Kiwiberry) Under Various Cold-Storage Conditions. Molecules. 2025; 30(18):3742. https://doi.org/10.3390/molecules30183742
Chicago/Turabian StyleŁata, Barbara, Rafał Wołosiak, Ewa Majewska, Beata Drużyńska, Małgorzata Piecyk, Katarzyna Najman, Anna Sadowska, and Piotr Latocha. 2025. "Physicochemical Changes and Antioxidant Metabolism of Actinidia arguta Fruit (Kiwiberry) Under Various Cold-Storage Conditions" Molecules 30, no. 18: 3742. https://doi.org/10.3390/molecules30183742
APA StyleŁata, B., Wołosiak, R., Majewska, E., Drużyńska, B., Piecyk, M., Najman, K., Sadowska, A., & Latocha, P. (2025). Physicochemical Changes and Antioxidant Metabolism of Actinidia arguta Fruit (Kiwiberry) Under Various Cold-Storage Conditions. Molecules, 30(18), 3742. https://doi.org/10.3390/molecules30183742