Potential Applications of RNase P Ribozyme Against Hepatitis B Virus
Abstract
1. Introduction
2. Hepatitis B Virus
3. Nucleic Acid-Based Gene Targeting Agents for Therapy of HBV Infections and Diseases
Approach | Target | Specificity | Delivery Challenges | Clinical Stage | Results | Key Advantages | Key Limitations | Reference |
---|---|---|---|---|---|---|---|---|
Meganucleases | P ORF | High | Used lipid nanoparticles for mRNA delivery. Need for efficient liver targeting. | Preclinical | Resulted in ~85% reduction in cccDNA and reduced HBV DNA by 80% | Highly specific DNA recognition and cleavage. Compact size (mRNA delivery) allows for various delivery methods. Can be engineered to enhance specificity, thereby reducing off-target effects. | Complex engineering process and potential for DNA integration at cut sites. Efficacy depends on optimization and limited flexibility in target site selection. | [34] |
ZFNs | P, C, and X ORFs | Generally high, but can vary | Two-component system limits packaging capacity (requires two scAAV vectors). There is a need for efficient liver targeting and co-delivery of both components. | Preclinical | Complete inhibition of HBV DNA replication and production of virions for at least 2 weeks after treatment. | Highly specific DNA recognition and cleavage. Customizable specificity and flexible target selection through modifying/swapping zinc finger modules. | Complex design process, potential off-target effects, cytotoxicity (ZFN2), varying efficacy across HBV genotypes (may require optimization for variants). Properties of zinc finger domains result in a preference for targeting sequences containing GNN, ANN, or CNN triplets. | [35,36] |
TALENs | Conserved regions of P and C ORFs of multiple HBV genotypes (A-D) | High | Large size limits delivered options (hydrodynamic injection used in this study). Adenovirus/AAV vectors can also be used for hepatic delivery. | Preclinical | Reduced core protein expression by ~79% and HBV DNA levels by ~73%. Decreased cccDNA by ~10–20%. | Highly specific DNA recognition and cleavage. Shown to be synergistic when combined with IFN-α, an HBV antiviral, and was effective against multiple HBV genotypes. | Large size complicates efficient delivery to hepatocytes. It requires two TALENs to bind near each other. Efficacy varies depending on target sequences (potential for nucleosome positioning to interfere with cccDNA binding) | [37] |
ASOs (Bepirovirsen) | A 20-nucleotide sequence present in all HBV mRNA and pgRNA | High | 2′-O-methoxyethyl modification to enhance stability against nuclease degradation. Subcutaneous injection of lipid nanoparticles. | Phase III (NCT04449029) | 9–10% achieved primary endpoint (HBsAg loss and undetectable HBV DNA at week 24 post-treatment) | Proven to be effective in combination with other antiviral NA therapies. Rapid viral response was observed in some patients. | Limited efficacy, with only 9–10% of patients achieving the primary endpoint. Weekly injections are required, with a likely need for repeated dosages to achieve a functional cure. | [38,39] |
RNAi (JNJ-3989) | Targets X and S ORFs | High | GalNAc-conjugated siRNA for targeted liver delivery is administered through subcutaneous injection. The main delivery challenge is maintaining therapeutic levels over time. | Phase II (NCT04129554) | JNJ-3989 + Bersacapavir (HBV core protein inhibitor) + NA reduced HBsAg by ~98% at the end of treatment compared to ~13% in the control (NA only). At week 24 post-treatment, 81.5% of patients maintained at least a 90% reduction. | The use of GalNAc made these siRNAs highly tissue-specific. RNAi generally offers high specificity and has been proven effective in combination with other antivirals. The small size of RNAi allows for various delivery methods | A functional cure was not achieved in this study. Suppression was not completely maintained in all patients post-treatment. High concentrations of RNAi can potentially cause off-target effects, which may partly account for the grade 3 or 4 adverse events observed in this study (~15% of patients) | [28,29,40,41] |
CRISPR/Cas9 (Non-cleavage Base Editing) | P and S ORFs | High | Lentiviral transduction in cell culture. Large size makes delivery challenging in vivo. | Preclinical | HBV DNA decreased by more than 60%. ~25%–35% C→T conversion at target sites for cccDNA and ~35%–80% C→T conversion at target sites for integrated HBV DNA. | Avoids DSBs and potential chromosomal translocations that could be caused by WT CRISPR/Cas9 systems cleaving integrated HBV DNA. Capable of targeting both cccDNA and integrated HBV DNA, allowing for permanent inactivation of HBV. | The large size of Cas9 Base editors makes in vivo delivery challenging. They share the same off-target challenges as WT Cas9, with the risk of generating nonsense mutations in the host genome. The potential effects of truncated HBV proteins are unknown. | [42] |
M1GS | Overlapping region of pgRNA, S mRNA, and pre-S/L mRNA. | High | Plasmid transfection in cell culture. Large size makes delivery challenging in vivo. | Preclinical | ~82% reduction of HBV RNA, ~80% reduction in HBsAG and HBeAg, and ~300-fold decrease in HBV DNA. | High specificity is achieved due to structure recognition during cleavage. Mismatches that might be tolerated in other sequence-based systems are avoided. M1GS are highly modular and can be optimized through in vitro selection. This study utilized WT M1 RNA, allowing for efficacy improvement through an in vitro selection process. | The large size of M1GS makes delivery in vivo challenging. Tissue specificity, a challenge in M1GS delivery, can be addressed through tailored strategies; however, this compromises the highly programmable nature and flexibility that make M1GS a desirable therapeutic. | [43] |
4. RNase P and Its Catalytic RNA
5. RNase P Substrate Recognition and Engineering of Gene-Targeting Ribozymes from RNase P RNA
5.1. Structural Basis of Substrate Recognition
5.2. Engineering Principles for M1GS Ribozymes
6. In Vitro Evolution of RNase P Ribozyme with Improved Gene Targeting Activity
7. Inhibition of HBV Gene Expression and Growth by M1GS RNA
8. Advantages and Disadvantages of M1GS RNAs
9. Future Direction and Challenges
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Razavi-Shearer, D.; Gamkrelidze, I.; Nguyen, M.H.; Chen, D.S.; Van Damme, P.; Abbas, Z.; Abdulla, M.; Abou Rached, A.; Adda, D.; Aho, I.; et al. Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: A modelling study. Lancet Gastroenterol. Hepatol. 2018, 3, 383–403. [Google Scholar] [CrossRef]
- Seeger, C.; Zoulim, F.; Mason, W.S. Hepadnaviridae. In Fields Virology: DNA Viruses, 7th ed.; Knipe, D.M., Howley, P., Eds.; Wolters Kluwer Health, Lippincott and Williams & Wilkins: Philadelphia, PA, USA, 2021; Volume 1, pp. 641–682. [Google Scholar]
- World Health Organization. Hepatitis B. Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (accessed on 1 June 2025).
- Cui, F.; Blach, S.; Manzengo Mingiedi, C.; Gonzalez, M.A.; Sabry Alaama, A.; Mozalevskis, A.; Seguy, N.; Rewari, B.B.; Chan, P.L.; Le, L.V.; et al. Global reporting of progress towards elimination of hepatitis B and hepatitis C. Lancet Gastroenterol. Hepatol. 2023, 8, 332–342. [Google Scholar] [CrossRef]
- Koumbi, L. Current and future antiviral drug therapies of hepatitis B chronic infection. World J. Hepatol. 2015, 7, 1030–1040. [Google Scholar] [CrossRef] [PubMed]
- Scherer, L.J.; Rossi, J.J. Approaches for the sequence-specific knockdown of mRNA. Nat. Biotechnol. 2003, 21, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Sparmann, A.; Vogel, J. RNA-based medicine: From molecular mechanisms to therapy. EMBO J. 2023, 42, e114760. [Google Scholar] [CrossRef]
- Wang, J.Y.; Doudna, J.A. CRISPR technology: A decade of genome editing is only the beginning. Science 2023, 379, eadd8643. [Google Scholar] [CrossRef]
- Kim, K.; Liu, F. Inhibition of gene expression in human cells using RNase P-derived ribozymes and external guide sequences. Biochim. Biophys. Acta 2007, 1769, 603–612. [Google Scholar] [CrossRef]
- Gopalan, V.; Vioque, A.; Altman, S. RNase P: Variations and uses. J. Biol. Chem. 2002, 277, 6759–6762. [Google Scholar] [CrossRef]
- Kirsebom, L.A.; Liu, F.; McClain, W.H. The discovery of a catalytic RNA within RNase P and its legacy. J. Biol. Chem. 2024, 300, 107318. [Google Scholar] [CrossRef]
- Campos-Valdez, M.; Monroy-Ramírez, H.C.; Armendáriz-Borunda, J.; Sánchez-Orozco, L.V. Molecular Mechanisms during Hepatitis B Infection and the Effects of the Virus Variability. Viruses 2021, 13, 1167. [Google Scholar] [CrossRef] [PubMed]
- Brandes, N.; Linial, M. Gene overlapping and size constraints in the viral world. Biol. Direct 2016, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, A.L.; D’Arienzo, V.; Ansari, M.A.; Lumley, S.F.; Littlejohn, M.; Revill, P.; McKeating, J.A.; Matthews, P.C. Insights from deep sequencing of the HBV genome—Unique, tiny, and misunderstood. Gastroenterology 2019, 156, 384–399. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Li, Y.; Ding, G. Adaptive evolution of proteins in hepatitis B virus during divergence of genotypes. Sci. Rep. 2017, 7, 1990. [Google Scholar] [CrossRef]
- Bock, C.T.; Schwinn, S.; Locarnini, S.; Fyfe, J.; Manns, M.P.; Trautwein, C.; Zentgraf, H. Structural organization of the hepatitis B virus minichromosome. J. Mol. Biol. 2001, 307, 183–196. [Google Scholar] [CrossRef]
- Boonstra, A.; Sari, G. HBV cccDNA: The Molecular Reservoir of Hepatitis B Persistence and Challenges to Achieve Viral Eradication. Biomolecules 2025, 15, 62. [Google Scholar] [CrossRef] [PubMed]
- Tu, T.; Budzinska, M.A.; Shackel, N.A.; Urban, S. HBV DNA Integration: Molecular Mechanisms and Clinical Implications. Viruses 2017, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Karayiannis, P. Hepatitis B virus: Virology, molecular biology, life cycle and intrahepatic spread. Hepatol. Int. 2017, 11, 500–508. [Google Scholar] [CrossRef]
- Clark, D.N.; Hu, J. Hepatitis B virus reverse transcriptase—Target of current antiviral therapy and future drug development. Antivir. Res. 2015, 123, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Menéndez-Arias, L.; Álvarez, M.; Pacheco, B. Nucleoside/nucleotide analog inhibitors of hepatitis B virus polymerase: Mechanism of action and resistance. Curr. Opin. Virol. 2014, 8, 1–9. [Google Scholar] [CrossRef]
- Lucifora, J.; Xia, Y.; Reisinger, F.; Zhang, K.; Stadler, D.; Cheng, X.; Sprinzl, M.F.; Koppensteiner, H.; Makowska, Z.; Volz, T.; et al. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science 2014, 343, 1221–1228. [Google Scholar] [CrossRef]
- Stenglein, M.D.; Burns, M.B.; Li, M.; Lengyel, J.; Harris, R.S. APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat. Struct. Mol. Biol. 2010, 17, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Inoue, J.; Sato, K.; Ninomiya, M.; Masamune, A. Envelope Proteins of Hepatitis B Virus: Molecular Biology and Involvement in Carcinogenesis. Viruses 2021, 13, 1124. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, L.; Rossi, J.J. RNAi therapeutics: Principles, prospects and challenges. Adv. Drug Deliv. Rev. 2007, 59, 75–86. [Google Scholar] [CrossRef]
- Maepa, M.B.; Roelofse, I.; Ely, A.; Arbuthnot, P. Progress and Prospects of Anti-HBV Gene Therapy Development. Int. J. Mol. Sci. 2015, 16, 17589–17610. [Google Scholar] [CrossRef] [PubMed]
- Wooddell, C.I.; Rozema, D.B.; Hossbach, M.; John, M.; Hamilton, H.L.; Chu, Q.; Hegge, J.O.; Klein, J.J.; Wakefield, D.H.; Oropeza, C.E.; et al. Hepatocyte-targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection. Mol. Ther. 2013, 21, 973–985. [Google Scholar] [CrossRef]
- Caffrey, D.R.; Zhao, J.; Song, Z.; Schaffer, M.E.; Haney, S.A.; Subramanian, R.R.; Seymour, A.B.; Hughes, J.D. siRNA off-target effects can be reduced at concentrations that match their individual potency. PLoS ONE 2011, 6, e21503. [Google Scholar] [CrossRef]
- Scacheri, P.C.; Rozenblatt-Rosen, O.; Caplen, N.J.; Wolfsberg, T.G.; Umayam, L.; Lee, J.C.; Hughes, C.M.; Shanmugam, K.S.; Bhattacharjee, A.; Meyerson, M.; et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc. Natl. Acad. Sci. USA 2004, 101, 1892–1897. [Google Scholar] [CrossRef]
- Kostyushev, D.; Brezgin, S.; Kostyusheva, A.; Zarifyan, D.; Goptar, I.; Chulanov, V. Orthologous CRISPR/Cas9 systems for specific and efficient degradation of covalently closed circular DNA of hepatitis B virus. Cell Mol. Life Sci. 2019, 76, 1779–1794. [Google Scholar] [CrossRef]
- Martinez, M.G.; Smekalova, E.; Combe, E.; Gregoire, F.; Zoulim, F.; Testoni, B. Gene Editing Technologies to Target HBV cccDNA. Viruses 2022, 14, 2654. [Google Scholar] [CrossRef]
- Song, Y.H.; Lin, J.S.; Liu, N.Z.; Kong, X.J.; Xie, N.; Wang, N.X.; Jin, Y.X.; Liang, K.H. Anti-HBV hairpin ribozyme-mediated cleavage of target RNA in vitro. World J. Gastroenterol. 2002, 8, 91–94. [Google Scholar] [CrossRef]
- Smith, A.; Zhang, I.; Trang, P.; Liu, F. Engineering of RNase P Ribozymes for Therapy against Human Cytomegalovirus Infection. Viruses 2024, 16, 1196. [Google Scholar] [CrossRef] [PubMed]
- Gorsuch, C.L.; Nemec, P.; Yu, M.; Xu, S.; Han, D.; Smith, J.; Lape, J.; van Buuren, N.; Ramirez, R.; Muench, R.C.; et al. Targeting the hepatitis B cccDNA with a sequence-specific ARCUS nuclease to eliminate hepatitis B virus. Mol. Ther. 2022, 30, 2909–2922. [Google Scholar] [CrossRef]
- Weber, N.D.; Stone, D.; Sedlak, R.H.; De Silva Feelixge, H.S.; Roychoudhury, P.; Schiffer, J.T.; Aubert, M.; Jerome, K.R. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication. PLoS ONE 2014, 9, e97579. [Google Scholar] [CrossRef]
- Cradick, T.J.; Keck, K.; Bradshaw, S.; Jamieson, A.C.; McCaffrey, A.P. Zinc-finger Nucleases as a Novel Therapeutic Strategy for Targeting Hepatitis B Virus DNAs. Mol. Ther. 2010, 18, 947–954. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, W.; Lin, J.; Wang, F.; Wu, M.; Chen, C.; Zheng, Y.; Peng, X.; Li, J.; Yuan, Z. An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases. Mol. Ther. 2014, 22, 303–311. [Google Scholar] [CrossRef]
- Yuen, M.F.; Heo, J.; Jang, J.W.; Yoon, J.H.; Kweon, Y.O.; Park, S.J.; Tami, Y.; You, S.; Yates, P.; Tao, Y.; et al. Safety, tolerability and antiviral activity of the antisense oligonucleotide bepirovirsen in patients with chronic hepatitis B: A phase 2 randomized controlled trial. Nat. Med. 2021, 27, 1725–1734. [Google Scholar] [CrossRef]
- Yuen, M.-F.; Lim, S.-G.; Plesniak, R.; Tsuji, K.; Janssen, H.L.A.; Pojoga, C.; Gadano, A.; Popescu, C.P.; Stepanova, T.; Asselah, T.; et al. Efficacy and Safety of Bepirovirsen in Chronic Hepatitis B Infection. N. Engl. J. Med. 2022, 387, 1957–1968. [Google Scholar] [CrossRef]
- Agarwal, K.; Buti, M.; van Bömmel, F.; Lampertico, P.; Janczewska, E.; Bourliere, M.; Vanwolleghem, T.; Lenz, O.; Verbinnen, T.; Kakuda, T.N.; et al. JNJ-73763989 and bersacapavir treatment in nucleos(t)ide analogue-suppressed patients with chronic hepatitis B: REEF-2. J. Hepatol. 2024, 81, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Hui, R.W.; Mak, L.Y.; Seto, W.K.; Yuen, M.F. Investigational RNA Interference Agents for Hepatitis B. BioDrugs 2025, 39, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-C.; Chen, Y.-H.; Kao, J.-H.; Ching, C.; Liu, I.J.; Wang, C.-C.; Tsai, C.-H.; Wu, F.-Y.; Liu, C.-J.; Chen, P.-J.; et al. Permanent Inactivation of HBV Genomes by CRISPR/Cas9-Mediated Non-cleavage Base Editing. Mol. Ther. Nucleic Acids 2020, 20, 480–490. [Google Scholar] [CrossRef]
- Yan, B.; Liu, Y.; Chen, Y.C.; Liu, F. A RNase P Ribozyme Inhibits Gene Expression and Replication of Hepatitis B Virus in Cultured Cells. Microorganisms 2023, 11, 654. [Google Scholar] [CrossRef]
- Frank, D.N.; Pace, N.R. Ribonuclease P: Unity and diversity in a tRNA processing ribozyme. Annu. Rev. Biochem. 1998, 67, 153–180. [Google Scholar] [CrossRef]
- Xiao, S.; Scott, F.; Fierke, C.A.; Engelke, D.R. Eukaryotic ribonuclease P: A plurality of ribonucleoprotein enzymes. Annu. Rev. Biochem. 2002, 71, 165–189. [Google Scholar] [CrossRef] [PubMed]
- Jarrous, N.; Liu, F. Human RNase P: Overview of a ribonuclease of interrelated molecular networks and gene-targeting systems. RNA 2023, 29, 300–307. [Google Scholar] [CrossRef]
- Crary, S.M.; Niranjanakumari, S.; Fierke, C.A. The protein component of Bacillus subtilis ribonuclease P increases catalytic efficiency by enhancing interactions with the 5′ leader sequence of pre-tRNAAsp. Biochemistry 1998, 37, 9409–9416. [Google Scholar] [CrossRef] [PubMed]
- Gopalan, V.; Baxevanis, A.D.; Landsman, D.; Altman, S. Analysis of the functional role of conserved residues in the protein subunit of ribonuclease P from Escherichia coli. J. Mol. Biol. 1997, 267, 818–829. [Google Scholar] [CrossRef]
- Guerrier-Takada, C.; Gardiner, K.; Marsh, T.; Pace, N.; Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 1983, 35, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, J.; Andrews, A.J.; Fierke, C.A. Roles of protein subunits in RNA-protein complexes: Lessons from ribonuclease P. Biopolymers 2004, 73, 79–89. [Google Scholar] [CrossRef]
- Kim, J.J.; Kilani, A.F.; Zhan, X.; Altman, S.; Liu, F. The protein cofactor allows the sequence of an RNase P ribozyme to diversify by maintaining the catalytically active structure of the enzyme. RNA 1997, 3, 613–623. [Google Scholar]
- Kurz, J.C.; Fierke, C.A. The affinity of magnesium binding sites in the Bacillus subtilis RNase P x pre-tRNA complex is enhanced by the protein subunit. Biochemistry 2002, 41, 9545–9558. [Google Scholar] [CrossRef]
- Kurz, J.C.; Niranjanakumari, S.; Fierke, C.A. Protein component of Bacillus subtilis RNase P specifically enhances the affinity for precursor-tRNAAsp. Biochemistry 1998, 37, 2393–2400. [Google Scholar] [CrossRef]
- Niranjanakumari, S.; Stams, T.; Crary, S.M.; Christianson, D.W.; Fierke, C.A. Protein component of the ribozyme ribonuclease P alters substrate recognition by directly contacting precursor tRNA. Proc. Natl. Acad. Sci. USA 1998, 95, 15212–15217. [Google Scholar] [CrossRef]
- Westhof, E.; Wesolowski, D.; Altman, S. Mapping in three dimensions of regions in a catalytic RNA protected from attack by an Fe(II)-EDTA reagent. J. Mol. Biol. 1996, 258, 600–613. [Google Scholar] [CrossRef]
- Reiter, N.J.; Osterman, A.; Torres-Larios, A.; Swinger, K.K.; Pan, T.; Mondragón, A. Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA. Nature 2010, 468, 784–789. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, W.; Zhao, J.; Huynh, L.; Taylor, D.J.; Harris, M.E. Structural and mechanistic basis for recognition of alternative tRNA precursor substrates by bacterial ribonuclease P. Nat. Commun. 2022, 13, 5120. [Google Scholar] [CrossRef] [PubMed]
- Jarrous, N.; Reiner, R.; Wesolowski, D.; Mann, H.; Guerrier-Takada, C.; Altman, S. Function and subnuclear distribution of Rpp21, a protein subunit of the human ribonucleoprotein ribonuclease P. RNA 2001, 7, 1153–1164. [Google Scholar] [CrossRef] [PubMed]
- Forster, A.C.; Altman, S. External guide sequences for an RNA enzyme. Science 1990, 249, 783–786. [Google Scholar] [CrossRef] [PubMed]
- McClain, W.H.; Guerrier-Takada, C.; Altman, S. Model substrates for an RNA enzyme. Science 1987, 238, 527–530. [Google Scholar] [CrossRef]
- Yuan, Y.; Hwang, E.S.; Altman, S. Targeted cleavage of mRNA by human RNase P. Proc. Natl. Acad. Sci. USA 1992, 89, 8006–8010. [Google Scholar] [CrossRef]
- Xia, C.; Chen, Y.-C.; Gong, H.; Zeng, W.; Vu, G.-P.; Trang, P.; Lu, S.; Wu, J.; Liu, F. Inhibition of Hepatitis B Virus Gene Expression and Replication by Ribonuclease P. Mol. Ther. 2013, 21, 995–1003. [Google Scholar] [CrossRef]
- Zhang, Z.; Vu, G.P.; Gong, H.; Xia, C.; Chen, Y.C.; Liu, F.; Wu, J.; Lu, S. Engineered external guide sequences are highly effective in inhibiting gene expression and replication of hepatitis B virus in cultured cells. PLoS ONE 2013, 8, e65268. [Google Scholar] [CrossRef]
- Li, Y.; Guerrier-Takada, C.; Altman, S. Targeted cleavage of mRNA in vitro by RNase P from Escherichia coli. Proc. Natl. Acad. Sci. USA 1992, 89, 3185–3189. [Google Scholar] [CrossRef]
- Liu, F.; Altman, S. Inhibition of viral gene expression by the catalytic RNA subunit of RNase P from Escherichia coli. Genes Dev. 1995, 9, 471–480. [Google Scholar] [CrossRef]
- Mann, H.; Ben-Asouli, Y.; Schein, A.; Moussa, S.; Jarrous, N. Eukaryotic RNase P: Role of RNA and Protein Subunits of a Primordial Catalytic Ribonucleoprotein in RNA-Based Catalysis. Mol. Cell 2003, 12, 925–935. [Google Scholar] [CrossRef]
- Sharin, E.; Schein, A.; Mann, H.; Ben-Asouli, Y.; Jarrous, N. RNase P: Role of distinct protein cofactors in tRNA substrate recognition and RNA-based catalysis. Nucleic Acids Res. 2005, 33, 5120–5132. [Google Scholar] [CrossRef] [PubMed]
- Joyce, G.F. Directed molecular evolution. Sci. Am. 1992, 267, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Szostak, J.W. In vitro genetics. Trends Biochem. Sci. 1992, 17, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Gold, L.; Polisky, B.; Uhlenbeck, O.; Yarus, M. Diversity of oligonucleotide functions. Annu. Rev. Biochem. 1995, 64, 763–797. [Google Scholar] [CrossRef]
- Kilani, A.F.; Trang, P.; Jo, S.; Hsu, A.; Kim, J.; Nepomuceno, E.; Liou, K.; Liu, F. RNase P ribozymes selected in vitro to cleave a viral mRNA effectively inhibit its expression in cell culture. J. Biol. Chem. 2000, 275, 10611–10622. [Google Scholar] [CrossRef]
- Trang, P.; Zhang, I.; Liu, F. In Vitro Amplification and Selection of Engineered RNase P Ribozyme for Gene Targeting Applications. Methods Mol. Biol. 2024, 2822, 419–429. [Google Scholar] [CrossRef]
- Zou, H.; Lee, J.; Kilani, A.F.; Kim, K.; Trang, P.; Kim, J.; Liu, F. Engineered RNase P ribozymes increase their cleavage activities and efficacies in inhibiting viral gene expression in cells by enhancing the rate of cleavage and binding of the target mRNA. J. Biol. Chem. 2004, 279, 32063–32070. [Google Scholar] [CrossRef]
- Stein, C.A.; Cheng, Y.C. Antisense oligonucleotides as therapeutic agents—Is the bullet really magical? Science 1993, 261, 1004–1012. [Google Scholar] [CrossRef]
- Cobaleda, C.; Sánchez-García, I. In vivo inhibition by a site-specific catalytic RNA subunit of RNase P designed against the BCR-ABL oncogenic products: A novel approach for cancer treatment. Blood 2000, 95, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Sarver, N.; Cantin, E.M.; Chang, P.S.; Zaia, J.A.; Ladne, P.A.; Stephens, D.A.; Rossi, J.J. Ribozymes as Potential Anti-HIV-1 Therapeutic Agents. Science 1990, 247, 1222–1225. [Google Scholar] [CrossRef]
- Yu, M.; Ojwang, J.; Yamada, O.; Hampel, A.; Rapapport, J.; Looney, D.; Wong-Staal, F. A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 1993, 90, 6340–6344. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Eckstein, F. Modified oligonucleotides: Synthesis and strategy for users. Annu. Rev. Biochem. 1998, 67, 99–134. [Google Scholar] [CrossRef] [PubMed]
- Burnett, J.C.; Rossi, J.J. RNA-based therapeutics: Current progress and future prospects. Chem. Biol. 2012, 19, 60–71. [Google Scholar] [CrossRef]
- Bai, Y.; Gong, H.; Li, H.; Vu, G.-P.; Lu, S.; Liu, F. Oral delivery of RNase P ribozymes by Salmonella inhibits viral infection in mice. Proc. Natl. Acad. Sci. USA 2011, 108, 3222–3227. [Google Scholar] [CrossRef]
- Bai, Y.; Li, H.; Vu, G.-P.; Gong, H.; Umamoto, S.; Zhou, T.; Lu, S.; Liu, F. Salmonella-mediated delivery of RNase P-based ribozymes for inhibition of viral gene expression and replication in human cells. Proc. Natl. Acad. Sci. USA 2010, 107, 7269–7274. [Google Scholar] [CrossRef]
- Jiang, X.; Gong, H.; Chen, Y.-C.; Vu, G.-P.; Trang, P.; Zhang, C.-Y.; Lu, S.; Liu, F. Effective inhibition of cytomegalovirus infection by external guide sequences in mice. Proc. Natl. Acad. Sci. USA 2012, 109, 13070–13075. [Google Scholar] [CrossRef]
- Trang, P.; Lee, J.; Kilani, A.F.; Kim, J.; Liu, F. Effective inhibition of herpes simplex virus 1 gene expression and growth by engineered RNase P ribozyme. Nucleic Acids Res. 2001, 29, 5071–5078. [Google Scholar] [CrossRef]
- Mrksich, K.; Padilla, M.S.; Joseph, R.A.; Han, E.L.; Kim, D.; Palanki, R.; Xu, J.; Mitchell, M.J. Influence of ionizable lipid tail length on lipid nanoparticle delivery of mRNA of varying length. J. Biomed. Mater. Res. A 2024, 112, 1494–1505. [Google Scholar] [CrossRef]
- Son, G.; Song, J.; Park, J.C.; Kim, H.N.; Kim, H. Fusogenic lipid nanoparticles for rapid delivery of large therapeutic molecules to exosomes. Nat. Commun. 2025, 16, 4799. [Google Scholar] [CrossRef] [PubMed]
- Cullis, P.R.; Felgner, P.L. The 60-year evolution of lipid nanoparticles for nucleic acid delivery. Nat. Rev. Drug Discov. 2024, 23, 709–722. [Google Scholar] [CrossRef]
- Tomeh, M.A.; Smith, R.K.; Watkinson, A. Recent Developments of RNA Vaccines and Therapeutics: Reagents, Formulations, and Characterization. Mol. Pharm. 2025, 22, 5257–5282. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Hamadalnil, Y.; Tu, T. Hepatitis B Viral Protein HBx: Roles in Viral Replication and Hepatocarcinogenesis. Viruses 2024, 16, 1361. [Google Scholar] [CrossRef]
- Wang, X.W.; Forrester, K.; Yeh, H.; Feitelson, M.A.; Gu, J.R.; Harris, C.C. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc. Natl. Acad. Sci. USA 1994, 91, 2230–2234. [Google Scholar] [CrossRef] [PubMed]
- Lucifora, J.; Arzberger, S.; Durantel, D.; Belloni, L.; Strubin, M.; Levrero, M.; Zoulim, F.; Hantz, O.; Protzer, U. Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J. Hepatol. 2011, 55, 996–1003. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorrell, T.; Liu, Y.; Liu, F. Potential Applications of RNase P Ribozyme Against Hepatitis B Virus. Molecules 2025, 30, 3725. https://doi.org/10.3390/molecules30183725
Sorrell T, Liu Y, Liu F. Potential Applications of RNase P Ribozyme Against Hepatitis B Virus. Molecules. 2025; 30(18):3725. https://doi.org/10.3390/molecules30183725
Chicago/Turabian StyleSorrell, Thomas, Yujun Liu, and Fenyong Liu. 2025. "Potential Applications of RNase P Ribozyme Against Hepatitis B Virus" Molecules 30, no. 18: 3725. https://doi.org/10.3390/molecules30183725
APA StyleSorrell, T., Liu, Y., & Liu, F. (2025). Potential Applications of RNase P Ribozyme Against Hepatitis B Virus. Molecules, 30(18), 3725. https://doi.org/10.3390/molecules30183725