Deep Eutectic Solvents in Capillary Electromigration Techniques—A Review of Recent Advancements
Abstract
1. Introduction
2. Methodology
3. DESs Preparation
4. Characterization of DESs in Capillary Electromigration Techniques
4.1. Spectroscopic Techniques
4.2. Classification of DESs Used in Capillary Electromigration Techniques
5. Enantiomeric Separation Using DESs as Additives
6. DES as Separation Medium in CZE and CEKC
7. Selected Aspects Related to Capillary Electromigration Techniques Based on DESs
7.1. Advantages of DESs
7.2. Weaknesses of DESs
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 70–71. [Google Scholar] [CrossRef]
- Mu, Y.; Wu, X.; Huang, Y.P.; Liu, Z.S. Investigation of deep eutectic solvents as additives to β-CD for enantiomeric separations of Zopiclone, Salbutamol, and Amlodipine by CE. Electrophoresis 2019, 40, 1992–1995. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Pan, J.; Wang, M.; Huang, Y.; Xia, Z. Study on improvement of chiral separation of capillary electrophoresis based on cyclodextrin by deep eutectic solvents. Talanta 2020, 220, 121419. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, C. Clindamycin phosphate-based deep eutectic solvent as a chiral selector for enantioseparation of amino alcohol drugs in nonaqueous capillary electrophoresis. J. Chromatogr. A 2024, 1736, 465388. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Xu, Y.; Xue, S.; Li, A.; Zhang, Q. Capillary electrophoresis separations with deep eutectic solvents as greener separation media: A proof-of-concept study. J. Chromatogr. A 2024, 1716, 464644. [Google Scholar] [CrossRef]
- Zhu, Q.; Xu, X.; Xu, J.; Ma, X. Cyclodextrins-based deep eutectic supramolecules as chiral selectors for enhanced enantioseparation in capillary electrophoresis. J. Chromatogr. A 2025, 1740, 465599. [Google Scholar] [CrossRef]
- Meng, H.; Ding, S.; Xue, S.; Liu, S.; Wu, Q.; Zhang, Q. Capillary electrophoresis separations with Betaine:Urea, a deep eutectic solvent as the separation medium. Anal. Chim. Acta 2025, 1336, 343467. [Google Scholar] [CrossRef]
- Liu, R.; Gu, B.; Chen, M.; Ye, J.; Chu, Q. Deep eutectic solvents combined with β-cyclodextrin derivatives for chiral separation of typical adrenergic receptor agonists by capillary electrophoresis with amperometric detection. J. Pharm. Biomed. Anal. 2023, 236, 115748. [Google Scholar] [CrossRef]
- García-Cansino, L.; Marina, M.L.; García, M.Á. Effect of ionic liquids and deep eutectic solvents on the enantiomeric separation of clopidogrel by cyclodextrin-electrokinetic chromatography. Quantitative analysis in pharmaceutical formulations using tetrabutylammonium l-aspartic acid combined with carboxymethyl-γ-cyclodextrin. Microchem. J. 2021, 171, 106815. [Google Scholar] [CrossRef]
- Ángeles García, M.; Jiménez-Jiménez, S.; Marina, M.L. Stereoselective separation of dimethenamid by cyclodextrin electrokinetic chromatography using deep eutectic solvents. J. Chromatogr. A 2022, 1673, 463114. [Google Scholar] [CrossRef]
- Ioannou, K.A.; Ioannou, G.D.; Christou, A.; Stavrou, I.J.; Schmid, M.G.; Kapnissi-Christodoulou, C.P. The potential of the use of deep eutectic solvents and amino acid-based ionic liquids to enhance the chiral discrimination ability of different chiral selectors in capillary electrophoresis. J. Chromatogr. A 2023, 1705, 464152. [Google Scholar] [CrossRef]
- Ioannou, K.A.; Ioannou, G.D.; Christou, A.; Stavrou, I.J.; Schmid, M.G.; Kapnissi-Christodoulou, C.P. Stereoselective separation of psychoactive substances: Multivariate optimization and validation of a capillary electrophoresis method using carboxymethyl-β-CD/deep eutectic solvent dual system. J. Pharm. Biomed. Anal. 2024, 239, 115897. [Google Scholar] [CrossRef]
- Salido-Fortuna, S.; Casado, N.; Castro-Puyana, M.; Marina, M.L. Use of choline chloride-D-sorbitol deep eutectic solvent as additive in cyclodextrin-electrokinetic chromatography for the enantiomeric separation of lacosamide. Microchem. J. 2021, 160, 105669. [Google Scholar] [CrossRef]
- Alshitari, W.; Abd El-Hady, D. Use of tetrabutylammonium bromide and L-arginine-based deep eutectic mixture in combination with β-cyclodextrin for chiral discrimination of amino acids in capillary electrophoresis. Chromatographia 2021, 84, 1151–1162. [Google Scholar] [CrossRef]
- Li, A.; Xue, S.; Ren, S.; Xu, Y.; Zhang, Q. Hydrophobic deep eutectic solvents as pseudo-stationary phases in capillary electrokinetic chromatography: An explorative study. Anal. Chim. Acta 2022, 1213, 339936. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Xue, S.; Xu, Y.; Ding, S.; Wen, D.; Zhang, Q. A feasibility study on the use of hydrophobic eutectic solvents as pseudo-stationary phases in capillary electrophoresis for chiral separations. Anal. Chim. Acta 2023, 1239, 340693. [Google Scholar] [CrossRef]
- Ioannou, K.A.; Ioannou, G.D.; Christou, A.; Schmid, M.G.; Stavrou, I.J.; Kapnissi-Christodoulou, C.P. Novel supramolecular deep eutectic solvent (SUPRADES) as a sole chiral selector in capillary electrophoresis for the enantiomeric separation of fluorine-substituted amphetamine analogs. J. Chromatogr. A 2024, 1715, 464628. [Google Scholar] [CrossRef]
- Ioannou, K.A.; Georgiou, M.N.; Ioannou, G.D.; Christou, A.; Stavrou, I.J.; Schmid, M.G.; Kapnissi-Christodoulou, C.P. Enantiomeric separation of nefopam and cathinone derivatives using a supramolecular deep eutectic solvent as a chiral selector in capillary electrophoresis. Electrophoresis 2024, 45, 1721–1726. [Google Scholar] [CrossRef]
- Xu, Y.; Li, A.; Xue, S.; Ding, S.; Zhang, Q. Chiral separation by capillary electrokinetic chromatography with hydrophobic deep eutectic solvents as pseudo-stationary phases. Talanta 2023, 260, 124556. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, D.; Zhuo, C.; Guo, M.; Chen, L.; Chen, X.; Li, H.; Xu, W. Evaluation of chiral separation ability and separation principle of β-cyclodextrins-based supramolecular deep eutectic solvent in capillary electrophoresis. Talanta 2025, 283, 127099. [Google Scholar] [CrossRef]
- Jin, H.F.; Shi, Y.; Jiao, Y.H.; Cao, J. Separation and determination of phenolic compounds using novel deep eutectic solvent-in-water microemulsion electrokinetic chromatography. Anal. Chim. Acta 2024, 1297, 342359. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ma, X.; Gu, Y. Amino acids-based deep eutectic solvents as additives for improved enantioseparation in capillary electrophoresis. J. Sep. Sci. 2024, 47, e2400122. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Q.; Cai, L.; Sheng, T.; Lu, Y. Evaluation of deep eutectic solvents chiral selectors based on lactobionic acid in capillary electrophoresis. Anal. Bioanal. Chem. 2024, 416, 1417–1425. [Google Scholar] [CrossRef]
- Ding, S.; Xu, Y.; Xue, S.; Liu, S.; Meng, H.; Zhang, Q. Deep eutectic solvents as a green alternative to organic solvents for β-cyclodextrin pseudo-stationary phase in capillary electrophoresis. Talanta 2024, 275, 126126. [Google Scholar] [CrossRef]
- Ma, X.; Fan, Z.; Tang, Z.; Cai, L. Investigation on improvement of enantioseparation based on clindamycin phosphate by chiral deep eutectic solvents in capillary electrophoresis. J. Sep. Sci. 2024, 47, e2300847. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Liu, H. Maltodextrin-based deep eutectic solvent as a chiral selector for enantioseparation of azole antifungal drugs in capillary electrophoresis. J. Sep. Sci. 2025, 48, e70172. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Sheng, T.; Lu, Y.; Cai, L.; Ma, X. Deep eutectic solvents modified carbon nanotubes as additives for enhanced enantioseparation in capillary electrophoresis. J. Chromatogr. A 2025, 1757, 466143. [Google Scholar] [CrossRef] [PubMed]
DES | HBA | HBD | Stechiometric Ratio (HBA:HBD) | Water/Organic Solvent Addition | Reference |
---|---|---|---|---|---|
ChCl-U | ChCl | U | Not stated | --- | [2] |
ChCl-EG | EG | --- | |||
ChCl-PG | PG | --- | |||
ChCl-BG | BG | --- | |||
ChCl-U | ChCl | U | 1:2 | --- | [3,8,9,10,11,12] |
ChCl-LA | LA | --- | |||
ChCl-EG | EG | --- | |||
ChCl-PG | PG | --- | |||
ChCl-G | G | --- | |||
ChCl-CP | ChCl | CP | 1:1 | 5 drops of water | [4] |
Pro-U | Pro | U | 1:3 | --- | [5] |
Pro-U30 | 30% (m/m) water | ||||
HP-β-CD-MA | HP-β-CD | MA | 1:1 | 1 drop of MeOH | [6] |
HP-β-CD-LA | LA | --- | |||
M-β-CD-MA | M-β-CD | MA | 1 drop of MeOH | ||
M-β-CD-LA | LA | --- | |||
B-U | B | U | 1:2:2 * | --- | [7] |
B-U30 | 30% (m/m) water | ||||
ChCl-D-Sor | ChCl | D-Sor | 1:1 | --- | [9,10,11,13] |
ChCl-D-Glu | D-Glu | 1:2 | --- | ||
ChCl-D-Fru | D-Fru | 1:2 | --- | ||
TBABr-L-Arg | TBABr | L-Arg | 1:1 | --- | [14] |
TBABr-L-Ala | L-Ala | --- | |||
TBABr-L-Pro | L-Pro | --- | |||
(–)-Men:OA | (–)-Men | OA | 1:2 | --- | [15,16] |
S-β-CD-CA | S-β-CD | CA | 1:2 | --- | [17,18] |
N8881Cl:OA | N8881Cl | OA | 1:1 | --- | [19] |
β-CD-L-LA | β-CD | L-LA | 1:3 ** | --- | [20] |
HP-β-CD-L-LA | HP-β-CD | L-LA | --- | ||
M-β-CD-L-LA | M-β-CD | L-LA | --- | ||
D,L-Men:O | D,L-Men | O | 1:1 | --- | [21] |
L-Val-G | L-Val | G | 1:5 | --- | [22] |
L-Leu-G | L-Leu | --- | |||
L-Val-L-LA | L-Val | L-LA | --- | ||
L-Leu-L-LA | L-Leu | --- | |||
TEACl-LbA | TEACl | LbA | 1:2 ** | --- | [23] |
TBACl-LbA | TBACl | --- | |||
TBPCl-LbA | TBPCl | --- | |||
Pro-U20 | Pro | U | 1:3 | 20% (m/m) water | [24] |
ChCl-LA | ChCl | LA | 1:2 | --- | [25] |
ChCl-MA | MA | --- | |||
ChCl-TA | TA | --- | |||
ChCl-MA-LA | MA, LA | 1:1:1 | --- | ||
ChCl-LA-TA | LA, TA | --- | |||
ChCl-MA-TA | MA, TA | --- | |||
MD-G | MD | G | Different weight ratios | --- | [26] |
TEACl-D-Xyl | TEACl | D-Xyl | 1.97:1.21 *** | --- | [27] |
TEACl-D-Sor | D-Sor | 1.97:1.22 *** | --- |
DES * Concentration in BGE | BGE | Capillary | Analytes | Technique | Detection | Reference |
---|---|---|---|---|---|---|
1.0% (v/v) ChCl-U | 100 mM Tris-H3PO4, 15 mM β-CD, pH 2.5 | Capillary 50.0 cm (42.0 cm effective lenght), I.D. = 50 µm | Zopiclone | DES/CD-CZE | UV | [2] |
30 mM borate-H3PO4, 7 mM β-CD, pH 4.0 | Salbutamol | |||||
30 mM Tris-H3PO4, 10 mM β-CD, pH 2.5 | Amlodipine | |||||
1.5% (v/v) ChCl-EG or CHCl-LA | 40 mM NaH2PO4-H3PO4, 10 mM HP-β-CD, pH 2.5 | Capillary 50.0 cm (41.5 cm effective lenght), I.D. = 50 µm | Tropicamide, homatropine, ofloxacin, atenolol, propranolol | DES/CD-CZE | UV | [3] |
1.0% (v/v) ChCl-U or ChCl-G | 30 mM NaH2PO4-H3PO4, 6.5 mM CM-β-CD, pH 4.0 | DES-CDEKC | ||||
65 mM ChCl-CP | MeOH solution containing 10% (v/v) NaOH water solution (0.3 M), 45 mM Tris | Capillary 50.0 cm (41.0 cm effective lenght), I.D. = 50 µm | Propranolol, betaxolol, clenbuterol, metoprolol, bioprolol, atenolol, bambuterol, synephrine, salbutamol, sotalol, acebutolol, procaterol | DES-NACE | UV | [4] |
6.66–8.0% (v/v) HP-β-CD-MA or HP-β-CD-LA or M-β-CD-MA or M-β-CD-LA | 30 mM NaH2PO4, 30% (v/v) methanol, pH 2.6 | Capillary 50.0 cm (41.0 cm effective lenght), I.D. = 50 µm | Amlodipine, terbutaline, nefopam, econazole, homatropine | SUPRADES-CZE | UV | [6] |
0.3% (v/v) ChCl-U | 20 mM HP-β-CD, 30 mM Na2B4O7-H3PO4 buffer (pH 3.00) | Capillary 60.0 cm (not stated effective lenght), I.D. = 25 µm | Adrenaline, salbutamol, isoproterenol, norepinephrine, tertbutaline | DES/CD-CZE | AD | [8] |
0.5% (v/v) ChCl-U | 10 mM CM-β-CD, 30 mM NaH2PO4-H3PO4 buffer (pH 4.00) | DES-CDEKC | ||||
0.1–0.5% (m/v) ChCl-D-Sor or ChCl-D-Glu or ChCl-D-Fru or ChCl-U or ChCl-EG | 100 mM formate buffer (pH 3.0), 12.5 mM CM-γ-CD | Capillary 58.5 cm (50.0 cm effective length), I.D. = 50 µm | Clopidogrel | DES-CDEKC | UV | [9] |
100 mM borate buffer (pH 9.0), 5 mM SB-β-CD | ||||||
0.8–1.7% (m/v) ChCl-D-Sor or ChCl-D-Glu or ChCl-D-Fru or ChCl-U or ChCl-EG | 15 mM CE-β-CD + 10 mM M-γ-CD, 100 mM borate buffer (pH 9.0) | Capillary 58.5 cm (50.0 cm effective length), I.D. = 50 µm | Dimethenamid | DES-CDEKC | UV | [10] |
0.005–1.5% (v/v) ChCl-D-Sor or ChCl-D-Glu or ChCl-D-Fru or ChCl-U or ChCl-EG or ChCl-BG | 20 mM NaH2PO4, 15 mM CM-β-CD, pH 2.5 | Capillary 64 cm (55.5 cm effective lenght), I.D. = 50 µm | Amphetamine, methamphetamine, 3-fluorethamphetamine | DES-CDEKC | UV | [11] |
20 mM NaH2PO4, 1 mM SCF-6, pH 2.5 | ||||||
0.15% (v/v) ChCl-EG | 13.84 mM CM-β-CD, 20 mM NaH2PO4, pH 2.5 | Capillary 64 cm (55.5 cm effective lenght), I.D. = 50 µm | 6 fluorinated amphetamine analogs | DES-CDEKC | UV | [12] |
0.75% (v/v) ChCl-EG | 14.36 mM CM-β-CD, 20 mM NaH2PO4, pH 2.5 | 3 fluorinated cathinone analogs | ||||
0.5% (m/v) ChCl-D-Sor | 100 mM Borate buffer (pH 9.0), 15 mM succinyl-β-CD | Capillary 58.5 cm (50.0 cm effective length), I.D. = 50 µm | Lacosamide | DES-CDEKC | UV | [13] |
10.0% (v/v) TBABr-l-Arg or TBABr-l-Ala or TBABr-l-Pro | 50 mM Na2B4O7 (pH 9.5) 15 mM β-CD | Capillary 64 cm (55.5 cm effective lenght), I.D. = 50 µm | Methionine | DES/CD-CZE | UV | [14] |
0.5% (v/v) S-β-CD-CA | 20 mM phosphate buffer pH 2.5 | Capillary 64 cm (55.5 cm effective lenght), I.D. = 50 µm | 6 fluorinated amphetamines analogs | SUPRADES-CDEKC | UV | [17] |
0.05–0.075% (v/v) S-β-CD-CA | 20 mM phosphate buffer pH 2.5 | Capillary 64 cm (55.5 cm effective lenght), I.D. = 50 µm | nefopam, and five cathinone derivatives | SUPRADES-CDEKC | UV | [18] |
0.1% (v/v) S-β-CD-CA | 100 mM Tris/10 mM Borate pH 8.0 | |||||
5.0–15.0% (v/v) β-CD-L-LA or HP-β-CD-L-LA or M-β-CD-L-LA | 30 mM NaH2PO4, pH 3.0–4.0 | Capillary 50.0 cm (40.0 cm effective lenght), I.D. = 50 µm | Carvedilol, miconazole, clenbuterol, tertbutaline, iconazole, econazole, tioconazole, chlorpheniramine, brompheniramine, propranolol | SUPRADES-CZE | UV | [20] |
0.5% (m/v) L-Val-G or L-Leu-G or L-Val-L-LA or L-Leu-L-LA | 50 mM Tris/H3 PO4, 4.0% maltodextrin, pH 3.0 | Capillary 50.0 cm (40.5 cm effective length), I.D. = 50 µm | Nefopam, ketoconazole, citalopram, doxapram, | DES/CS-CZE | UV | [22] |
120 mM TBACl-LbA | 40 mM borax buffer, 30% MeOH, pH 8.0 | Capillary 50.0 cm (41.0 cm effective length), I.D. = 50 µm | 20 model drugs (hydrochloride salts) | DES-CZE | UV | [23] |
0.3–0.6% (m/v) ChCl-LA or ChCl-MA or ChCl-TA or ChCl-MA-LA or ChCl-LA-TA or ChCl-MA-TA | 40 mM borax buffer, 20% methanol (v/v), pH 8.0 | Capillary 50.0 cm (41.5 cm effective length), I.D. = 50 µm | Carbinoxamine, nefopam, propranolol, citalopram | DES/CS-CZE | UV | [25] |
4.0–8.0% (m/v) MD-G | 50 mM Tris/H3PO4 buffer (50 mM Tris), pH 3.0 | Capillary 50.0 cm (41.0 cm effective length), I.D. = 50 µm | 6 azole antifungal drugs | DES-CZE | UV | [26] |
0.5% (m/v) CNTs modified using TEACl-D-Xyl or TEACl-D-Sor | 50 mM Tris/H3PO4 buffer (pH 3.0), 3.0% (m/v) MD | Capillary 50.0 cm (I.D. = 50 µm) | Doxapram, duloxetine, citalopram, fluoxetine | DES/CNT-CZE | UV | [27] |
Type of DES | BGE | Capillary | Analytes | Technique | Detection | Reference |
---|---|---|---|---|---|---|
Pro-U30 | 50 mM TRIS in Pro-U30 | Capillary 50.0 cm (41.0 cm effective lenght), I.D. = 50 µm | Naphthalene, 1-(naphthalen-1-yl)-ethanamine, 8 naphtoic acids | DES based CZE | UV | [5] |
Pro-U30 | 50 mM TRIS in Pro-U30, 2% Tween-20 | DES based MEKC | ||||
B-U30 | 50 mM TRIS in BU30, pH 9.5 | Capillary 50.0 cm (41.0 cm effective lenght), I.D. = 50 µm | 10 naphthalene-based compounds | DES based CZE | UV | [7] |
50 mM TRIS in BU30, 0.3–0.5% SDS, pH 10.0 | DES based MEKC | |||||
0.2% (m/v) Men:OA | 10 mM borax, (pH 9.5) | Capillary 50.0 cm (41.5 cm effective lenght), I.D. = 50 µm | 13 naphthalene-based acids | HDES-EKC | UV | [15] |
0.3% (m/v) (–)-Men:OA | 10 mM borax, (pH 9.24), 5% HP-γ-CD | CD-HDES-EKC | ||||
0.3% (m/v) (–)-Men:OA | 20 mM phosphate buffer (pH 2.5), 2.0–4.0% CM-β-CD | Capillary 50.0 cm (41.5 cm effective lenght), I.D. = 50 µm | Citalopram, nefopam, tioconazole, isoconazole, miconazole, econazol | CD/HDES-EKC | UV | [16] |
0.20% (v/v) N8881Cl:OA | 20 mM phosphate buffer (pH 2.5),1% CM-β-CD * | Capillary 50.0 cm (41.5 cm effective lenght), I.D. = 50 µm | Tioconazole, Isoconazole, miconazole, econazole | CD/HDES-EKC | UV | [19] |
0.5% D,L-Men:O | 3.3% SDS, 6.6% 1-butanol, 10 mM borax buffer | Capillary 55.0 cm (46.5 cm effective lenght), I.D. = 50 µm | Luteolin, rutin, quercetin, hyperoside, chlorgenic acid, ferulic acid, isoquercitrin, caffeic acid, gallic acid | DES/W MEEKC | UV | [21] |
Pro-U30 | 1.5–10.0% (m/v) β-CD, 50 mM H3BO3 in Pro-U30, (apparent) pH 8.0 | Capillary 50.0 cm (41.0 cm effective lenght), I.D. = 50 µm | 8 naphtoic acids | DES based CZE | UV | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pieckowski, M.; Olędzka, I.; Bączek, T.; Kowalski, P. Deep Eutectic Solvents in Capillary Electromigration Techniques—A Review of Recent Advancements. Molecules 2025, 30, 3674. https://doi.org/10.3390/molecules30183674
Pieckowski M, Olędzka I, Bączek T, Kowalski P. Deep Eutectic Solvents in Capillary Electromigration Techniques—A Review of Recent Advancements. Molecules. 2025; 30(18):3674. https://doi.org/10.3390/molecules30183674
Chicago/Turabian StylePieckowski, Michał, Ilona Olędzka, Tomasz Bączek, and Piotr Kowalski. 2025. "Deep Eutectic Solvents in Capillary Electromigration Techniques—A Review of Recent Advancements" Molecules 30, no. 18: 3674. https://doi.org/10.3390/molecules30183674
APA StylePieckowski, M., Olędzka, I., Bączek, T., & Kowalski, P. (2025). Deep Eutectic Solvents in Capillary Electromigration Techniques—A Review of Recent Advancements. Molecules, 30(18), 3674. https://doi.org/10.3390/molecules30183674