The Activation of Cytochrome P450 2C9 Is Facilitated by the Coenzyme Forms of Vitamin B2
Abstract
1. Introduction
2. Results and Discussion
2.1. Spectrophotometric Analysis of CYP2C9 and FAD Complexation
2.2. Characterization of the CYP2C9 Electrochemical System
2.3. The Influence of Coenzyme Forms of Vitamin B2 on the O-Demethylase and Hydroxylase Activities of the CYP2C9 Enzyme on Non-Steroidal Anti-Inflammatory Drugs, Naproxen and Diclofenac
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maanen, A.C.D.; Wilting, I.; Jansen, P.A.F. Prescribing medicines to older people—How to consider the impact of ageing on human organ and body functions. Br. J. Clin. Pharmacol. 2020, 86, 1921–1930. [Google Scholar] [CrossRef] [PubMed]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F. Human Cytochrome P450 Enzymes. In Cytochrome P450, 4th ed.; Ortiz de Montellano, P., Ed.; Springer: Cham, Switzerland, 2015; pp. 523–785. [Google Scholar]
- Mikkelsen, K.; Stojanovska, L.; Apostolopoulos, V. The effects of vitamin B in depression. Curr. Med. Chem. 2016, 23, 4317–4337. [Google Scholar] [CrossRef]
- Mikkelsen, K.; Stojanovska, L.; Tangalakis, K.; Bosevski, M.; Apostolopoulos, V. Cognitive decline: A vitamin B perspective. Maturitas 2016, 93, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Wauthier, V.; Verbeeck, R.K.; Calderon, P.B. The effect of ageing on cytochrome P450 enzymes: Consequences for drug biotransformation in the elderly. Curr. Med. Chem. 2007, 14, 745–757. [Google Scholar] [CrossRef]
- Archakov, A.A.; Bachmanova, G.I. Cytochrome P450 and Active Oxygen; Taylor & Francis: London, UK, 1990. [Google Scholar]
- Shumyantseva, V.; Makhova, A.; Bulko, T.; Kuzikov, A.; Shich, E.; Suprun, E.; Kukes, V.; Usanov, S.; Archakov, A. The dose-dependent influence of antioxidant vitamins on electrochemically-driven cytochrome P450 3A4 catalysis. Oxid. Antioxid. Med. Sci. 2013, 2, 113–118. [Google Scholar] [CrossRef]
- Rendic, S.P.; Guengerich, F.P. Human family 1–4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physiological chemicals: An update. Arch. Toxicol. 2021, 95, 395–472. [Google Scholar] [CrossRef]
- Mi, L.; Wang, Z.; Yang, W.; Huang, C.; Zhou, B.; Hu, Y.; Liu, S. Cytochromes P450 in biosensing and biosynthesis applications: Recent progress and future perspectives. Trends Anal. Chem. 2023, 158, 11679. [Google Scholar] [CrossRef]
- Tutelyan, V.A.; Kravchenko, L.V.; Aksenov, I.V.; Trusov, N.V.; Guseva, G.V.; Kodentsova, V.M.; Vrzhesinskaya, O.A.; Beketova, N.A. Activity of Xenobiotic-Metabolizing Enzymes in the Liver of Rats with Multi-Vitamin Deficiency. Int. J. Vitam. Nutr. Res. 2013, 83, 5–13. [Google Scholar] [CrossRef]
- Ashoori, M.; Saedisomeolia, A. Riboflavin (vitamin B2) and oxidative stress: A review. Br. J. Nutr. 2014, 111, 1985–1991. [Google Scholar] [CrossRef]
- Tumkiratiwong, P.; Tungtrongchitr, R.; Migasena, P.; Pongpaew, P.; Rojekittikhun, W.; Vudhivai, N.; Tungtrongchitr, A.; Phonrat, B.; Nuamtanong, S. Antioxidant enzyme levels in the erythrocytes of riboflavin-deficient and Trichinella spiralis-infected rats. Southeast Asian J. Trop. Med. Public Health 2003, 34, 480–485. [Google Scholar]
- Mosegaard, S.; Dipace, G.; Bross, P.; Carlsen, J.; Gregersen, N.; Olsen, R.K.J. Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism. Int. J. Mol. Sci. 2020, 21, 3847. [Google Scholar] [CrossRef] [PubMed]
- Suwannasom, N.; Kao, I.; Pruß, A.; Georgieva, R.; Bäumler, H. Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. Int. J. Mol. Sci. 2020, 21, 950. [Google Scholar] [CrossRef] [PubMed]
- Madigan, S.M.; Tracey, F.; McNulty, H.; Eaton-Evans, J.; Coulter, J.; McCartney, H.; Strain, J.J. Riboflavin and vitamin B-6 intakes and status and biochemical response to riboflavin supplementation in free-living elderly people. Am. J. Clin. Nutr. 1998, 68, 389–395. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, L.; Sun, D.; Jie, S.; Tao, X.; Meng, Q.; Luo, F. Dietary riboflavin (vitamin B2) intake and osteoporosis in U.S. female adults: Unveiling of association and exploration of potential molecular mechanisms. Nutr. J. 2025, 24, 53. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jia, S.; Xu, K.; Ma, S.; Jiao, K.; Wu, G.; Tay, F.R.; Zhang, T.; Niu, L. A Population-Based Study of the Association Among Dry Mouth, Vitamin B2, and Mortality. J. Oral Rehabil. 2025, 52, 464–473. [Google Scholar] [CrossRef]
- Daly, A.K.; Rettie, A.E.; Fowler, D.M.; Miners, J.O. Pharmacogenomics of CYP2C9: Functional and Clinical Considerations. J. Pers. Med. 2018, 8, 1. [Google Scholar] [CrossRef]
- Shumyantseva, V.V.; Bulko, T.V.; Koroleva, P.I.; Shikh, E.V.; Makhova, A.A.; Kisel, M.S.; Haidukevich, I.V.; Gilep, A.A. Human Cytochrome P450 2C9 and Its Polymorphic Modifications: Electroanalysis, Catalytic Properties, and Approaches to the Regulation of Enzymatic Activity. Processes 2022, 10, 383. [Google Scholar] [CrossRef]
- Vieira, C.S.P.; Segundo, M.A.; Araújo, A.N. Cytochrome P450 electrochemical biosensors transforming in vitro metabolism testing—Opportunities and challenges. Bioelectrochemistry 2025, 163, 108913. [Google Scholar] [CrossRef]
- Zuccarello, L.; Barbosa, C.; Todorovic, S.; Selivera, C.M. Electrocatalysis by heme enzymes-applications in biosensing. Catalysts 2021, 11, 218. [Google Scholar] [CrossRef]
- Bernhardt, R.; Urlacher, V.B. Cytochromes P450 as promising catalysts for biotechnological application: Chances and limitations. Appl. Microbiol. Biotechnol. 2014, 98, 6185–6203. [Google Scholar] [CrossRef] [PubMed]
- Koroleva, P.I.; Bulko, T.V.; Agafonova, L.E.; Shumyantseva, V.V. Catalytic and Electrocatalytic Mechanisms of Cytochromes P450 in the Development of Biosensors and Bioreactors. Biochemistry 2023, 88, 1645–1657. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lu, M.; Lin, L.; Huang, Z.; Zhang, R.; Wu, X.; Chen, Y. Riboflavin is directly involved in N-dealkylation catalyzed by bacterial cytochrome P450 monooxygenases. ChemBioChem 2020, 21, 2297–2305. [Google Scholar] [CrossRef]
- Shumyantseva, V.V.; Uvarov, V.; Byakova, O.E.; Archakov, A.I. Semisynthetic Flavocytochromes Based on Cytochrome P450 2B4: Reductase and Oxygenase Activities. Arch. Biochem. Biophys. 1998, 354, 133–138. [Google Scholar] [CrossRef]
- Girhard, M.; Kunigk, E.; Tihovsky, S.; Shumyantseva, V.V.; Urlacher, V.B. Light-driven biocatalysis with cytochrome P450 peroxygenases. Biotechnol. Appl. Biochem. 2013, 60, 111–118. [Google Scholar] [CrossRef]
- Shumyantseva, V.V.; Bulko, T.V.; Petushkova, N.A.; Samenkova, N.F.; Kuznetsova, G.P.; Archakov, A.I. Fluorescent assay for riboflavin binding to cytochrome P450 2B4. J. Inorg. Biochem. 2004, 98, 365–370. [Google Scholar] [CrossRef]
- Gonvindaraj, S.; Li, H.Y.; Poulos, T.L. Flavin-Supported Fatty Acid Oxidation by the Heme Domain of Bacillus megaterium Cytochrome P450BM-3. Biochem. Biophys. Res. Commun. 1994, 203, 1745–1749. [Google Scholar] [CrossRef] [PubMed]
- Castrignan`o, S.; Di Nardo, G.; Sadeghi, S.J.; Gilardi, G. Influence of inter-domain dynamics and surrounding environment flexibility on the direct electrochemistry and electrocatalysis of self-sufficient cytochrome P450 3A4-BMR chimeras. J. Inorg. Biochem. 2018, 188, 9–17. [Google Scholar] [CrossRef]
- Shumyantseva, V.V.; Koroleva, P.I.; Bulko, T.V.; Shkel, T.V.; Gilep, A.A.; Veselovsky, A.V. Approaches for increasing the electrocatalitic efficiency of cytochrome P450 3A4. Bioelectrochemistry 2023, 149, 108277. [Google Scholar] [CrossRef]
- Kuzikov, A.V.; Filippova, T.A.; Masamrekh, R.A.; Shumyantseva, V.V. Electroanalysis of 4′-Hydroxydiclofenac for CYP2C9 Enzymatic Assay. Electrocatalysis 2022, 13, 630–640. [Google Scholar] [CrossRef]
- Di Nardo, G.; Gilardi, G. Natural compounds as pharmaceuticals: The key role of cytochromes P450 reactivity. Trends Biochem. Sci. 2020, 45, 511–525. [Google Scholar] [CrossRef]
- Ducharme, J.; Auclair, K. Use of bioconjugation with cytochrome P450 enzymes. BBA Proteins Proteom. 2018, 1866, 32–51. [Google Scholar] [CrossRef]
- Fleming, B.D.; Tian, Y.; Bell, S.G.; Wong, L.-L.; Urlacher, V.; Hill, H.A.O. Redox properties of cytochrome P450 BM3 measured by direct methods. Eur. J. Biochem. 2003, 270, 4082–4088. [Google Scholar] [CrossRef]
- Rusling, J.F.; Wang, B.; Yun, S. Electrochemistry of redox enzymes. In Bioelectrochemistry: Fundametals, Experimental Techniques and Applications; Bartlett, P.N., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 39–85. [Google Scholar]
- Panicco, P.; Castrignanò, S.; Sadeghi, S.J.; Di Nardo, G.; Gilardi, G. Engineered human CYP2C9 and its main polymorphic variants for bioelectrochemical measurements of catalytic response. Bioelectrochemistry 2021, 138, 107729. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, F.A.; Camba, R.; Heering, H.A.; Hirst, J.; Jeuken, L.J.; Jones, A.K.; Leger, C.; McEvoy, J.P. Fast voltammetric studies of the kinetics and energetics of coupled electron-transfer reactions in proteins. Faraday Discuss. 2000, 116, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial Electrochem. 1979, 101, 19–28. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: Hoboken, NJ, USA, 2001; p. 864. [Google Scholar]
- Shumyantseva, V.V.; Bulko, T.V.; Kuzikov, A.V.; Masamrekh, R.A.; Konyakhina, A.Y.; Romanenko, I.; Max, J.B.; Köhler, M.; Gilep, A.A.; Usanov, S.A.; et al. All-electrochemical nanocomposite two-electrode setup for quantification of drugs and study of their electrocatalytical conversion by cytochromes P450. Electrochimica Acta 2020, 336, 135579. [Google Scholar] [CrossRef]
- Koroleva, P.I.; Bulko, T.V.; Kuzikov, A.V.; Gilep, A.A.; Romashova, Y.A.; Tichonova, E.G.; Kostrukova, L.V.; Archakov, A.I.; Shumyantseva, V.V. Role Assessment of Water-Soluble Pharmaceutical Form of Phosphatidylcholine on the Catalytic Activity of Cytochrome P450 2C9 and 2D6. Int. J. Mol. Sci. 2025, 26, 4. [Google Scholar] [CrossRef] [PubMed]
- Filippova, T.A.; Masamrekh, R.A.; Shumyantseva, V.V.; Khudoklinova, Y.; Kuzikov, A.V. Voltammetric Analysis of (S)-O-Desmethylnaproxen for Determination of CYP2C9 Demethylase Activity. BioNanoScience 2023, 13, 1278–1288. [Google Scholar] [CrossRef]
- Nash, T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 1953, 55, 416–421. [Google Scholar] [CrossRef]
- Pechurskaya, T.A.; Lukashevich, O.P.; Gilep, A.A.; Usanov, S.A. Engineering, expression, and purification of “soluble” human cytochrome P45017alpha and its functional characterization. Biochemistry 2008, 73, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Omura, T.; Sato, R. The Carbon Monoxide-binding Pigment of Liver Microsomes: II. Solubilization, purification, and properties. J. Biol. Chem. 1964, 239, 2379–2385. [Google Scholar] [CrossRef] [PubMed]
Electrode | Eox, V | Ered, V | E0′, V | ΔE, V | Γ0, mol/cm2 | ks, s−1 |
---|---|---|---|---|---|---|
CYP2C9 [30] | −0.252 ± 0.006 | −0.383 ± 0.006 | −0.318 ± 0.01 | 0.131 ± 0.01 | (5.9 ± 1.1) ×10−12 | 0.54 ± 0.02 |
CYP2C9 + FAD (1:1) | −0.235 ± 0.012 | −0.403 ± 0.011 | −0.319 ± 0.013 | 0.168 ± 0.006 | (8.2 ± 0.5) ×10−12 | 0.43 ± 0.03 |
Electrode | Ered, V | Ecat, V | Eonset, V | Icat/Ired |
---|---|---|---|---|
CYP2C9 | −0.425 ± 0.005 | −0.402 ± 0.017 | −0.212 ± 0.002 | 1.14 |
CYP2C9 + FAD | −0.420 ± 0.008 | −0.407 ± 0.007 | −0.211 ± 0.001 | 1.35 |
CYP2C9 + FMN | −0.438 ± 0.015 | −0.418 ± 0.005 | −0.234 ± 0.006 | 1.51 |
System | KM, M | I(4-OH-DF) 1, A | Vmax, M/min | Relative Activity, % |
---|---|---|---|---|
CYP2C9 +diclofenac | (1.17 ± 0.09) ×10−5 [31] | (0.94 ± 0.05) ×10−8 | (1.89 ± 0.21) ×10−9 | 100 ± 5 |
CYP2C9 + FMN +diclofenac | (5.49 ± 0.52) ×10−5 | (1.19 ± 0.09) ×10−8 | (2.14 ± 0.16) ×10−9 | 113 ± 6 |
CYP2C9 + FAD +diclofenac | (5.71 ± 0.07) ×10−4 | (1.84 ± 0.12) ×10−8 | (2.80 ± 0.29) ×10−9 | 148 ± 10 |
System | Ered, V | Ecat, V | Eonset, V | Ired, µA | Icat, µA | Icat/Ired | Vmax, M/min ×10−11 | Relative Activity, % |
---|---|---|---|---|---|---|---|---|
CYP2C9 + naproxen | −0.425 ± 0.005 | −0.432 ± 0.024 | −0.266 ± 0.036 | −0.17 ± 0.07 | −0.34 ± 0.07 | 2 | 6.44 ± 1.17 | 100 ± 18 |
CYP2C9 + FAD + naproxen | −0.420 ± 0.008 | −0.322 ± 0.001 | −0.197 ± 0.006 | −3.29 ± 0.24 | −4.22 ± 0.08 | 1.3 | 7.77 ± 1.15 | 120 ± 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koroleva, P.I.; Kuzikov, A.V.; Gilep, A.A.; Ivanov, S.V.; Archakov, A.I.; Shumyantseva, V.V. The Activation of Cytochrome P450 2C9 Is Facilitated by the Coenzyme Forms of Vitamin B2. Molecules 2025, 30, 3673. https://doi.org/10.3390/molecules30183673
Koroleva PI, Kuzikov AV, Gilep AA, Ivanov SV, Archakov AI, Shumyantseva VV. The Activation of Cytochrome P450 2C9 Is Facilitated by the Coenzyme Forms of Vitamin B2. Molecules. 2025; 30(18):3673. https://doi.org/10.3390/molecules30183673
Chicago/Turabian StyleKoroleva, Polina I., Alexey V. Kuzikov, Andrei A. Gilep, Sergey V. Ivanov, Alexander I. Archakov, and Victoria V. Shumyantseva. 2025. "The Activation of Cytochrome P450 2C9 Is Facilitated by the Coenzyme Forms of Vitamin B2" Molecules 30, no. 18: 3673. https://doi.org/10.3390/molecules30183673
APA StyleKoroleva, P. I., Kuzikov, A. V., Gilep, A. A., Ivanov, S. V., Archakov, A. I., & Shumyantseva, V. V. (2025). The Activation of Cytochrome P450 2C9 Is Facilitated by the Coenzyme Forms of Vitamin B2. Molecules, 30(18), 3673. https://doi.org/10.3390/molecules30183673