Rapid On-Field Monitoring for Odor-Active Homologous Aliphatic Aldehydes and Ketones from Hot-Mix Asphalt Emission via Dynamic-SPME Air Sampling with Online Gas Chromatographic Analysis
Abstract
1. Introduction
2. Results and Discussion
2.1. Analytical Performances
2.2. Extended Measurement Uncertainty Assessment
2.3. On-Site Application: Emissions from a HMA Plant
3. Materials and Methods
3.1. Standards and Reagents
3.2. Procedure for Air Monitoring and Instrumental Configuration
3.3. Method Performances
3.3.1. Dynamic FA Atmosphere Standard by Permeation Tube
3.3.2. O-(Pentafluorobenzyl) Oxime-Derivate Recoveries
3.3.3. Analytical Performances
3.3.4. Qualitative Analysis Identification of Aldehyde and Ketones by LTPRI
3.3.5. Extended Measurement Uncertainty Assessment
- Repeatability of the method;
- The calculation of the amount of aldehyde using the calibration curve;
- The angular coefficient a2 of aldehyde using the calibration curve;
- Sampling time;
- Concentration of aldehyde in the flow cell (stability of PR and total gas flow in the flow cell).
3.4. On-Site Application: Emission from a HMA Plant
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HMA | Hot-Mix Asphalt; |
SPME | Solid-Phase MicroExtraction; |
PFBHA | O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine; |
GC-MS | Gas Chromatography–Mass Spectrometry; |
VOCs | Volatile Organic Compounds; |
RVD | Relative Vapor Density; |
ODTVs | Odor Detection Threshold Values; |
LOD | Limits Of Detection; |
LOQ | Limits of Quantification; |
OC | Odor Concentration; |
OAV | Odor Activity Value; |
EPA | Environmental Protection Agency; |
PR | Permeation Rate; |
RSD | Relative Standard Deviation; |
LTPRI | Linear Temperature Programmed Retention Index; |
GUM | Guide to the Expression of Uncertainty in Measurement. |
References
- Special Procedures—United Nations Human Rights Council. Special Rapporteur on Toxics and Human Rights. Available online: https://www.ohchr.org/en/special-procedures/sr-toxics-and-human-rights (accessed on 23 July 2025).
- David, M.; Sucker, K.; Hameister, J.; Gerull, F.; Grams, H.; Röhl, H.; Schröder, K.; Brosig, L.; Scutaru, A.M.; Debiak, M.; et al. The German approach to evaluate complaints about odor annoyance in indoor environments. Indoor Environ. 2024, 1, 100020. [Google Scholar] [CrossRef]
- Manservisi, F.; Banzi, M.; Tonelli, T.; Veronesi, P.; Ricci, S.; Distante, D.; Faralli, S.; Bortone, G. Environmental complaint insights through text mining based on the driver, pressure, state, impact, and response (DPSIR) framework: Evidence from an Italian environmental agency. Reg. Sustain. 2023, 4, 261–281. [Google Scholar] [CrossRef]
- Dugheri, S.; Cappelli, G.; Fanfani, N.; Squillaci, D.; Rapi, I.; Venturini, L.; Vita, C.; Gori, R.; Sirini, P.; Cipriano, D.; et al. Vacuum-Assisted MonoTrapTM Extraction for Volatile Organic Com-pounds (VOCs) Profiling from Hot Mix Asphalt. Molecules 2024, 29, 4943. [Google Scholar] [CrossRef]
- Dugheri, S.; Cappelli, G.; Gori, R.; Zampolli, S.; Fanfani, N.; Guerriero, E.; Squillaci, D.; Rapi, I.; Venturini, L.; Pittella, A.; et al. MEMS-Based Micropacked Thermal Desorption GC/PID for In-Field Vola-tile Organic Compound Profiling from Hot Mix Asphalt. Separations 2025, 12, 133. [Google Scholar] [CrossRef]
- Autelitano, F.; Bianchi, F.; Giuliani, F. Airborne emissions of asphalt/wax blends for warm mix asphalt production. J. Clean. Prod. 2017, 164, 749–756. [Google Scholar] [CrossRef]
- Autelitano, F.; Giuliani, F. Analytical assessment of asphalt odor patterns in hot mix asphalt production. J. Clean. Prod. 2018, 172, 1212–1223. [Google Scholar] [CrossRef]
- Chlebnikovas, A.; Marčiulaitienė, E.; Šernas, O.; Škulteckė, J.; Januševičius, T. Research on air pollutants and odor emissions from paving hot-mix asphalt with end-of-life tyre rubber. Environ. Int. 2023, 181, 108281. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qin, Y.; Zhang, X.; Shan, B.; Liu, C. Emission Characteristics, Environmental Impacts, and Health Risks of Vola-tile Organic Compounds from Asphalt Materials: A State-of-the-Art Review. Energy Fuels 2024, 38, 4787–4802. [Google Scholar] [CrossRef]
- Germin-Aizac, J.; Maitre, A.; Balducci, F.; Montlevier, S.; Marques, M.; Tribouiller, J.; Demeilliers, C.; Persoons, R. Bitumen fumes and PAHs in asphalt road paving: Emission charac-teristics, determinants of exposure and environmental impact. Environ. Res. 2023, 228, 115824. [Google Scholar] [CrossRef]
- International Labour Organization (ILO). Available online: https://www.ilo.org/ (accessed on 21 May 2025).
- National Library of Medicine (NIH). PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 21 May 2025).
- Royal Society of Chemistry. ChemSpider. Available online: https://www.chemspider.com/ (accessed on 21 May 2025).
- Yoshio, Y.; Nagata, E. Measurement of Odor Threshold by Triangular Odor Bag Method. Available online: https://www.env.go.jp/en/air/odor/measure/02_3_2.pdf (accessed on 21 May 2025).
- Brattoli, M.; De Gennaro, G.; De Pinto, V.; Demarinis Loiotile, A.; Lovascio, S.; Penza, M. Odour Detection Methods: Olfactometry and Chemical Sensors. Sensors 2011, 11, 5290–5322. [Google Scholar] [CrossRef] [PubMed]
- Jeleń, H.; Gracka, A. Characterization of Aroma Compounds: Structure, Physico-Chemical and Sensory Properties. In Flavour, 1st ed.; Guichard, E., Salles, C., Morzel, M., Le Bon, A., Eds.; Wiley: Hoboken, NJ, USA, 2016; pp. 126–153. [Google Scholar] [CrossRef]
- Codice Penale. Art. 674. Available online: https://www.gazzettaufficiale.it/atto/serie_generale/caricaArticolo?art.versione=1&art.idGruppo=74&art.flagTipoArtico-lo=1&art.codiceRedazionale=030U1398&art.idArticolo=674&art.idSottoArticolo=1&art.idSottoArticolo1=10&art.dataPubblicazioneGazzetta=1930-10-26&art.progressivo=0 (accessed on 21 May 2025).
- Ministry of Environment and Energy Security. Directorial Decree n. 309-MinAmbiente. 2023. Available online: https://www.reteambiente.it/normativa/51893/decreto-direttoriale-minambiente-28-giugno-2023-n-309/ (accessed on 21 May 2025).
- EN 13725:2003; Air Quality—Determination of Odor Concentration by Dy-Namic Olfactometry. UNI-Ente Italiano di Normazione: Milano, Italy, 2003. Available online: https://store.uni.com/en-13725-2003 (accessed on 8 April 2025).
- Wu, C.; Liu, J.; Zhao, P.; Li, W.; Yan, L.; Piringer, M.; Schauberger, G. Evaluation of the chemical composition and correlation between the calculated and measured odor concentration of odorous gases from a landfill in Beijing, China. Atmos. Environ. 2017, 164, 337–347. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, S.Y. A comparative analysis of malodor samples between direct (olfactometry) and indirect (in-strumental) methods. Atmos. Environ. 2008, 42, 5061–5070. [Google Scholar] [CrossRef]
- Nuzzi, M.; Lo Scalzo, R.; Testoni, A.; Rizzolo, A. Evaluation of Fruit Aroma Quality: Comparison Between Gas Chromatography–Olfactometry (GC–O) and Odour Activity Value (OAV) Aroma Patterns of Strawberries. Food Anal. Methods 2008, 1, 270–282. [Google Scholar] [CrossRef]
- Guadagni, D.G.; Buttery, R.G.; Harris, J. Odour intensities of hop oil components. J. Sci. Food Agric. 1966, 17, 142–144. [Google Scholar] [CrossRef] [PubMed]
- Teranishi, R. Flavor Research: Principles and Techniques; Marcel Dekker: New York, NY, USA, 1971. [Google Scholar]
- Meilgaard, M.C. Prediction of flavor differences between beers from their chemical composition. J. Agric. Food Chem. 1982, 30, 1009–1017. [Google Scholar] [CrossRef]
- Mulders, E.J. The odor of white bread: IV. Quantitative determination of constituents in the vapour and their odor values. Z. Lebensm. Unters. Forch. 1973, 151, 310–317. [Google Scholar] [CrossRef]
- Capelli, L.; Sironi, S.; Del Rosso, R.; Céntola, P.; Grande, M.I. A comparative and critical evaluation of odor assessment methods on a landfill site. Atmos. Environ. 2008, 42, 7050–7058. [Google Scholar] [CrossRef]
- Laor, Y.; Parker, D.; Pagé, T. Measurement, prediction, and monitoring of odors in the environment: A critical review. Chem. Eng. 2014, 30, 139–166. [Google Scholar] [CrossRef]
- Rincón, C.A.; De Guardia, A.; Couvert, A.; Wolbert, D.; Le Roux, S.; Soutrel, I.; Nunes, G. Odor concentration (OC) prediction based on odor activity values (OAVs) during composting of solid wastes and digestates. Atmos. Environ. 2019, 201, 1–12. [Google Scholar] [CrossRef]
- Yang, X.; You, Z.; Perram, D.; Hand, D.; Ahmed, Z.; Wei, W.; Luo, S. Emission analysis of recycled tire rubber modified asphalt in hot and warm mix conditions. J. Hazard. Mater. 2019, 365, 942–951. [Google Scholar] [CrossRef]
- Espinoza, J.; Medina, C.; Calabi-Floody, A.; Sánchez-Alonso, E.; Valdés, G.; Quiroz, A. Evaluation of Reductions in Fume Emissions (VOCs and SVOCs) from Warm Mix Asphalt Incorporating Natural Zeolite and Reclaimed Asphalt Pavement for Sustainable Pavements. Sustain. J. 2020, 12, 9546. [Google Scholar] [CrossRef]
- Pawliszyn, J. On-site determinations, a “Green” and more efficient approach to analytical measurement. Anal. Chem. 2016, 85, 1. [Google Scholar] [CrossRef]
- Handley, J.; Harris, C.M. Great Ideas of a Decade. Anal. Chem. 2001, 73, 660 A–666 A. [Google Scholar] [CrossRef] [PubMed]
- Pacenti, M.; Dugheri, S.; Gagliano-Candela, R.; Strisciullo, G.; Franchi, E.; Degli Esposti, F.; Perchiazzi, N.; Boccalon, P.; Arcangeli, G.; Cupelli, V. Analysis of 2-Chloroacetophenone in air by multi-fiber sol-id-phase microextraction and fast gas chromatography-mass spectrometry. Acta Chromatogr. 2009, 21, 379–397. [Google Scholar] [CrossRef]
- Herrington, J.S.; Gómez-Ríos, G.A.; Myers, C.; Stidsen, G.; Bell, D.S. Hunting Molecules in Complex Matrices with SPME Arrows: A Review. Separations 2020, 7, 12. [Google Scholar] [CrossRef]
- Pacenti, M.; Lofrumento, C.; Dugheri, S.; Zoppi, A.; Borsi, I.; Speranza, A.; Boccalon, P.; Arcangeli, G.; Antoniucci, A.; Castellucci, E.M.; et al. Physicochemical Characterization of Exhaust Particulates from Gasoline and Diesel Engines by Solid-Phase Micro Extraction Sampling and Combined Raman Microspectro-scopic/Fast Gas-Chromotography Mass Spectrometry Analysis. Eur. J. Inflamm. 2009, 7, 25–37. [Google Scholar] [CrossRef]
- Pacenti, M.; Dugheri, S.; Traldi, P.; Degli Esposti, F.; Perchiazzi, N.; Franchi, E.; Calamante, M.; Kikic, I.; Alessi, P.; Bonacchi, A.; et al. New Automated and High-Throughput Quantitative Analysis of Urinary Ketones by Multifiber Exchange-Solid Phase Microextraction Coupled to Fast Gas Chromatography/Negative Chemical-Electron Ionization/Mass Spectrometry. J. Anal. Methods Chem. 2010, 2010, 1–13. [Google Scholar] [CrossRef]
- Dugheri, S.; Bonari, A.; Pompilio, I.; Colpo, M.; Montalti, M.; Mucci, N.; Arcangeli, G. Assessment of occupational exposure to gaseous peracetic acid. Int. J. Occup. Med. Environ. Health. 2018, 31, 527–535. [Google Scholar] [CrossRef]
- Tsai, S.W.; Chang, T.A. Time-weighted average sampling of airborne n-valeraldehyde by a solid-phase microex-tration device. J. Chromatog. A. 2002, 954, 191–198. [Google Scholar] [CrossRef]
- Pieraccini, G.; Bartolucci, G.; Pacenti, M.; Dugheri, S.; Boccalon, P.; Focardi, L. Gas chromatographic determination of glutaraldehyde in the workplace atmosphere after derivatization with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine on a solid-phase microextraction fibre. J. Chromatog. A 2002, 955, 117–124. [Google Scholar] [CrossRef]
- Martos, P.A.; Pawliszyn, J. Sampling and Determination of Formaldehyde Using Solid-Phase Microextraction with On-Fiber Derivatization. Anal. Chem. 1998, 70, 2311–2320. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, J.; Gallardo, J.M.; Medina, I. Determination of carbonyl compounds in fish species samples with sol-id-phase microextraction with on-fibre derivatization. Food Chem. 2010, 123, 771–778. [Google Scholar] [CrossRef]
- Odor Explore: A Participatory Science Project Using a Mobile App and New Measurement Approaches. 2025. Available online: https://www.epa.gov/air-research/odor-explore-participatory-science-project-using-mobile-app-and-new-measurement (accessed on 8 April 2025).
- Bax, C.; Sironi, S.; Capelli, L. Definition and Application of a Protocol for Electronic Nose Field Performance Testing: Example of Odor Monitoring from a Tire Storage Area. Atmosphere 2020, 11, 426. [Google Scholar] [CrossRef]
- Wysocka, I.; Dębowski, M. Advantages and Limitations of Measurement Methods for Assessing Odour Nuisance in Air—A Comparative Review. Appl. Sci. 2025, 15, 5622. [Google Scholar] [CrossRef]
- Bao, M.; Joza, P.J.; Masters, A.; Rickert, W.S. Analysis of Selected Carbonyl Compounds in Tobacco Samples by Using Pentafluorobenzylhydroxylamine Derivatization and Gas Chromatography-Mass Spectrometry. Beiträge zur Tabakforschung International/Contributions to Tobacco Research. Contrib. Tob. Res. 2014, 26, 86–97. [Google Scholar] [CrossRef]
- Bourdin, D.; Desauziers, V. Development of SPME on-fiber derivatization for the sampling of formaldehyde and other carbonyl compounds in indoor air. Anal. Bioanal. Chem. 2014, 406, 317–328. [Google Scholar] [CrossRef]
- Bax, C.; Sironi, S.; Capelli, L. How Can Odors Be Measured? An Overview of Methods and Their Applications. Atmosphere 2020, 11, 92. [Google Scholar] [CrossRef]
- Ellison, S.L.R.; Williams, A. Quantifying Uncertainty in Analytical Measurement. In EURACHEM/CITAC Guide CG 4 (QUAM:2012.P1), 3rd ed.; CITAC: London, UK, 2012; Available online: https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf (accessed on 15 April 2025).
- Alaka, G.J.; Sheinin, D.; Thomas, B.; Gramer, L.; Zhang, Z.; Liu, B.; Kim, H.; Mehra, A. A Hydrodynamical Atmosphere/Ocean Coupled Modeling System for Multiple Tropical Cyclones. Atmosphere 2020, 11, 869. [Google Scholar] [CrossRef]
- Chaignaud, M.; Cariou, S.; Poette, J.; Fages, M.; Despres, J.F.; Fanlo, J.L. A new method to evaluate odor annoyance potential. Chem. Eng. Trans. 2014, 40, 13–18. [Google Scholar] [CrossRef]
- Capelli, L.; Sironi, S.; Del Rosso, R.; Guillot, J.M. Measuring odours in the environment vs. dispersion modelling: A review. Atmos. Environ. 2013, 79, 731–743. [Google Scholar] [CrossRef]
- Conti, C.; Guarino, M.; Bacenetti, J. Measurements techniques and models to assess odor annoyance: A review. Environ. Int. 2020, 134, 105261. [Google Scholar] [CrossRef]
- Nicell, J.A. Assessment and regulation of odor impacts. Atmos. Environ. 2009, 43, 196–206. [Google Scholar] [CrossRef]
- Dugheri, S.; Cappelli, G.; Fanfani, N.; Ceccarelli, J.; Trevisani, L.; Sarti, M.; Squillaci, D.; Bucaletti, E.; Gori, R.; Mucci, N.; et al. Formaldehyde Analysis by Spme On-Fiber Derivatization: A Study of the Kinetic Models of Adsorption for Divinylbenzene. Quim. Nova. 2023, 46, 683–690. [Google Scholar] [CrossRef]
- Zou, J.; Sai, T.; Duan, S.; Winniford, B.; Zhang, D. Automated method for short-chain aldehydes emission measurement by dynamic solid-phase microextraction on-fiber derivatization GC-MSD coupled with a flow-cell. J. Chromatogr. A 2022, 1671, 462996. [Google Scholar] [CrossRef]
- Tumbiolo, S.; Vincent, L.; Gal, J.F.; Maria, P.C. Thermogravimetric calibration of permeation tubes used for the preparation of gas standards for air pollution analysis. Analyst 2005, 130, 1369. [Google Scholar] [CrossRef] [PubMed]
- Desauziers, V. Traceability of pollutant measurements for ambient air monitoring. TrAC Trends Anal. Chem. 2004, 23, 252–260. [Google Scholar] [CrossRef]
- Huber, W. Basic calculations about the limit of detection and its optimal determination. Accred. Qual. Assur. 2003, 8, 213–217. [Google Scholar] [CrossRef]
- Kováts, E. Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices al-iphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv. Chim. Acta 1958, 41, 1915–1932. [Google Scholar] [CrossRef]
- van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Ji, S.; Gu, S.; Wang, X.; Wu, N. Comparison of olfactometrically detected compounds and aroma properties of four different edible parts of Chinese mitten crab. Fish Sci. 2015, 81, 1157–1167. [Google Scholar] [CrossRef]
- Wu, N.; Gu, S.; Tao, N.; Wang, X.; Ji, S. Characterization of Important Odorants in Steamed Male Chinese Mitten Crab (Eriocheir sinensis) using Gas Chromatography-Mass Spectrometry-Olfactometry. J. Food Sci. 2014, 79, C1250–C1259. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.L.; Vassilaros, D.L.; White, C.M. Retention indices for programmed-temperature capillary-column gas chromatography of polycyclic aromatic hydrocarbons. Anal Chem. 1979, 51, 768–773. [Google Scholar] [CrossRef]
- UNI CEI ENV 13005:2000; Guida All’espressione Dell’incertezza di Misura. Italian Electrotechnical Committee: Milano, Italy, 2000. Available online: https://store.uni.com/uni-cei-env-13005-2000 (accessed on 8 April 2025).
- Ellison, S.L.R. Sampling, Detection and Uncertainty in Environmental Analysis—Challenges and Solutions. In: International Conference EcoBalt 2023. Chem. Environ 2023, 92, 70. [Google Scholar] [CrossRef]
Compound Name/Formula | CAS n. | MW * [11,12,13] Da | BP [11,13,14] °C | Diffusion Coefficient 10−5 m2/s ** | VP [11,12,13] Pa | RVD *** [11] Air = 1 | Odor Character [11,12,13,14] | Odor Threshold [14] µg/m3 |
---|---|---|---|---|---|---|---|---|
Butanal/C4H8O | 123-72-8 | 72 | 75 | 1.18 | 12,200 | 2.5 | Pungent | 1.7 |
2-Butanone/C4H8O | 78-93-3 | 72 | 79 | 1.18 | 10,500 | 2.41 | Mint | 1300 |
Pentanal/C5H10O | 110-62-3 | 86 | 103 | 1.08 | 3400 | 3.0 | Acrid, pungent | 1.4 |
Hexanal/C6H12O | 66-25-1 | 100 | 129 | 1.0 | 1100 | - | Strong, grass | 1.15 |
2-Hexanone/C6H12O | 591-78-6 | 100 | 126 | 1.0 | 360 | 3.5 | Sharp | 9.8 |
Heptanal/C7H14O | 111-71-7 | 114 | 153 | 0.94 | 3500 | - | Pungent, fatty | 0.84 |
3-Heptanone/C7H14O | 106-35-4 | 114 | 148 | 0.94 | 200 | 3.9 | Powerful, fruity | 0.47 |
Octanal/C8H16O | 124-13-0 | 128 | 171 | 0.88 | 206 | - | Pungent, citrus-like | 0.05 |
Compound Name/Formula. | MW Da | EI/MS Ions | LTPRI a |
---|---|---|---|
Butanal O-(pentafluorobenzyl)oxime | 267 | 181 (100), 239 (24) | 1285 |
2-Butanone O-(pentafluorobenzyl)oxime | 267 | 181 (100), 250 (41) | 1248 |
Pentanal O-(pentafluorobenzyl)oxime | 281 | 181 (100), 239 (35) | 1360 |
Hexanal O-(pentafluorobenzyl)oxime | 295 | 181 (100), 239 (31) | 1459 |
2-Hexanone O-(pentafluorobenzyl)oxime | 295 | 181 (100), 57 (22) | 1391 |
Heptanal O-(pentafluorobenzyl)oxime | 309 | 181 (100), 239 (34) | 1555 |
3-Heptanone O-(pentafluorobenzyl)oxime | 309 | 181 (100), 253 (39) | 1466 |
Octanal O-(pentafluorobenzyl)oxime | 323 | 181 (100), 239 (36) | 1650 |
Compound | LOD µg/m3 | LOQ µg/m3 | LOD µg/m3 | LOQ µg/m3 | Recovery % | RSD % | Accuracy % | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intra-Day | Intra-Day | Inter-Day | Inter-Day | |||||||||||
(a) | (b) | (a) | (b) | (a) | (b) | (a) | (b) | (a) | (b) | (a) | (b) | (a) | (b) | |
Butanal | 0.051 | 0.021 | 0.153 | 0.063 | 0.049 | 0.014 | 0.147 | 0.042 | 91 | 97 | 4.5 | 3.8 | 98 | 94 |
2-Butanone | 0.061 | 0.031 | 0.183 | 0.093 | 0.068 | 0.037 | 0.204 | 0.111 | 89 | 87 | 3.6 | 3.1 | 94 | 92 |
Pentanal | 0.059 | 0.024 | 0.177 | 0.072 | 0.063 | 0.026 | 0.189 | 0.078 | 87 | 86 | 3.2 | 2.6 | 90 | 97 |
Hexanal | 0.062 | 0.021 | 0.186 | 0.063 | 0.051 | 0.034 | 0.153 | 0.102 | 88 | 97 | 2.5 | 2.0 | 92 | 89 |
2-Hexanone | 0.085 | 0.025 | 0.255 | 0.075 | 0.070 | 0.019 | 0.210 | 0.057 | 93 | 96 | 2.2 | 2.4 | 89 | 96 |
Heptanal | 0.079 | 0.027 | 0.237 | 0.081 | 0.061 | 0.035 | 0.183 | 0.105 | 94 | 94 | 4.1 | 2.9 | 88 | 99 |
3-Heptanone | 0.127 | 0.041 | 0.381 | 0.123 | 0.119 | 0.027 | 0.357 | 0.081 | 90 | 99 | 3.6 | 3.0 | 94 | 91 |
Octanal | 0.082 | 0.026 | 0.246 | 0.072 | 0.093 | 0.033 | 0.279 | 0.099 | 89 | 98 | 2.8 | 2.4 | 93 | 87 |
Compound | UCald (102) | veff | Kp = 0.95 | Ue% |
---|---|---|---|---|
Butanal | 17.8 | >10 | 2 | 35.6 |
2-Butanone | 21.2 | 42.4 | ||
Pentanal | 16.5 | 33.0 | ||
Hexanal | 14.3 | 28.6 | ||
2-Hexanone | 20.1 | 40.2 | ||
Heptanal | 19.3 | 38.6 | ||
3-Heptanone | 17.9 | 35.8 | ||
Octanal | 22.9 | 45.8 |
Substance | Number of Samples | Min | Max |
---|---|---|---|
µg/m3 | |||
Butanal | 30 | <LOD (0.021) | 0.083 |
2-Butanone | <LOD (0.031) | 0.118 | |
Pentanal | <LOD (0.024) | 0.082 | |
Hexanal | <LOD (0.021) | 0.087 | |
2-Hexanone | <LOD (0.025) | 0.093 | |
Heptanal | <LOD (0.027) | 0.106 | |
3-Heptanone | <LOD (0.041) | <0.041 | |
Octanal | <LOD (0.026) | 0.083 |
Butanal | Butan-2-One | Pentanal | Hexanal | |
---|---|---|---|---|
µg/m3 | ||||
Average | 227.62 | 117.39 | 129.97 | 153.01 |
Dev. Std. | 113.91 | 58.58 | 69.28 | 85.23 |
Median | 224.28 | 115.91 | 123.99 | 140.73 |
Hexan-2-One | Heptanal | Heptan-3-One | Octanal | |
µg/m3 | ||||
Average | 62.98 | 105.7 | 52.79 | 46.27 |
Dev. Std. | 41.94 | 74.01 | 57.15 | 34.88 |
Median | 45.08 | 73.04 | 19.46 | 42.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dugheri, S.; Cappelli, G.; Rapi, I.; Gori, R.; Venturini, L.; Fanfani, N.; Vita, C.; Cioni, F.; Guerriero, E.; Cipriano, D.; et al. Rapid On-Field Monitoring for Odor-Active Homologous Aliphatic Aldehydes and Ketones from Hot-Mix Asphalt Emission via Dynamic-SPME Air Sampling with Online Gas Chromatographic Analysis. Molecules 2025, 30, 3545. https://doi.org/10.3390/molecules30173545
Dugheri S, Cappelli G, Rapi I, Gori R, Venturini L, Fanfani N, Vita C, Cioni F, Guerriero E, Cipriano D, et al. Rapid On-Field Monitoring for Odor-Active Homologous Aliphatic Aldehydes and Ketones from Hot-Mix Asphalt Emission via Dynamic-SPME Air Sampling with Online Gas Chromatographic Analysis. Molecules. 2025; 30(17):3545. https://doi.org/10.3390/molecules30173545
Chicago/Turabian StyleDugheri, Stefano, Giovanni Cappelli, Ilaria Rapi, Riccardo Gori, Lorenzo Venturini, Niccolò Fanfani, Chiara Vita, Fabio Cioni, Ettore Guerriero, Domenico Cipriano, and et al. 2025. "Rapid On-Field Monitoring for Odor-Active Homologous Aliphatic Aldehydes and Ketones from Hot-Mix Asphalt Emission via Dynamic-SPME Air Sampling with Online Gas Chromatographic Analysis" Molecules 30, no. 17: 3545. https://doi.org/10.3390/molecules30173545
APA StyleDugheri, S., Cappelli, G., Rapi, I., Gori, R., Venturini, L., Fanfani, N., Vita, C., Cioni, F., Guerriero, E., Cipriano, D., Bartolucci, G. L., Di Giampaolo, L., Sajewicz, M., Traversini, V., Mucci, N., & Baldassarre, A. (2025). Rapid On-Field Monitoring for Odor-Active Homologous Aliphatic Aldehydes and Ketones from Hot-Mix Asphalt Emission via Dynamic-SPME Air Sampling with Online Gas Chromatographic Analysis. Molecules, 30(17), 3545. https://doi.org/10.3390/molecules30173545