Activated Biochar from Sewage Sludge: A Sustainable Solution for Effective Removal of Emerging Water Contaminants
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of the Biochar Samples
2.2. Adsorption Kinetics Study
2.3. Adsorption Isotherm Study
2.4. Thermodynamic Adsorption Parameters
2.5. Effect of Various Parameters
2.5.1. Effect of Dosage
2.5.2. Effect of Temperature
2.5.3. Effect of Co-Presence of the Contaminants
2.6. Application in Real Samples
2.7. Reusability
2.8. Proposed Mechanism of Adsorption
2.9. Comparison with Other Carbon-Based Adsorbents
3. Materials and Methods
3.1. Reagents
3.2. Biochar Preparation, Treatment, and Characterization
3.3. Biochar Characterization
3.4. Characterization of Natural Water Sample
3.5. Batch Adsorption Experiments
3.6. Adsorption Kinetics Study
3.7. Adsorption Isotherm Study
3.8. Thermodynamic Study
3.9. Effect of Different Parameters
3.10. Matrix Effect
3.11. Determination and Quantification of the Contaminants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WWTPs | Wastewater Treatment Plants |
BC | Sewage Sludge-Derived Biochar |
AlBC | Alkaline-Treated Sewage Sludge-Derived Biochar |
CAF | Caffeine |
CBZ | Carbamazepine |
EE2 | 17α-ethinyl estradiol |
PhACs | Pharmaceutical compounds |
EDCs | Endocrine-disrupting chemicals |
BET | Brunauer–Emmett–Teller |
SEM | Scanning electron microscopy |
ATR-FTIR | Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy |
LDE | Laser Doppler Electrophoresis |
TOC | Total Organic Carbon |
IC | Inorganic Carbon |
UV-Vis | Ultraviolet–Visible |
NOM | Natural Organic Matter |
HPLC-DAD | High-Performance Liquid Chromatography with a Diode Array Detector |
ACN | Acetonitrile |
PFO | Pseudo-First Order |
PSO | Pseudo-Second Order |
DI water | Deionized water |
References
- Eurostat 2022, Sewage Sludge Production and Disposal. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_ww_spd/default/table?lang=en (accessed on 3 December 2024).
- Bondarczuk, K.; Markowicz, A.; Piotrowska-Seget, Z. The Urgent Need for Risk Assessment on the Antibiotic Resistance Spread via Sewage Sludge Land Application. Environ. Int. 2016, 87, 49–55. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, Å.; Singh, B.R. Sewage Sludge Disposal Strategies for Sustainable Development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef]
- Regkouzas, P.; Diamadopoulos, E. Adsorption of Selected Organic Micro-Pollutants on Sewage Sludge Biochar. Chemosphere 2019, 224, 840–851. [Google Scholar] [CrossRef]
- Chaudhary, H.; Dinakaran, J.; Rao, K.S. Comparative Analysis of Biochar Production Methods and Their Impacts on Biochar Physico-Chemical Properties and Adsorption of Heavy Metals. J. Environ. Chem. Eng. 2024, 12, 113003. [Google Scholar] [CrossRef]
- Gopinath, A.; Divyapriya, G.; Srivastava, V.; Laiju, A.R.; Nidheesh, P.V.; Kumar, M.S. Conversion of Sewage Sludge into Biochar: A Potential Resource in Water and Wastewater Treatment. Environ. Res. 2021, 194, 110656. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, Z.-F.; Pan, X.-W.; Tan, J.-Y.; Yang, S.-S.; Wu, J.-T.; Chen, C.; Yuan, Y.; Ren, N.-Q. Sewage Sludge Derived Biochar for Environmental Improvement: Advances, Challenges, and Solutions. Water Res. X 2023, 18, 100167. [Google Scholar] [CrossRef]
- Pipíška, M.; Krajčíková, E.K.; Hvostik, M.; Frišták, V.; Ďuriška, L.; Černičková, I.; Kaňuchová, M.; Conte, P.; Soja, G. Biochar from Wood Chips and Corn Cobs for Adsorption of Thioflavin T and Erythrosine B. Materials 2022, 15, 1492. [Google Scholar] [CrossRef]
- Zafeer, M.K.; Menezes, R.A.; Venkatachalam, H.; Bhat, K.S. Sugarcane Bagasse-Based Biochar and Its Potential Applications: A Review. Emergent Mater. 2024, 7, 133–161. [Google Scholar] [CrossRef]
- Torres Castillo, N.E.; Ochoa Sierra, J.S.; Oyervides-Muñoz, M.A.; Sosa-Hernández, J.E.; Iqbal, H.M.N.; Parra-Saldívar, R.; Melchor-Martínez, E.M. Exploring the Potential of Coffee Husk as Caffeine Bio-Adsorbent—A Mini-Review. Case Stud. Chem. Environ. Eng. 2021, 3, 100070. [Google Scholar] [CrossRef]
- Agrafioti, E.; Kalderis, D.; Diamadopoulos, E. Arsenic and Chromium Removal from Water Using Biochars Derived from Rice Husk, Organic Solid Wastes and Sewage Sludge. J. Environ. Manag. 2014, 133, 309–314. [Google Scholar] [CrossRef]
- Krounbi, L.; Enders, A.; Gaunt, J.; Ball, M.; Lehmann, J. Plant Uptake of Nitrogen Adsorbed to Biochars Made from Dairy Manure. Sci. Rep. 2021, 11, 15001. [Google Scholar] [CrossRef]
- Zheng, W.; Guo, M.; Chow, T.; Bennett, D.N.; Rajagopalan, N. Sorption Properties of Greenwaste Biochar for Two Triazine Pesticides. J. Hazard. Mater. 2010, 181, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhao, L.; Luo, J.; Gong, H.; Zhu, N. A Sustainable Reuse Strategy of Converting Waste Activated Sludge into Biochar for Contaminants Removal from Water: Modifications, Applications and Perspectives. J. Hazard. Mater. 2022, 438, 129437. [Google Scholar] [CrossRef]
- Jung, C.; Park, J.; Lim, K.H.; Park, S.; Heo, J.; Her, N.; Oh, J.; Yun, S.; Yoon, Y. Adsorption of Selected Endocrine Disrupting Compounds and Pharmaceuticals on Activated Biochars. J. Hazard. Mater. 2013, 263, 702–710. [Google Scholar] [CrossRef]
- Liu, Z.; Singer, S.; Tong, Y.; Kimbell, L.; Anderson, E.; Hughes, M.; Zitomer, D.; McNamara, P. Characteristics and Applications of Biochars Derived from Wastewater Solids. Renew. Sustain. Energy Rev. 2018, 90, 650–664. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, Modification and Environmental Application of Biochar: A Review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Cui, J.; Wei, L.; Ning, C.; Zhang, F.; Cui, J.; Xiangli, P. Highly-Efficient Persulfate Activation by Nitrogen-Doped Biochar Derived from Dewatered Sewage Sludge for 2,4-Dichlorophenol Removal: Process and Mechanism. J. Environ. Chem. Eng. 2024, 12, 112561. [Google Scholar] [CrossRef]
- Chen, L.; Yang, H.; Hong, R.; Xie, X.; Zuo, R.; Zhang, X.; Chen, S.; Xu, D.; Zhang, Q. Tetracycline Adsorption on Sludge-Bamboo Biochar Prepared by Gradient Modification and Co-Pyrolysis: Performance Evaluation and Mechanism Insight. J. Environ. Chem. Eng. 2024, 12, 114121. [Google Scholar] [CrossRef]
- Wang, J.; Liao, Z.; Ifthikar, J.; Shi, L.; Chen, Z.; Chen, Z. One-Step Preparation and Application of Magnetic Sludge-Derived Biochar on Acid Orange 7 Removal via Both Adsorption and Persulfate Based Oxidation. RSC Adv. 2017, 7, 18696–18706. [Google Scholar] [CrossRef]
- Pandey, D.; Daverey, A.; Arunachalam, K. Biochar: Production, Properties and Emerging Role as a Support for Enzyme Immobilization. J. Clean. Prod. 2020, 255, 120267. [Google Scholar] [CrossRef]
- Shahib, I.I.; Ifthikar, J.; Oyekunle, D.T.; Elkhlifi, Z.; Jawad, A.; Wang, J.; Lei, W.; Chen, Z. Influences of Chemical Treatment on Sludge Derived Biochar; Physicochemical Properties and Potential Sorption Mechanisms of Lead (II) and Methylene Blue. J. Environ. Chem. Eng. 2022, 10, 107725. [Google Scholar] [CrossRef]
- Tran, N.H.; Reinhard, M.; Gin, K.Y.-H. Occurrence and Fate of Emerging Contaminants in Municipal Wastewater Treatment Plants from Different Geographical Regions-a Review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef] [PubMed]
- Quadra, G.R.; Paranaíba, J.R.; Vilas-Boas, J.; Roland, F.; Amado, A.M.; Barros, N.; Dias, R.J.P.; Cardoso, S.J. A Global Trend of Caffeine Consumption over Time and Related-Environmental Impacts. Environ. Pollut. 2020, 256, 113343. [Google Scholar] [CrossRef] [PubMed]
- Wikoff, D.; Welsh, B.T.; Henderson, R.; Brorby, G.P.; Britt, J.; Myers, E.; Goldberger, J.; Lieberman, H.R.; O’Brien, C.; Peck, J.; et al. Systematic Review of the Potential Adverse Effects of Caffeine Consumption in Healthy Adults, Pregnant Women, Adolescents, and Children. Food Chem. Toxicol. 2017, 109, 585–648. [Google Scholar] [CrossRef]
- Santos-Silva, T.G.; Montagner, C.C.; Martinez, C.B.R. Evaluation of Caffeine Effects on Biochemical and Genotoxic Biomarkers in the Neotropical Freshwater Teleost Prochilodus lineatus. Environ. Toxicol. Pharmacol. 2018, 58, 237–242. [Google Scholar] [CrossRef]
- Bogusz, A.; Tomczyk, B.; Trzcińska, M.; Mirosław, B.; Gworek, B. Effect of Zeolites on the Reduction of the Ecotoxicity of Carbamazepine in the Environment. Ecotoxicol. Environ. Saf. 2024, 277, 116320. [Google Scholar] [CrossRef]
- Almeida, Â.; Soares, A.M.V.M.; Esteves, V.I.; Freitas, R. Occurrence of the Antiepileptic Carbamazepine in Water and Bivalves from Marine Environments: A Review. Environ. Toxicol. Pharmacol. 2021, 86, 103661. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, J.; Liu, Y.; He, Y.; Ren, J.; Guo, J. Adsorption of Endocrine Disrupting Ethylparaben from Aqueous Solution by Chemically Activated Biochar Developed from Oil Palm Fibre. Sep. Sci. Technol. 2019, 54, 683–695. [Google Scholar] [CrossRef]
- Ewis, D.; Ba-Abbad, M.M.; Benamor, A.; El-Naas, M.H. Adsorption of Organic Water Pollutants by Clays and Clay Minerals Composites: A Comprehensive Review. Appl. Clay Sci. 2022, 229, 106686. [Google Scholar] [CrossRef]
- Ibrahim, A.O.; Adegoke, K.A.; Adegoke, R.O.; AbdulWahab, Y.A.; Oyelami, V.B.; Adesina, M.O. Adsorptive Removal of Different Pollutants Using Metal-Organic Framework Adsorbents. J. Mol. Liq. 2021, 333, 115593. [Google Scholar] [CrossRef]
- Thompson, K.A.; Shimabuku, K.K.; Kearns, J.P.; Knappe, D.R.U.; Summers, R.S.; Cook, S.M. Environmental Comparison of Biochar and Activated Carbon for Tertiary Wastewater Treatment. Environ. Sci. Technol. 2016, 50, 11253–11262. [Google Scholar] [CrossRef]
- Li, B.; Yang, L.; Wang, C.-Q.; Zhang, Q.-P.; Liu, Q.-C.; Li, Y.-D.; Xiao, R. Adsorption of Cd(II) from Aqueous Solutions by Rape Straw Biochar Derived from Different Modification Processes. Chemosphere 2017, 175, 332–340. [Google Scholar] [CrossRef]
- Yin, Q.; Liu, M.; Ren, H. Biochar Produced from the Co-Pyrolysis of Sewage Sludge and Walnut Shell for Ammonium and Phosphate Adsorption from Water. J. Environ. Manag. 2019, 249, 109410. [Google Scholar] [CrossRef]
- Yuan, H.; Lu, T.; Huang, H.; Zhao, D.; Kobayashi, N.; Chen, Y. Influence of Pyrolysis Temperature on Physical and Chemical Properties of Biochar Made from Sewage Sludge. J. Anal. Appl. Pyrolysis 2015, 112, 284–289. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P.F. Influence of Pyrolysis Temperature on Production and Nutrient Properties of Wastewater Sludge Biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef]
- Jin, J.; Li, Y.; Zhang, J.; Wu, S.; Cao, Y.; Liang, P.; Zhang, J.; Wong, M.H.; Wang, M.; Shan, S.; et al. Influence of Pyrolysis Temperature on Properties and Environmental Safety of Heavy Metals in Biochars Derived from Municipal Sewage Sludge. J. Hazard. Mater. 2016, 320, 417–426. [Google Scholar] [CrossRef]
- Raj, A.; Yadav, A.; Rawat, A.P.; Singh, A.K.; Kumar, S.; Pandey, A.K.; Sirohi, R.; Pandey, A. Kinetic and Thermodynamic Investigations of Sewage Sludge Biochar in Removal of Remazol Brilliant Blue R Dye from Aqueous Solution and Evaluation of Residual Dyes Cytotoxicity. Environ. Technol. Innov. 2021, 23, 101556. [Google Scholar] [CrossRef]
- Zhang, Y.; Maierdan, Y.; Guo, T.; Chen, B.; Fang, S.; Zhao, L. Biochar as Carbon Sequestration Material Combines with Sewage Sludge Incineration Ash to Prepare Lightweight Concrete. Constr. Build. Mater. 2022, 343, 128116. [Google Scholar] [CrossRef]
- Kalderis, D.; Kayan, B.; Akay, S.; Kulaksız, E.; Gözmen, B. Adsorption of 2,4-Dichlorophenol on Paper Sludge/Wheat Husk Biochar: Process Optimization and Comparison with Biochars Prepared from Wood Chips, Sewage Sludge and Hog Fuel/Demolition Waste. J. Environ. Chem. Eng. 2017, 5, 2222–2231. [Google Scholar] [CrossRef]
- Feng, Z.; Zhu, L. Sorption of Phenanthrene to Biochar Modified by Base. Front. Environ. Sci. Eng. 2018, 12, 1. [Google Scholar] [CrossRef]
- Tang, G.; Mo, H.; Gao, L.; Chen, Y.; Zhou, X. Adsorption of Crystal Violet from Wastewater Using Alkaline-Modified Pomelo Peel-Derived Biochar. J. Water Process Eng. 2024, 68, 106334. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Z.; Liang, Y.; Wu, T.; Chen, Y.; Yan, J.; Zhu, Y.; Ding, D. Adsorptive Decontamination of Antibiotics from Livestock Wastewater by Using Alkaline-Modified Biochar. Environ. Res. 2023, 226, 115676. [Google Scholar] [CrossRef]
- Shin, J.; Kwak, J.; Lee, Y.-G.; Kim, S.; Son, C.; Cho, K.H.; Lee, S.-H.; Park, Y.; Ren, X.; Chon, K. Changes in Adsorption Mechanisms of Radioactive Barium, Cobalt, and Strontium Ions Using Spent Coffee Waste Biochars via Alkaline Chemical Activation: Enrichment Effects of O-Containing Functional Groups. Environ. Res. 2021, 199, 111346. [Google Scholar] [CrossRef]
- Yan, Q.; Nosratabad, N.A.; Du, X.; Ketelboeter, T.; Wan, C.; Cai, Z. Highly Effective Lead Removal by Novel Alkaline Biochar Prepared by Pyrolysis of Woody Biomass Impregnated with Low-Level NaOH. J. Hazard. Mater. Adv. 2025, 18, 100657. [Google Scholar] [CrossRef]
- Liu, C.; Wang, W.; Wu, R.; Liu, Y.; Lin, X.; Kan, H.; Zheng, Y. Preparation of Acid- and Alkali-Modified Biochar for Removal of Methylene Blue Pigment. ACS Omega 2020, 5, 30906–30922. [Google Scholar] [CrossRef]
- Yang, H.; Li, X.; Wang, Y.; Wang, J.; Yang, L.; Ma, Z.; Luo, J.; Cui, X.; Yan, B.; Chen, G. Effective Removal of Ammonium from Aqueous Solution by Ball-Milled Biochar Modified with NaOH. Processes 2023, 11, 1671. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Katsouromalli, A.; Pashalidis, I. Oxidized Biochar Obtained from Pine Needles as a Novel Adsorbent to Remove Caffeine from Aqueous Solutions. J. Mol. Liq. 2020, 304, 112661. [Google Scholar] [CrossRef]
- Dos Santos, D.F.; Moreira, W.M.; De Araújo, T.P.; Bernardo, M.M.S.; de Figueiredo Ligeiro da Fonseca, I.M.; Ostroski, I.C.; De Barros, M.A.S.D. Competitive Adsorption of Acetaminophen and Caffeine onto Activated Tingui Biochar: Characterization, Modeling, and Mechanisms. Environ. Sci. Pollut. Res. 2023, 31, 53611–53628. [Google Scholar] [CrossRef]
- Beltrame, K.K.; Cazetta, A.L.; De Souza, P.S.C.; Spessato, L.; Silva, T.L.; Almeida, V.C. Adsorption of Caffeine on Mesoporous Activated Carbon Fibers Prepared from Pineapple Plant Leaves. Ecotoxicol. Environ. Saf. 2018, 147, 64–71. [Google Scholar] [CrossRef]
- Hama Aziz, K.H.; Mustafa, F.S.; Hassan, M.A.; Omer, K.M.; Hama, S. Biochar as Green Adsorbents for Pharmaceutical Pollution in Aquatic Environments: A Review. Desalination 2024, 583, 117725. [Google Scholar] [CrossRef]
- Zhang, W.; Sheng, X.; Yan, J.; Wang, J.; Sun, J.; Zuo, Q.; Zhu, X.; Wang, M.; Gong, L. The Crucial Role of Different NaOH Activation Pathways on the Algae-Derived Biochar toward Carbamazepine Adsorption. Results Eng. 2023, 20, 101509. [Google Scholar] [CrossRef]
- Shin, J.; Lee, Y.-G.; Lee, S.-H.; Kim, S.; Ochir, D.; Park, Y.; Kim, J.; Chon, K. Single and Competitive Adsorptions of Micropollutants Using Pristine and Alkali-Modified Biochars from Spent Coffee Grounds. J. Hazard. Mater. 2020, 400, 123102. [Google Scholar] [CrossRef]
- Cuong Nguyen, X.; Thanh Huyen Nguyen, T.; Hong Chuong Nguyen, T.; Van Le, Q.; Yen Binh Vo, T.; Cuc Phuong Tran, T.; Duong La, D.; Kumar, G.; Khanh Nguyen, V.; Chang, S.W.; et al. Sustainable Carbonaceous Biochar Adsorbents Derived from Agro-Wastes and Invasive Plants for Cation Dye Adsorption from Water. Chemosphere 2021, 282, 131009. [Google Scholar] [CrossRef]
- Zanella, H.G.; Spessato, L.; Lopes, G.K.P.; Yokoyama, J.T.C.; Silva, M.C.; Souza, P.S.C.; Ronix, A.; Cazetta, A.L.; Almeida, V.C. Caffeine Adsorption on Activated Biochar Derived from Macrophytes (Eichornia crassipes). J. Mol. Liq. 2021, 340, 117206. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Johir, M.A.H.; Sornalingam, K. Sorptive Removal of Phenolic Endocrine Disruptors by Functionalized Biochar: Competitive Interaction Mechanism, Removal Efficacy and Application in Wastewater. Chem. Eng. J. 2018, 335, 801–811. [Google Scholar] [CrossRef]
- Oginni, O.; Singh, K. Effect of Carbonization Temperature on Fuel and Caffeine Adsorption Characteristics of White Pine and Norway Spruce Needle Derived Biochars. Ind. Crops Prod. 2021, 162, 113261. [Google Scholar] [CrossRef]
- Całus-Makowska, K.; Grosser, A.; Grobelak, A.; Białek, H.; Siedlecka, E. Kinetic Study of the Simultaneous Removal of Ibuprofen, Carbamazepine, Sulfamethoxazole, and Diclofenac from Water Using Biochar and Activated Carbon Adsorption, and TiO2 Photocatalysis. Desalination Water Treat. 2024, 320, 100817. [Google Scholar] [CrossRef]
- Décima, M.A.; Marzeddu, S.; Barchiesi, M.; Di Marcantonio, C.; Chiavola, A.; Boni, M.R. A Review on the Removal of Carbamazepine from Aqueous Solution by Using Activated Carbon and Biochar. Sustainability 2021, 13, 11760. [Google Scholar] [CrossRef]
- Quintero-Jaramillo, J.A.; Carrero-Mantilla, J.I.; Sanabria-González, N.R. A Review of Caffeine Adsorption Studies onto Various Types of Adsorbents. Sci. World J. 2021, 2021, 1–18. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, K.; Chen, B. Linking Hydrophobicity of Biochar to the Water Repellency and Water Holding Capacity of Biochar-Amended Soil. Environ. Pollut. 2019, 253, 779–789. [Google Scholar] [CrossRef]
- Lai, C.; He, H.; Xie, W.; Fan, S.; Huang, H.; Wang, Y.; Huang, B.; Pan, X. Adsorption and Photochemical Capacity on 17α-Ethinylestradiol by Char Produced in the Thermo Treatment Process of Plastic Waste. J. Hazard. Mater. 2022, 423, 127066. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Johir, M.A.H.; Sun, L.; Asadullah, M.; Belhaj, D. Sorption of Hydrophobic Organic Contaminants on Functionalized Biochar: Protagonist Role of π-π Electron-Donor-Acceptor Interactions and Hydrogen Bonds. J. Hazard. Mater. 2018, 360, 270–278. [Google Scholar] [CrossRef]
- Vieira, R.A.L.; Pickler, T.B.; Segato, T.C.M.; Jozala, A.F.; Grotto, D. Biochar from Fungiculture Waste for Adsorption of Endocrine Disruptors in Water. Sci. Rep. 2022, 12, 6507. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Kyzas, G.Z. Are the Thermodynamic Parameters Correctly Estimated in Liquid-Phase Adsorption Phenomena? J. Mol. Liq. 2016, 218, 174–185. [Google Scholar] [CrossRef]
- Melo, L.L.A.; Ide, A.H.; Duarte, J.L.S.; Zanta, C.L.P.S.; Oliveira, L.M.T.M.; Pimentel, W.R.O.; Meili, L. Caffeine Removal Using Elaeis Guineensis Activated Carbon: Adsorption and RSM Studies. Environ. Sci. Pollut. Res. 2020, 27, 27048–27060. [Google Scholar] [CrossRef]
- Zayyat, R.M.; Yahfoufi, R.; Al-Hindi, M.; Kordahi, M.A.; Ayoub, G.M.; Ahmad, M.N. Elucidating the Dynamics of Carbamazepine Uptake Using Date Pit-Derived Activated Carbon: A Comprehensive Kinetic and Thermodynamic Analysis. Heliyon 2024, 10, e39068. [Google Scholar] [CrossRef]
- Kumar, D.; Pandey, L.K.; Gaur, J.P. Metal Sorption by Algal Biomass: From Batch to Continuous System. Algal Res. 2016, 18, 95–109. [Google Scholar] [CrossRef]
- Fan, S.; Wang, Y.; Wang, Z.; Tang, J.; Tang, J.; Li, X. Removal of Methylene Blue from Aqueous Solution by Sewage Sludge-Derived Biochar: Adsorption Kinetics, Equilibrium, Thermodynamics and Mechanism. J. Environ. Chem. Eng. 2017, 5, 601–611. [Google Scholar] [CrossRef]
- Zeghioud, H.; Fryda, L.; Mahieu, A.; Visser, R.; Kane, A. Potential of Flax Shives and Beech Wood-Derived Biochar in Methylene Blue and Carbamazepine Removal from Aqueous Solutions. Materials 2022, 15, 2824. [Google Scholar] [CrossRef]
- Barquilha, C.E.R.; Braga, M.C.B. Adsorption of Organic and Inorganic Pollutants onto Biochars: Challenges, Operating Conditions, and Mechanisms. Bioresour. Technol. Rep. 2021, 15, 100728. [Google Scholar] [CrossRef]
- Ngeno, E.C.; Orata, F.; Baraza, L.D.; Shikuku, V.O.; Kimosop, S.J. Adsorption of Caffeine and Ciprofloxacin onto Pyrolitically Derived Water Hyacinth Biochar: Isothermal, Kinetic and Thermodynamic Studies. J. Chem. Chem. Eng. 2016, 10, 185–194. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Pashalidis, I. Τhe Application of Oxidized Carbon Derived from Luffa cylindrica for Caffeine Removal. Equilibrium, Thermodynamic, Kinetic and Mechanistic Analysis. J. Mol. Liq. 2019, 296, 112078. [Google Scholar] [CrossRef]
- Prokic, D.; Vukčević, M.; Mitrović, A.; Maletić, M.; Kalijadis, A.; Častvan, I.J.; Đurkić, T. Adsorption of Estrone, 17β-Estradiol, and 17α-Ethinylestradiol from Water onto Modified Multi-Walled Carbon Nanotubes, Carbon Cryogel, and Carbonized Hydrothermal Carbon. Environ. Sci. Pollut. Res. 2022, 29, 4431–4445. [Google Scholar] [CrossRef]
- Alsawy, T.; Rashad, E.; El-Qelish, M.; Mohammed, R.H. A Comprehensive Review on the Chemical Regeneration of Biochar Adsorbent for Sustainable Wastewater Treatment. npj Clean Water 2022, 5, 29. [Google Scholar] [CrossRef]
- Behera, A.K.; Shadangi, K.P.; Sarangi, P.K. Efficient Removal of Rhodamine B Dye Using Biochar as an Adsorbent: Study the Performance, Kinetics, Thermodynamics, Adsorption Isotherms and Its Reusability. Chemosphere 2024, 354, 141702. [Google Scholar] [CrossRef] [PubMed]
- Francoeur, M.; Ferino-Pérez, A.; Yacou, C.; Jean-Marius, C.; Emmanuel, E.; Chérémond, Y.; Jauregui-Haza, U.; Gaspard, S. Activated Carbon Synthetized from Sargassum (sp) for Adsorption of Caffeine: Understanding the Adsorption Mechanism Using Molecular Modeling. J. Environ. Chem. Eng. 2021, 9, 104795. [Google Scholar] [CrossRef]
- Zhong, H.; Zhu, G.; Wang, Z.; Liu, X.; Zhang, H.; Qiu, Y.; Yin, D.; Zhu, Z. Efficient Adsorption Removal of Carbamazepine from Water by Dual-Activator Modified Hydrochar. Sep. Purif. Technol. 2025, 353, 128287. [Google Scholar] [CrossRef]
- Regkouzas, P.; Sygellou, L.; Diamadopoulos, E. Emerging Micro-Contaminant Adsorption from Water and Wastewater Using CNT-Doped Biochar Nanocomposites from Rice Husks and Sewage Sludge. Biomass Convers. Biorefinery 2025, 1–14. [Google Scholar] [CrossRef]
- Keerthanan, S.; Rajapaksha, S.M.; Trakal, L.; Vithanage, M. Caffeine Removal by Gliricidia sepium Biochar: Influence of Pyrolysis Temperature and Physicochemical Properties. Environ. Res. 2020, 189, 109865. [Google Scholar] [CrossRef]
- Keerthanan, S.; Bhatnagar, A.; Mahatantila, K.; Jayasinghe, C.; Ok, Y.S.; Vithanage, M. Engineered Tea-Waste Biochar for the Removal of Caffeine, a Model Compound in Pharmaceuticals and Personal Care Products (PPCPs), from Aqueous Media. Environ. Technol. Innov. 2020, 19, 100847. [Google Scholar] [CrossRef]
- Yang, Y.; Wan, Y.; Chen, J.; Chen, H.; Li, Y.; Muñoz-Carpena, R.; Zheng, Y.; Huang, J.; Zhang, Y.; Gao, B. Ball-Milled Spent Coffee Ground Biochar Effectively Removes Caffeine from Water. Water 2025, 17, 881. [Google Scholar] [CrossRef]
- Delgado, N.; Capparelli, A.; Navarro, A.; Marino, D. Pharmaceutical Emerging Pollutants Removal from Water Using Powdered Activated Carbon: Study of Kinetics and Adsorption Equilibrium. J. Environ. Manag. 2019, 236, 301–308. [Google Scholar] [CrossRef]
- Agilandeswari, P.; Venkateshbabu, S.; Sarojini, G.; Rajasimman, M. Sustainable Development and Analysis of a Novel Bio-Derived (Biochar) Nanocomposite for the Remediation of Carbamazepine from Aqueous Solution. Chemosphere 2024, 347, 140696. [Google Scholar] [CrossRef]
- Barkahoum, B.; Saadia, G.; Asma, N. Removal of Active Pharmaceutical Compounds in Primalan and Diane Using Pumpkin Biochar: Synthesis, Characterization, and Adsorption Study. RSC Adv. 2025, 15, 3066–3079. [Google Scholar] [CrossRef]
- Prokić, D.; Vukčević, M.; Kalijadis, A.; Maletić, M.; Babić, B.; Đurkić, T. Removal of Estrone, 17β-Estradiol, and 17α-Ethinylestradiol from Water by Adsorption onto Chemically Modified Activated Carbon Cloths. Fibers Polym. 2020, 21, 2263–2274. [Google Scholar] [CrossRef]
- Guo, W.; Lu, S.; Shi, J.; Zhao, X. Effect of Corn Straw Biochar Application to Sediments on the Adsorption of 17α-Ethinyl Estradiol and Perfluorooctane Sulfonate at Sediment-Water Interface. Ecotoxicol. Environ. Saf. 2019, 174, 363–369. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Characteristics of Elovich Equation Used for the Analysis of Adsorption Kinetics in Dye-Chitosan Systems. Chem. Eng. J. 2009, 150, 366–373. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Freundlich, H. Über Die Adsorption in Lösungen. Z. Phys. Chem. 1907, 57, 385–470. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, X. The Unit Problem in the Thermodynamic Calculation of Adsorption Using the Langmuir Equation. Chem. Eng. Commun. 2014, 201, 1459–1467. [Google Scholar] [CrossRef]
Compound | Pseudo-First Order | Pseudo-Second Order | Elovich | |||||||
---|---|---|---|---|---|---|---|---|---|---|
qe,exp | qe,cal | K1 | R2 | qe,cal | K2 | R2 | α | β | R2 | |
mg g−1 | mg g−1 | min−1 | mg g−1 | g mg−1 min−1 | mg g−1 min−1 | g mg−1 | ||||
CAF | 4.58 | 4.58 | 0.021 | 0.694 | 4.61 | 0.0306 | 0.998 | 51.936 | 2.278 | 0.996 |
CBZ | 6.12 | 5.81 | 0.073 | 0.977 | 6.14 | 0.018 | 0.996 | 18.077 | 1.469 | 0.998 |
EE2 | 9.51 | 9.15 | 0.094 | 0.980 | 9.53 | 0.017 | 0.994 | 253.87 | 1.195 | 0.9987 |
Compound | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
qmax | KL | R2 | KF | 1/nF | R2 | |
K | mg g−1 | L mg−1 | mg g−1 (mg−1)n | |||
CAF | 17.05 | 0.071 | 0.995 | 1.771 | 0.591 | 0.988 |
CBZ | 16.59 | 0.161 | 0.973 | 3.485 | 0.455 | 0.951 |
EE2 | 23.61 | 1.196 | 0.685 | 13.251 | 0.262 | 0.930 |
Temperature | Caffeine | Carbamazepine | 17 α-Ethinylestradiol | ||||||
---|---|---|---|---|---|---|---|---|---|
ΔG0 | ΔH0 | ΔS0 | ΔG0 | ΔH0 | ΔS0 | ΔG0 | ΔH0 | ΔS0 | |
K | KJ mol−1 | KJ mol−1 | J (mol K)−1 | KJ mol−1 | KJ mol−1 | J (mol K)−1 | KJ mol−1 | KJ mol−1 | J (mol K)−1 |
283 | −33.07 | −15.99 | 60.32 | −34.24 | 2.30 | 131.48 | −46.78 | 3.09 | 176.25 |
298 | −33.97 | −36.21 | −49.43 | ||||||
313 | −34.88 | −38.19 | −52.07 |
Contaminant | Adsorbent Medium | Feedstock | Specific Surface Area | Conditions | Maximum Adsorption Capacity | Ref. |
---|---|---|---|---|---|---|
CAF | Biochar | Gliricidia sepium | 216.40 m2 g−1 | C0: 10–500 mg L−1 | 16.26 mg g−1 | [80] |
Cbiochar: 1 g L−1 | ||||||
t: 24 h | ||||||
Steam-activated biochar | Tea waste | 576.09 m2 g−1 | C0: 10–300 mg L−1 | 15.4 mg g−1 | [81] | |
Cbiochar: 1 g L−1 | ||||||
t: 24 h | ||||||
Ball-milled biochar | Spent coffee ground (SCG) | 10.114 m2 g−1 | C0: 5–200 mg L−1 | 82.65 mg g−1 | [82] | |
Cbiochar: 1 g L−1 | ||||||
t: 24 h | ||||||
AlBC | Sewage sludge | 86.41 m2 g−1 | C0: 7–28 mg L−1 | 17.05 mg g−1 | This study | |
Cbiochar: 1 g L−1 | ||||||
t: 6 h | ||||||
CBZ | Powdered activated Carbon | Vegetable | 1328 m2 g−1 | C0: 10–40 mg L−1 | 220 mg g−1 | [83] |
Cbiochar: 0.1 g L−1 | ||||||
t: 72 h | ||||||
K2CO3 phosphoric acid-modified hydrochar | Pine sawdust | 1265.08 m2 g−1 | C0: 30–70 mg L−1 | 376.1 mg g−1 | [78] | |
Cbiochar: 0.1 g L−1 | ||||||
t: 24 h | ||||||
Ppy-GO-Biochar Nanocomposite | Palm seeds | 8.5983 m2 g−1 | C0: - | 45 mg g−1 | [84] | |
Cbiochar: 1.4 g L−1 | ||||||
t: 5.5 h | ||||||
AlBC | Sewage sludge | 86.41 m2 g−1 | C0: 7–28 mg L−1 | 16.59 mg g−1 | This study | |
Cbiochar: 1 g L−1 | ||||||
t: 6 h | ||||||
EE2 | Biochar | Pumpkin | 8.69 m2 g−1 | C0: 2–20 mg L−1 | 66.26 mg g−1 | [85] |
Cbiochar: 0.8 g L−1 | ||||||
t: 2 h | ||||||
Modified activated carbon cloths | Viscose rayon cloth | 820 m2 g−1 | C0: 2–12 mg L−1 | 11.11 mg g−1 | [86] | |
Cbiochar: 0.8 g L−1 | ||||||
t: 24 h | ||||||
Biochar | Corn straw | 298 m2 g−1 | C0: 0.2–4 mg L−1 | 1696 µg g−1 | [87] | |
Cbiochar: 1 g L−1 | ||||||
t: 48 h | ||||||
AlBC | Sewage sludge | 86.41 m2 g−1 | C0: 7–28 mg L−1 | 23.61 mg g−1 | This study | |
Cbiochar: 1 g L−1 | ||||||
t: 6 h |
Compound | Structure | Molecular Formula | Molecular Mass | pKa | LogKow | Solubility | |
---|---|---|---|---|---|---|---|
in H2O | |||||||
g mol−1 | 1 | 2 | g L−1 | ||||
Caffeine (CAF) | C8H10N4O2 | 194.2 | 0.7 | 14 | −0.091 | 20 | |
Carbamazepine (CBZ) | C15H12N2O | 236.3 | 1 | 13.9 | 2.45 | 0.152 | |
17 α- ethinylestradiol (EE2) | C20H24O2 | 296.4 | 10.4 | - | 3.67 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastasiou, M.; Sakkas, V.; Sleiman, M. Activated Biochar from Sewage Sludge: A Sustainable Solution for Effective Removal of Emerging Water Contaminants. Molecules 2025, 30, 3514. https://doi.org/10.3390/molecules30173514
Anastasiou M, Sakkas V, Sleiman M. Activated Biochar from Sewage Sludge: A Sustainable Solution for Effective Removal of Emerging Water Contaminants. Molecules. 2025; 30(17):3514. https://doi.org/10.3390/molecules30173514
Chicago/Turabian StyleAnastasiou, Marina, Vasilios Sakkas, and Mohamad Sleiman. 2025. "Activated Biochar from Sewage Sludge: A Sustainable Solution for Effective Removal of Emerging Water Contaminants" Molecules 30, no. 17: 3514. https://doi.org/10.3390/molecules30173514
APA StyleAnastasiou, M., Sakkas, V., & Sleiman, M. (2025). Activated Biochar from Sewage Sludge: A Sustainable Solution for Effective Removal of Emerging Water Contaminants. Molecules, 30(17), 3514. https://doi.org/10.3390/molecules30173514