Biologics as Therapeutical Agents Under Perspective Clinical Studies for Alzheimer’s Disease
Abstract
1. Introduction
2. Pathogenic Mechanisms and the Rationale for Biologic Therapies in AD
2.1. AD Pathogenesis: Current Hypotheses
2.1.1. Aβ Plaques and the Amyloid Cascade Hypothesis
2.1.2. Neurofibrillary Tangles and Tau Pathology
2.1.3. Beyond Amyloid and Tau: Alternative Mechanistic Hypotheses in AD
Neuroinflammation and Microglia Activation
Insulin Resistance and Brain Glucose Hypometabolism Hypothesis
Lipid Metabolism and ApoE Pathway Dysfunction Hypothesis
BBB Dysfunction Hypothesis
- Enhancing efflux transporter function (e.g., LRP1 upregulation),
- Inhibiting RAGE-mediated Aβ influx,
- Modulating endothelial inflammation (e.g., via anti-VCAM1 agents),
- Promoting pericyte survival and vascular stability.
Mitochondrial Dysfunction and Oxidative Stress Hypothesis
- Reduced activity of key oxidative phosphorylation (OXPHOS) enzymes (e.g., cytochrome c oxidase, complex I),
- Mitochondrial DNA (mtDNA) mutations and deletions,
- Abnormal mitochondrial morphology and dynamics (fission/fusion imbalance),
- Disrupted transport along axons and dendrites.
- Antioxidants (e.g., vitamin E, coenzyme Q10, MitoQ),
- Mitochondria-targeted peptides (e.g., SS-31/Elamipretide),
- NAD+ precursors (e.g., nicotinamide riboside) to support mitochondrial biogenesis,
- Agents that enhance mitophagy and mitochondrial dynamics (e.g., urolithin A).
Gut-Brain Axis Hypothesis
2.2. Genetic Risk Factors in AD
2.2.1. APP
2.2.2. PSEN1/PSEN2
2.2.3. ApoE
2.2.4. TREM2
2.3. Biologics as Therapeutics Agents
2.3.1. Overview and Classification of Biologic Therapeutics
2.3.2. Advantages over Traditional Small-Molecule Drugs
2.3.3. Mechanistic Compatibility with AD Pathology
3. Biologic Therapeutics in Clinical Trials for AD
3.1. Passive Immunotherapy: mAbs Against Aβ and Tau
3.1.1. Anti-Aβ mAbs
3.1.2. Anti-Tau mAbs
3.2. Active Immunotherapy: Vaccines Targeting Aβ and Tau
3.3. RNA Therapeutics and Gene-Modifying Approaches: Redefining Targets at the Transcript Level
3.4. Microbiota-Based Biologics and Gut-Brain Axis Interventions
3.5. Failure and Lessons Learned from Biologic Trials
4. Future Perspectives and Challenges
4.1. Rethinking Therapeutic Targets Beyond Amyloid and Tau
4.2. Overcoming Delivery Barriers to the Brain
4.3. Designing Trials for Prevention and Precision
4.4. Ethical, Regulatory, and Access Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kamatham, P.T.; Shukla, R.; Khatri, D.K.; Vora, L.K. Pathogenesis, diagnostics, and therapeutics for Alzheimer’s disease: Breaking the memory barrier. Ageing Res. Rev. 2024, 101, 102481. [Google Scholar] [CrossRef]
- Twiss, E.; McPherson, C.; Weaver, D.F. Global Diseases Deserve Global Solutions: Alzheimer’s Disease. Neurol. Int. 2025, 17, 92. [Google Scholar] [CrossRef]
- 2024 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2024, 20, 3708–3821. [CrossRef]
- Gulisano, W.; Maugeri, D.; Baltrons, M.A.; Fà, M.; Amato, A.; Palmeri, A.; D’Adamio, L.; Grassi, C.; Devanand, D.P.; Honig, L.S.; et al. Role of Amyloid-β and Tau Proteins in Alzheimer’s Disease: Confuting the Amyloid Cascade. J. Alzheimer’s Dis. 2018, 64, S611–S631. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, W.; Zhao, M.; Ma, L.; Jiang, X.; Pei, H.; Cao, Y.; Li, H. Interaction between Aβ and Tau in the Pathogenesis of Alzheimer’s Disease. Int. J. Biol. Sci. 2021, 17, 2181–2192. [Google Scholar] [CrossRef] [PubMed]
- Jurcău, M.C.; Andronie-Cioara, F.L.; Jurcău, A.; Marcu, F.; Ţiț, D.M.; Pașcalău, N.; Nistor-Cseppentö, D.C. The Link between Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation in the Pathophysiology of Alzheimer’s Disease: Therapeutic Implications and Future Perspectives. Antioxidants 2022, 11, 2167. [Google Scholar] [CrossRef]
- Tönnies, E.; Trushina, E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 57, 1105–1121. [Google Scholar] [CrossRef]
- Ashleigh, T.; Swerdlow, R.H.; Beal, M.F. The role of mitochondrial dysfunction in Alzheimer’s disease pathogenesis. Alzheimer’s Dement. 2023, 19, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xiao, D.; Mao, Q.; Xia, H. Role of neuroinflammation in neurodegeneration development. Signal Transduct. Target. Ther. 2023, 8, 267. [Google Scholar] [CrossRef]
- Subramanian, J.; Savage, J.C.; Tremblay, M. Synaptic Loss in Alzheimer’s Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models. Front. Cell. Neurosci. 2020, 14, 592607. [Google Scholar] [CrossRef] [PubMed]
- Moya-Alvarado, G.; Gershoni-Emek, N.; Perlson, E.; Bronfman, F.C. Neurodegeneration and Alzheimer’s disease (AD). What Can Proteomics Tell Us About the Alzheimer’s Brain? Mol. Cell. Proteom. 2016, 15, 409–425. [Google Scholar] [CrossRef] [PubMed]
- Maruszak, A.; Silajdžić, E.; Lee, H.; Murphy, T.; Liu, B.; Shi, L.; de Lucia, C.; Douiri, A.; Salta, E.; Nevado, A.J.; et al. Predicting progression to Alzheimer’s disease with human hippocampal progenitors exposed to serum. Brain 2023, 146, 2045–2058. [Google Scholar] [CrossRef]
- Di Battista, A.M.; Heinsinger, N.M.; Rebeck, G.W. Alzheimer’s Disease Genetic Risk Factor APOE-ε4 Also Affects Normal Brain Function. Curr. Alzheimer Res. 2016, 13, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.C.; Liu, C.C.; Kanekiyo, T.; Xu, H.; Bu, G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat. Rev. Neurol. 2013, 9, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Raulin, A.C.; Doss, S.V.; Trottier, Z.A.; Ikezu, T.C.; Bu, G.; Liu, C.C. ApoE in Alzheimer’s disease: Pathophysiology and therapeutic strategies. Mol. Neurodegener. 2022, 17, 72. [Google Scholar] [CrossRef]
- Sheppard, O.; Coleman, M. Alzheimer’s Disease: Etiology, Neuropathology and Pathogenesis. In Alzheimer’s Disease: Drug Discovery; Huang, X., Ed.; Exon Publications: Brisbane, Australia, 2020. [Google Scholar]
- Grossberg, G.T. Cholinesterase inhibitors for the treatment of Alzheimer’s disease:: Getting on and staying on. Curr. Ther. Res. Clin. Exp. 2003, 64, 216–235. [Google Scholar] [CrossRef]
- Liu, J.; Chang, L.; Song, Y.; Li, H.; Wu, Y. The Role of NMDA Receptors in Alzheimer’s Disease. Front. Neurosci. 2019, 13, 43. [Google Scholar] [CrossRef]
- Oliver, D.M.A.; Reddy, P.H. Small molecules as therapeutic drugs for Alzheimer’s disease. Mol. Cell. Neurosci. 2019, 96, 47–62. [Google Scholar] [CrossRef]
- Adami, G.; Saag, K.G.; Chapurlat, R.D.; Guañabens, N.; Haugeberg, G.; Lems, W.F.; Matijevic, R.; Peel, N.; Poddubnyy, D.; Geusens, P. Balancing benefits and risks in the era of biologics. Ther. Adv. Musculoskelet. Dis. 2019, 11, 1759720x19883973. [Google Scholar] [CrossRef]
- Weaver, D.F. Drug Design for Alzheimer’s Disease: Biologics vs. Small Molecules. Curr. Alzheimer Res. 2024, 20, 821–826. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Wang, J.; Xia, Y.; Zhang, J.; Chen, L. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct. Target. Ther. 2024, 9, 211. [Google Scholar] [CrossRef]
- Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef]
- Ricciarelli, R.; Fedele, E. The Amyloid Cascade Hypothesis in Alzheimer’s Disease: It’s Time to Change Our Mind. Curr. Neuropharmacol. 2017, 15, 926–935. [Google Scholar] [CrossRef]
- Zhang, C.; Saunders, A.J. Therapeutic targeting of the alpha-secretase pathway to treat Alzheimer’s disease. Discov. Med. 2007, 7, 113–117. [Google Scholar]
- Chow, V.W.; Mattson, M.P.; Wong, P.C.; Gleichmann, M. An overview of APP processing enzymes and products. Neuromolecular Med. 2010, 12, 1–12. [Google Scholar] [CrossRef]
- Cole, S.L.; Vassar, R. The Alzheimer’s disease beta-secretase enzyme, BACE1. Mol. Neurodegener. 2007, 2, 22. [Google Scholar] [CrossRef] [PubMed]
- Im, D.; Choi, T.S. Distinctive contribution of two additional residues in protein aggregation of Aβ42 and Aβ40 isoforms. BMB Rep. 2024, 57, 263–272. [Google Scholar] [CrossRef]
- Song, C.; Zhang, T.; Zhang, Y. Conformational Essentials Responsible for Neurotoxicity of Aβ42 Aggregates Revealed by Antibodies against Oligomeric Aβ42. Molecules 2022, 27, 6751. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, H.; Li, R.; Sterling, K.; Song, W. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future. Signal Transduct. Target. Ther. 2023, 8, 248. [Google Scholar] [CrossRef]
- Boutajangout, A.; Sigurdsson, E.M.; Krishnamurthy, P.K. Tau as a therapeutic target for Alzheimer’s disease. Curr. Alzheimer Res. 2011, 8, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Boutajangout, A.; Ingadottir, J.; Davies, P.; Sigurdsson, E.M. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain: Clearance of pathological tau by passive immunization. J. Neurochem. 2011, 118, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.R.; Berger, F.; Berger, C.L.; Hendricks, A.G. Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams. Traffic 2018, 19, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Utton, M.A.; Gibb, G.M.; Burdett, I.D.; Anderton, B.H.; Vandecandelaere, A. Functional differences of tau isoforms containing 3 or 4 C-terminal repeat regions and the influence of oxidative stress. J. Biol. Chem. 2001, 276, 34288–34297. [Google Scholar] [CrossRef]
- Goode, B.L.; Chau, M.; Denis, P.E.; Feinstein, S.C. Structural and functional differences between 3-repeat and 4-repeat tau isoforms. Implications for normal tau function and the onset of neurodegenetative disease. J. Biol. Chem. 2000, 275, 38182–38189. [Google Scholar] [CrossRef]
- Jayapalan, S.; Natarajan, J. The role of CDK5 and GSK3B kinases in hyperphosphorylation of microtubule associated protein tau (MAPT) in Alzheimer’s disease. Bioinformation 2013, 9, 1023–1030. [Google Scholar] [CrossRef]
- Rawat, P.; Sehar, U.; Bisht, J.; Selman, A.; Culberson, J.; Reddy, P.H. Phosphorylated Tau in Alzheimer’s Disease and Other Tauopathies. Int. J. Mol. Sci. 2022, 23, 12841. [Google Scholar] [CrossRef]
- Alonso, A.D.; Di Clerico, J.; Li, B.; Corbo, C.P.; Alaniz, M.E.; Grundke-Iqbal, I.; Iqbal, K. Phosphorylation of tau at Thr212, Thr231, and Ser262 combined causes neurodegeneration. J. Biol. Chem. 2010, 285, 30851–30860. [Google Scholar] [CrossRef]
- Muraoka, S.; Lin, W.; Takamatsu-Yukawa, K.; Hu, J.; Ikezu, S.; DeTure, M.A.; Dickson, D.W.; Emili, A.; Ikezu, T. Enrichment of Phosphorylated Tau (Thr181) and Functionally Interacting Molecules in Chronic Traumatic Encephalopathy Brain-derived Extracellular Vesicles. Aging Dis. 2021, 12, 1376–1388. [Google Scholar] [CrossRef]
- Bramblett, G.T.; Goedert, M.; Jakes, R.; Merrick, S.E.; Trojanowski, J.Q.; Lee, V.M. Abnormal tau phosphorylation at Ser396 in Alzheimer’s disease recapitulates development and contributes to reduced microtubule binding. Neuron 1993, 10, 1089–1099. [Google Scholar] [CrossRef]
- Yang, S.D.; Song, J.S.; Yu, J.S.; Shiah, S.G. Protein kinase FA/GSK-3 phosphorylates tau on Ser235-Pro and Ser404-Pro that are abnormally phosphorylated in Alzheimer’s disease brain. J. Neurochem. 1993, 61, 1742–1747. [Google Scholar] [CrossRef] [PubMed]
- Troquier, L.; Caillierez, R.; Burnouf, S.; Fernandez-Gomez, F.J.; Grosjean, M.E.; Zommer, N.; Sergeant, N.; Schraen-Maschke, S.; Blum, D.; Buee, L. Targeting phospho-Ser422 by active Tau Immunotherapy in the THYTau22 mouse model: A suitable therapeutic approach. Curr. Alzheimer Res. 2012, 9, 397–405. [Google Scholar] [CrossRef]
- Yu, L.; Boyle, P.A.; Janelidze, S.; Petyuk, V.A.; Wang, T.; Bennett, D.A.; Hansson, O.; Schneider, J.A. Plasma p-tau181 and p-tau217 in discriminating PART, AD and other key neuropathologies in older adults. Acta Neuropathol. 2023, 146, 1–11. [Google Scholar] [CrossRef]
- Brickman, A.M.; Manly, J.J.; Honig, L.S.; Sanchez, D.; Reyes-Dumeyer, D.; Lantigua, R.A.; Lao, P.J.; Stern, Y.; Vonsattel, J.P.; Teich, A.F.; et al. Plasma p-tau181, p-tau217, and other blood-based Alzheimer’s disease biomarkers in a multi-ethnic, community study. Alzheimer’s Dement. 2021, 17, 1353–1364. [Google Scholar] [CrossRef]
- St-Onge, F.; Chapleau, M.; Breitner, J.C.; Villeneuve, S.; Binette, A.P. Tau accumulation and its spatial progression across the Alzheimer’s disease spectrum. Brain Commun. 2024, 6, fcae031. [Google Scholar] [CrossRef]
- Bejanin, A.; Schonhaut, D.R.; La Joie, R.; Kramer, J.H.; Baker, S.L.; Sosa, N.; Ayakta, N.; Cantwell, A.; Janabi, M.; Lauriola, M.; et al. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain 2017, 140, 3286–3300. [Google Scholar] [CrossRef]
- Kopeikina, K.J.; Hyman, B.T.; Spires-Jones, T.L. Soluble forms of tau are toxic in Alzheimer’s disease. Transl. Neurosci. 2012, 3, 223–233. [Google Scholar] [CrossRef]
- Brunello, C.A.; Merezhko, M.; Uronen, R.L.; Huttunen, H.J. Mechanisms of secretion and spreading of pathological tau protein. Cell. Mol. Life Sci. 2020, 77, 1721–1744. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, G.S.; Lee, V.M.Y.; Trojanowski, J.Q. Mechanisms of Cell-to-Cell Transmission of Pathological Tau: A Review. JAMA Neurol. 2019, 76, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yu, Y. Tau and neuroinflammation in Alzheimer’s disease: Interplay mechanisms and clinical translation. J. Neuroinflamm. 2023, 20, 165. [Google Scholar] [CrossRef]
- Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dement. 2018, 4, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Tosto, G.; Reitz, C. Genome-wide association studies in Alzheimer’s disease: A review. Curr. Neurol. Neurosci. Rep. 2013, 13, 381. [Google Scholar] [CrossRef]
- Bellenguez, C.; Küçükali, F.; Jansen, I.E.; Kleineidam, L.; Moreno-Grau, S.; Amin, N.; Naj, A.C.; Campos-Martin, R.; Grenier-Boley, B.; Andrade, V.; et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 2022, 54, 412–436. [Google Scholar] [CrossRef]
- Boyd, R.J.; Avramopoulos, D.; Jantzie, L.L.; McCallion, A.S. Neuroinflammation represents a common theme amongst genetic and environmental risk factors for Alzheimer and Parkinson diseases. J. Neuroinflamm. 2022, 19, 223. [Google Scholar] [CrossRef]
- Long, H.; Simmons, A.; Mayorga, A.; Burgess, B.; Nguyen, T.; Budda, B.; Rychkova, A.; Rhinn, H.; Tassi, I.; Ward, M.; et al. Preclinical and first-in-human evaluation of AL002, a novel TREM2 agonistic antibody for Alzheimer’s disease. Alzheimer’s Res. Ther. 2024, 16, 235. [Google Scholar] [CrossRef]
- Yang, X.; Zhangyi, Z.; Yu, A.; Zhou, Q.; Xia, A.; Qiu, J.; Cai, M.; Chu, X.; Li, L.; Feng, Z.; et al. GV-971 attenuates the progression of neuromyelitis optica in murine models and reverses alterations in gut microbiota and associated peripheral abnormalities. CNS Neurosci. Ther. 2024, 30, e14847. [Google Scholar] [CrossRef] [PubMed]
- Arnold, S.E.; Arvanitakis, Z.; Macauley-Rambach, S.L.; Koenig, A.M.; Wang, H.-Y.; Ahima, R.S.; Craft, S.; Gandy, S.; Buettner, C.; Stoeckel, L.E.; et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums. Nat. Rev. Neurol. 2018, 14, 168–181. [Google Scholar] [CrossRef]
- Kciuk, M.; Kruczkowska, W.; Gałęziewska, J.; Wanke, K.; Kałuzińska-Kołat, Ż.; Aleksandrowicz, M.; Kontek, R. Alzheimer’s Disease as Type 3 Diabetes: Understanding the Link and Implications. Int. J. Mol. Sci. 2024, 25, 11955. [Google Scholar] [CrossRef] [PubMed]
- Kandimalla, R.; Thirumala, V.; Reddy, P.H. Is Alzheimer’s disease a Type 3 Diabetes? A critical appraisal. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1078–1089. [Google Scholar] [CrossRef]
- Blázquez, E.; Hurtado-Carneiro, V.; LeBaut-Ayuso, Y.; Velázquez, E.; García-García, L.; Gómez-Oliver, F.; Ruiz-Albusac, J.M.; Ávila, J.; Pozo, M. Significance of Brain Glucose Hypometabolism, Altered Insulin Signal Transduction, and Insulin Resistance in Several Neurological Diseases. Front. Endocrinol. 2022, 13, 873301. [Google Scholar] [CrossRef] [PubMed]
- Knopman, D.S.; Jack, C.R., Jr.; Wiste, H.J.; Lundt, E.S.; Weigand, S.D.; Vemuri, P.; Lowe, V.J.; Kantarci, K.; Gunter, J.L.; Senjem, M.L.; et al. 18F-fluorodeoxyglucose positron emission tomography, aging, and apolipoprotein E genotype in cognitively normal persons. Neurobiol. Aging 2014, 35, 2096–2106. [Google Scholar] [CrossRef] [PubMed]
- Sȩdzikowska, A.; Szablewski, L. Insulin and insulin resistance in alzheimer’s disease. Int. J. Mol. Sci. 2021, 22, 9987. [Google Scholar] [CrossRef]
- Chatterjee, S.; Mudher, A. Alzheimer’s Disease and Type 2 Diabetes: A Critical Assessment of the Shared Pathological Traits. Front. Neurosci. 2018, 12, 383. [Google Scholar] [CrossRef]
- Wong, C.Y.J.; Baldelli, A.; Hoyos, C.M.; Tietz, O.; Ong, H.X.; Traini, D. Insulin Delivery to the Brain via the Nasal Route: Unraveling the Potential for Alzheimer’s Disease Therapy. Drug Deliv. Transl. Res. 2024, 14, 1776–1793. [Google Scholar] [CrossRef]
- Sabbagh, M.; Boschini, C.; Cohen, S.; Fugger, M.; Jessen, F.; Dandanell, S.; Pedersen, S.D.; Tarazona, L.R.S.; Aroda, V.R. Safety considerations of semaglutide in the potential treatment of Alzheimer’s disease: A pooled analysis of semaglutide in adults aged ≥ 65 years. Alzheimer’s Dement. 2025, 11, e70076. [Google Scholar] [CrossRef]
- Mahley, R.W. Central Nervous System Lipoproteins: ApoE and Regulation of Cholesterol Metabolism. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1305–1315. [Google Scholar] [CrossRef]
- Genin, E.; Hannequin, D.; Wallon, D.; Sleegers, K.; Hiltunen, M.; Combarros, O.; Bullido, M.J.; Engelborghs, S.; De Deyn, P.; Berr, C.; et al. APOE and Alzheimer disease: A major gene with semi-dominant inheritance. Mol. Psychiatry 2011, 16, 903–907. [Google Scholar] [CrossRef] [PubMed]
- Martens, Y.A.; Zhao, N.; Liu, C.-C.; Kanekiyo, T.; Yang, A.J.; Goate, A.M.; Holtzman, D.M.; Bu, G. ApoE Cascade Hypothesis in the pathogenesis of Alzheimer’s disease and related dementias. Neuron 2022, 110, 1304–1317. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Shue, F.; Zhao, N.; Shinohara, M.; Bu, G. APOE2: Protective mechanism and therapeutic implications for Alzheimer’s disease. Mol. Neurodegener. 2020, 15, 63. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Wang, Z.; Huang, H.C. Roles of ApoE4 on the Pathogenesis in Alzheimer’s Disease and the Potential Therapeutic Approaches. Cell. Mol. Neurobiol. 2023, 43, 3115–3136. [Google Scholar] [CrossRef]
- Hunsberger, H.C.; Pinky, P.D.; Smith, W.; Suppiramaniam, V.; Reed, M.N. The role of APOE4 in Alzheimer’s disease: Strategies for future therapeutic interventions. Neuronal Signal. 2019, 3, NS20180203. [Google Scholar] [CrossRef] [PubMed]
- Dias, D.; Portugal, C.C.; Relvas, J.; Socodato, R. From Genetics to Neuroinflammation: The Impact of ApoE4 on Microglial Function in Alzheimer’s Disease. Cells 2025, 14, 243. [Google Scholar] [CrossRef]
- Schmukler, E.; Solomon, S.; Simonovitch, S.; Goldshmit, Y.; Wolfson, E.; Michaelson, D.M.; Pinkas-Kramarski, R. Altered mitochondrial dynamics and function in APOE4-expressing astrocytes. Cell Death Dis. 2020, 11, 578. [Google Scholar] [CrossRef]
- Liang, Y.; Lin, S.; Beyer, T.P.; Zhang, Y.; Wu, X.; Bales, K.R.; DeMattos, R.B.; May, P.C.; Li, S.D.; Jiang, X.C.; et al. A liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein E expression, secretion and cholesterol homeostasis in astrocytes. J. Neurochem. 2004, 88, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Teter, B.; Campagna, J.; Zhu, C.; McCauley, G.E.; Spilman, P.; Kohn, D.B.; John, V. Successful Gene Editing of Apolipoprotein E4 to E3 in Brain of Alzheimer Model Mice After a Single IV Dose of Synthetic Exosome-Delivered CRISPR. bioRxiv 2024. bioRxiv:2024.2004.2023.590784. [Google Scholar] [CrossRef]
- Litvinchuk, A.; Huynh, T.V.; Shi, Y.; Jackson, R.J.; Finn, M.B.; Manis, M.; Francis, C.M.; Tran, A.C.; Sullivan, P.M.; Ulrich, J.D.; et al. Apolipoprotein E4 Reduction with Antisense Oligonucleotides Decreases Neurodegeneration in a Tauopathy Model. Ann. Neurol. 2021, 89, 952–966. [Google Scholar] [CrossRef]
- Ferguson, C.M.; Hildebrand, S.; Godinho, B.; Buchwald, J.; Echeverria, D.; Coles, A.; Grigorenko, A.; Vangjeli, L.; Sousa, J.; McHugh, N.; et al. Silencing Apoe with divalent-siRNAs improves amyloid burden and activates immune response pathways in Alzheimer’s disease. Alzheimer’s Dement. 2024, 20, 2632–2652. [Google Scholar] [CrossRef]
- Williams, T.; Borchelt, D.R.; Chakrabarty, P. Therapeutic approaches targeting Apolipoprotein E function in Alzheimer’s disease. Mol. Neurodegener. 2020, 15, 8. [Google Scholar] [CrossRef]
- Alkhalifa, A.E.; Al-Ghraiybah, N.F.; Odum, J.; Shunnarah, J.G.; Austin, N.; Kaddoumi, A. Blood-Brain Barrier Breakdown in Alzheimer’s Disease: Mechanisms and Targeted Strategies. Int. J. Mol. Sci. 2023, 24, 16288. [Google Scholar] [CrossRef] [PubMed]
- Knox, E.G.; Aburto, M.R.; Clarke, G.; Cryan, J.F.; O’Driscoll, C.M. The blood-brain barrier in aging and neurodegeneration. Mol. Psychiatry 2022, 27, 2659–2673. [Google Scholar] [CrossRef]
- Montagne, A.; Barnes, S.R.; Sweeney, M.D.; Halliday, M.R.; Sagare, A.P.; Zhao, Z.; Toga, A.W.; Jacobs, R.E.; Liu, C.Y.; Amezcua, L.; et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 2015, 85, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, F.; Han, Z.; Yin, Z.; Ge, X.; Lei, P. Relationship Between Amyloid-β Deposition and Blood-Brain Barrier Dysfunction in Alzheimer’s Disease. Front. Cell. Neurosci. 2021, 15, 695479. [Google Scholar] [CrossRef]
- Derk, J.; MacLean, M.; Juranek, J.; Schmidt, A.M. The Receptor for Advanced Glycation Endproducts (RAGE) and Mediation of Inflammatory Neurodegeneration. J. Alzheimer’s Dis. Park. 2018, 8, 421. [Google Scholar] [CrossRef]
- Choi, M.S. APOE4 lead to neurovascular dysfunction & inflammation is an early change in Alzheimer’s disease? Alzheimer’s Dement. 2024, 20 (Suppl. 8), e095248. [Google Scholar] [CrossRef]
- Li, J.; Zheng, M.; Shimoni, O.; Banks, W.A.; Bush, A.I.; Gamble, J.R.; Shi, B. Development of Novel Therapeutics Targeting the Blood-Brain Barrier: From Barrier to Carrier. Adv. Sci. 2021, 8, 2101090. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhao, F.; Ma, X.; Perry, G.; Zhu, X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: Recent advances. Mol. Neurodegener. 2020, 15, 30. [Google Scholar] [CrossRef] [PubMed]
- Misrani, A.; Tabassum, S.; Yang, L. Mitochondrial Dysfunction and Oxidative Stress in Alzheimer’s Disease. Front. Aging Neurosci. 2021, 13, 617588. [Google Scholar] [CrossRef]
- Zong, Y.; Li, H.; Liao, P.; Chen, L.; Pan, Y.; Zheng, Y.; Zhang, C.; Liu, D.; Zheng, M.; Gao, J. Mitochondrial dysfunction: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024, 9, 124. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Rashid, T.; Li, J.; Honnorat, N.; Nirmala, A.B.; Fadaee, E.; Wang, D.; Charisis, S.; Liu, H.; Franklin, C.; et al. Postmortem Brain Imaging in Alzheimer’s Disease and Related Dementias: The South Texas Alzheimer’s Disease Research Center Repository. J. Alzheimer’s Dis. 2023, 96, 1267–1283. [Google Scholar] [CrossRef]
- Pagani, L.; Eckert, A. Amyloid-Beta interaction with mitochondria. Int. J. Alzheimer’s Dis. 2011, 2011, 925050. [Google Scholar] [CrossRef]
- Eckert, A.; Nisbet, R.; Grimm, A.; Götz, J. March separate, strike together--role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta 2014, 1842, 1258–1266. [Google Scholar] [CrossRef]
- Pires, M.; Rego, A.C. Apoe4 and Alzheimer’s Disease Pathogenesis-Mitochondrial Deregulation and Targeted Therapeutic Strategies. Int. J. Mol. Sci. 2023, 24, 778. [Google Scholar] [CrossRef]
- Shi, J.; Yu, Y.; Yuan, H.; Li, Y.; Xue, Y. Mitochondrial dysfunction in AMI: Mechanisms and therapeutic perspectives. J. Transl. Med. 2025, 23, 418. [Google Scholar] [CrossRef]
- Pappolla, M.A.; Martins, R.N.; Poeggeler, B.; Omar, R.A.; Perry, G. Oxidative Stress in Alzheimer’s Disease: The Shortcomings of Antioxidant Therapies. J. Alzheimer’s Dis. 2024, 101, S155–S178. [Google Scholar] [CrossRef]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015, 28, 203–209. [Google Scholar] [PubMed]
- Krishaa, L.; Ng, T.K.S.; Wee, H.N.; Ching, J. Gut-brain axis through the lens of gut microbiota and their relationships with Alzheimer’s disease pathology: Review and recommendations. Mech. Ageing Dev. 2023, 211, 111787. [Google Scholar] [CrossRef]
- Liu, S.; Gao, J.; Zhu, M.; Liu, K.; Zhang, H.L. Gut Microbiota and Dysbiosis in Alzheimer’s Disease: Implications for Pathogenesis and Treatment. Mol. Neurobiol. 2020, 57, 5026–5043. [Google Scholar] [CrossRef] [PubMed]
- Murray, E.R.; Kemp, M.; Nguyen, T.T. The Microbiota-Gut-Brain Axis in Alzheimer’s Disease: A Review of Taxonomic Alterations and Potential Avenues for Interventions. Arch. Clin. Neuropsychol. 2022, 37, 595–607. [Google Scholar] [CrossRef]
- Sepúlveda-Rivera, V.; Olivieri-Henry, G.; Morales-González, H.; Ruiz-Adames, J.; Herrero-Rivera, C.; Rentas-Echeverria, A.; Cardona-Berdecia, V.; Soler-Llompart, C.; Sala-Morales, A.C.; Pérez-Montero, G.; et al. Gut microbiota distinguishes aging hispanics with Alzheimer’s disease: Associations with cognitive impairment and severity. Sci. Rep. 2025, 15, 28505. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, C.; Cheng, M.; Geng, L.; Li, J.; Du, W.; Song, M.; Chen, N.; Yeleen, T.A.N.; Song, L.; et al. The link between gut microbiome and Alzheimer’s disease: From the perspective of new revised criteria for diagnosis and staging of Alzheimer’s disease. Alzheimer’s Dement. 2024, 20, 5771–5788. [Google Scholar] [CrossRef]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids from Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 2020, 11, 25. [Google Scholar] [CrossRef]
- Lee, B.; Lee, S.M.; Song, J.W.; Choi, J.W. Gut Microbiota Metabolite Messengers in Brain Function and Pathology at a View of Cell Type-Based Receptor and Enzyme Reaction. Biomol. Ther. 2024, 32, 403–423. [Google Scholar] [CrossRef]
- Beltran-Velasco, A.I.; Clemente-Suárez, V.J. Impact of Peripheral Inflammation on Blood-Brain Barrier Dysfunction and Its Role in Neurodegenerative Diseases. Int. J. Mol. Sci. 2025, 26, 2440. [Google Scholar] [CrossRef]
- Varesi, A.; Pierella, E.; Romeo, M.; Piccini, G.B.; Alfano, C.; Bjørklund, G.; Oppong, A.; Ricevuti, G.; Esposito, C.; Chirumbolo, S.; et al. The Potential Role of Gut Microbiota in Alzheimer’s Disease: From Diagnosis to Treatment. Nutrients 2022, 14, 668. [Google Scholar] [CrossRef]
- Boehme, M.; Guzzetta, K.E.; Wasén, C.; Cox, L.M. The gut microbiota is an emerging target for improving brain health during ageing. Gut Microbiome 2023, 4, e2. [Google Scholar] [CrossRef]
- Yang, J.; Liang, J.; Hu, N.; He, N.; Liu, B.; Liu, G.; Qin, Y. The Gut Microbiota Modulates Neuroinflammation in Alzheimer’s Disease: Elucidating Crucial Factors and Mechanistic Underpinnings. CNS Neurosci. Ther. 2024, 30, e70091. [Google Scholar] [CrossRef]
- Luo, Y.-X.; Yang, L.-L.; Yao, X.-Q. Gut microbiota-host lipid crosstalk in Alzheimer’s disease: Implications for disease progression and therapeutics. Mol. Neurodegener. 2024, 19, 35. [Google Scholar] [CrossRef]
- Valdez-Gaxiola, C.A.; Rosales-Leycegui, F.; Gaxiola-Rubio, A.; Moreno-Ortiz, J.M.; Figuera, L.E. Early- and Late-Onset Alzheimer’s Disease: Two Sides of the Same Coin? Diseases 2024, 12, 110. [Google Scholar] [CrossRef] [PubMed]
- Hoogmartens, J.; Cacace, R.; Van Broeckhoven, C. Insight into the genetic etiology of Alzheimer’s disease: A comprehensive review of the role of rare variants. Alzheimer’s Dement. 2021, 13, e12155. [Google Scholar] [CrossRef] [PubMed]
- Virolainen, S.J.; VonHandorf, A.; Viel, K.C.M.F.; Weirauch, M.T.; Kottyan, L.C. Gene–environment interactions and their impact on human health. Genes Immun. 2023, 24, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ringman, J.M.; Coppola, G. New genes and new insights from old genes: Update on Alzheimer disease. Continuum 2013, 19, 358–371. [Google Scholar] [CrossRef]
- Hampel, H.; Hardy, J.; Blennow, K.; Chen, C.; Perry, G.; Kim, S.H.; Villemagne, V.L.; Aisen, P.; Vendruscolo, M.; Iwatsubo, T.; et al. The Amyloid-β Pathway in Alzheimer’s Disease. Mol. Psychiatry 2021, 26, 5481–5503. [Google Scholar] [CrossRef]
- MacLeod, R.; Hillert, E.K.; Cameron, R.T.; Baillie, G.S. The role and therapeutic targeting of α-, β- and γ-secretase in Alzheimer’s disease. Future Sci. OA 2015, 1, Fso11. [Google Scholar] [CrossRef] [PubMed]
- Muratore, C.R.; Rice, H.C.; Srikanth, P.; Callahan, D.G.; Shin, T.; Benjamin, L.N.; Walsh, D.M.; Selkoe, D.J.; Young-Pearse, T.L. The familial Alzheimer’s disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Hum. Mol. Genet. 2014, 23, 3523–3536. [Google Scholar] [CrossRef] [PubMed]
- De Strooper, B.; Iwatsubo, T.; Wolfe, M.S. Presenilins and γ-secretase: Structure, function, and role in Alzheimer Disease. Cold Spring Harb. Perspect. Med. 2012, 2, a006304. [Google Scholar] [CrossRef]
- Dai, M.H.; Zheng, H.; Zeng, L.D.; Zhang, Y. The genes associated with early-onset Alzheimer’s disease. Oncotarget 2018, 9, 15132–15143. [Google Scholar] [CrossRef]
- Bagaria, J.; Bagyinszky, E.; An, S.S.A. Genetics, Functions, and Clinical Impact of Presenilin-1 (PSEN1) Gene. Int. J. Mol. Sci. 2022, 23, 10970. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; An, S.S.; Kim, S. Mutations in presenilin 2 and its implications in Alzheimer’s disease and other dementia-associated disorders. Clin. Interv. Aging 2015, 10, 1163–1172. [Google Scholar] [CrossRef]
- Fernandez-Calle, R.; Konings, S.C.; Frontinan-Rubio, J.; Garcia-Revilla, J.; Camprubi-Ferrer, L.; Svensson, M.; Martinson, I.; Boza-Serrano, A.; Luis Venero, J.; Nielsen, H.M.; et al. APOE in the bullseye of neurodegenerative diseases: Impact of the APOE genotype in Alzheimer’s disease pathology and brain diseases. Mol. Neurodegener. 2022, 17, 62. [Google Scholar] [CrossRef]
- Jackson, R.J.; Keiser, M.S.; Meltzer, J.C.; Fykstra, D.P.; Dierksmeier, S.E.; Hajizadeh, S.; Kreuzer, J.; Morris, R.; Melloni, A.; Nakajima, T.; et al. APOE2 gene therapy reduces amyloid deposition and improves markers of neuroinflammation and neurodegeneration in a mouse model of Alzheimer disease. Mol. Ther. 2024, 32, 1373–1386. [Google Scholar] [CrossRef]
- Rosenberg, J.B.; Kaplitt, M.G.; De, B.P.; Chen, A.; Flagiello, T.; Salami, C.; Pey, E.; Zhao, L.Z.; Arbona, R.J.R.; Monette, S.; et al. AAVrh.10-Mediated APOE2 Central Nervous System Gene Therapy for APOE4-Associated Alzheimer’s Disease. Hum. Gene Ther. Clin. Dev. 2018, 29, 24–47. [Google Scholar] [CrossRef]
- Jonsson, T.; Stefansson, H.; Steinberg, S.; Jonsdottir, I.; Jonsson, P.V.; Snaedal, J.; Bjornsson, S.; Huttenlocher, J.; Levey, A.I.; Lah, J.J.; et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 2013, 368, 107–116. [Google Scholar] [CrossRef]
- Das, M.; Mao, W.; Voskobiynyk, Y.; Necula, D.; Lew, I.; Petersen, C.; Zahn, A.; Yu, G.Q.; Yu, X.; Smith, N.; et al. Alzheimer risk-increasing TREM2 variant causes aberrant cortical synapse density and promotes network hyperexcitability in mouse models. Neurobiol. Dis. 2023, 186, 106263. [Google Scholar] [CrossRef]
- Li, R.; Wang, X.; He, P. The most prevalent rare coding variants of TREM2 conferring risk of Alzheimer’s disease: A systematic review and meta-analysis. Exp. Ther. Med. 2021, 21, 347. [Google Scholar] [CrossRef]
- Lin, M.; Yu, J.X.; Zhang, W.X.; Lao, F.X.; Huang, H.C. Roles of TREM2 in the Pathological Mechanism and the Therapeutic Strategies of Alzheimer’s Disease. J. Prev. Alzheimer’s Dis. 2024, 11, 1682–1695. [Google Scholar] [CrossRef]
- Kunkle, B.W.; Grenier-Boley, B.; Sims, R.; Bis, J.C.; Damotte, V.; Naj, A.C.; van der Lee, S.; Ahmad, S.; Adams, H.; Vojinovic, D.; et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates A beta, tau, immunity and lipid processing. Nat. Genet. 2019, 51, 414–430. [Google Scholar] [CrossRef]
- Fang, S.C.; Wang, L.; Cheng, M.T.; Xu, D.; Chen, Z.P.; Wang, J.; Liao, W.; Li, Y.; Zhou, C.Z.; Hou, W.T.; et al. Structural insights into human ABCA7-mediated lipid transport. Structure 2025, 33, 583–593.e5. [Google Scholar] [CrossRef] [PubMed]
- Foster, E.M.; Dangla-Valls, A.; Lovestone, S.; Ribe, E.M.; Buckley, N.J. Clusterin in Alzheimer’s Disease: Mechanisms, Genetics, and Lessons from Other Pathologies. Front. Neurosci. 2019, 13, 164. [Google Scholar] [CrossRef] [PubMed]
- Dourlen, P.; Kilinc, D.; Landrieu, I.; Chapuis, J.; Lambert, J.C. BIN1 and Alzheimer’s disease: The tau connection. Trends Neurosci. 2025, 48, 349–361. [Google Scholar] [CrossRef]
- Xu, W.; Tan, L.; Yu, J.T. The Role of PICALM in Alzheimer’s Disease. Mol. Neurobiol. 2015, 52, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Griciuc, A.; Patel, S.; Federico, A.N.; Choi, S.H.; Innes, B.J.; Oram, M.K.; Cereghetti, G.; McGinty, D.; Anselmo, A.; Sadreyev, R.I.; et al. TREM2 Acts Downstream of CD33 in Modulating Microglial Pathology in Alzheimer’s Disease. Neuron 2019, 103, 820–835.e7. [Google Scholar] [CrossRef]
- Hung, C.; Tuck, E.; Stubbs, V.; van der Lee, S.J.; Aalfs, C.; van Spaendonk, R.; Scheltens, P.; Hardy, J.; Holstege, H.; Livesey, F.J. SORL1 deficiency in human excitatory neurons causes APP-dependent defects in the endolysosome-autophagy network. Cell Rep. 2021, 35, 109259. [Google Scholar] [CrossRef]
- Schlepckow, K.; Morenas-Rodríguez, E.; Hong, S.; Haass, C. Stimulation of TREM2 with agonistic antibodies-an emerging therapeutic option for Alzheimer’s disease. Lancet Neurol. 2023, 22, 1048–1060. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Ji, Y.; Wang, Z.; Wu, X.; Li, J.; Gu, F.; Chen, Z.; Wang, Z. The FDA-approved anti-amyloid-β monoclonal antibodies for the treatment of Alzheimer’s disease: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Med. Res. 2023, 28, 544. [Google Scholar] [CrossRef]
- Malonis, R.J.; Lai, J.R.; Vergnolle, O. Peptide-Based Vaccines: Current Progress and Future Challenges. Chem. Rev. 2020, 120, 3210–3229. [Google Scholar] [CrossRef]
- Hernández, R.; Jiménez-Luna, C.; Perales-Adán, J.; Perazzoli, G.; Melguizo, C.; Prados, J. Differentiation of Human Mesenchymal Stem Cells towards Neuronal Lineage: Clinical Trials in Nervous System Disorders. Biomol. Ther. 2020, 28, 34–44. [Google Scholar] [CrossRef]
- Liu, X.Y.; Yang, L.P.; Zhao, L. Stem cell therapy for Alzheimer’s disease. World J. Stem Cells 2020, 12, 787–802. [Google Scholar] [CrossRef]
- Kells, A.P.; Fong, D.M.; Dragunow, M.; During, M.J.; Young, D.; Connor, B. AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease. Mol. Ther. 2004, 9, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Aljuhani, M.; Ashraf, A.; Edison, P. Evaluating clinical meaningfulness of anti-β-amyloid therapies amidst amyloid-related imaging abnormalities concern in Alzheimer’s disease. Brain Commun. 2024, 6, fcae435. [Google Scholar] [CrossRef]
- Ameen, T.B.; Ali, U.; Salma, O.; Abdul Samee, M.; Iraj Abbas, S.M.; Naveera Kashif, S.; Arif Arifi, M.; Ali, M.; Khowaja, M.; Sinaan Ali, S.M.; et al. Amyloid solutions: Lecanemab, gantenerumab, and donanemab in the treatment of Alzheimer’s disease. Egypt. J. Neurol. Psychiatry Neurosurg. 2025, 61, 37. [Google Scholar] [CrossRef]
- Ducancel, F.; Muller, B.H. Molecular engineering of antibodies for therapeutic and diagnostic purposes. MAbs 2012, 4, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Alarcón-Arís, D.; Pavia-Collado, R.; Miquel-Rio, L.; Coppola-Segovia, V.; Ferrés-Coy, A.; Ruiz-Bronchal, E.; Galofré, M.; Paz, V.; Campa, L.; Revilla, R.; et al. Anti-α-synuclein ASO delivered to monoamine neurons prevents α-synuclein accumulation in a Parkinson’s disease-like mouse model and in monkeys. EBioMedicine 2020, 59, 102944. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Sha, S.; Shan, Y.; Gao, X.; Li, L.; Xing, C.; Guo, Z.; Du, H. Intranasal Delivery of BACE1 siRNA and Berberine via Engineered Stem Cell Exosomes for the Treatment of Alzheimer’s Disease. Int. J. Nanomed. 2025, 20, 5873–5891. [Google Scholar] [CrossRef]
- Hinrich, A.J.; Jodelka, F.M.; Chang, J.L.; Brutman, D.; Bruno, A.M.; Briggs, C.A.; James, B.D.; Stutzmann, G.E.; Bennett, D.A.; Miller, S.A.; et al. Therapeutic correction of ApoER2 splicing in Alzheimer’s disease mice using antisense oligonucleotides. EMBO Mol. Med. 2016, 8, 328–345. [Google Scholar] [CrossRef]
- Al Ayidh, A.; Abbas, M.; Parayangat, M.; Ijyas, T. Advances in Nanomaterials for Targeted Drug Delivery: Emerging Trends and Future Prospects in Nanodrug Development. Curr. Cancer Drug Targets 2025, 25. [Google Scholar] [CrossRef]
- Qi, B.; Yang, Y.; Cheng, Y.; Sun, D.; Wang, X.; Khanna, R.; Ju, W. Nasal delivery of a CRMP2-derived CBD3 adenovirus improves cognitive function and pathology in APP/PS1 transgenic mice. Mol. Brain 2020, 13, 58. [Google Scholar] [CrossRef]
- Ross, T.M.; Martinez, P.M.; Renner, J.C.; Thorne, R.G.; Hanson, L.R.; Frey, W.H., 2nd. Intranasal administration of interferon beta bypasses the blood-brain barrier to target the central nervous system and cervical lymph nodes: A non-invasive treatment strategy for multiple sclerosis. J. Neuroimmunol. 2004, 151, 66–77. [Google Scholar] [CrossRef]
- Ji, C.; Sigurdsson, E.M. Current Status of Clinical Trials on Tau Immunotherapies. Drugs 2021, 81, 1135–1152. [Google Scholar] [CrossRef]
- Song, C.; Shi, J.; Zhang, P.; Zhang, Y.; Xu, J.; Zhao, L.; Zhang, R.; Wang, H.; Chen, H. Immunotherapy for Alzheimer’s disease: Targeting β-amyloid and beyond. Transl. Neurodegener. 2022, 11, 18. [Google Scholar] [CrossRef]
- Cummings, J.; Lee, G.; Nahed, P.; Kambar, M.E.Z.N.; Zhong, K.; Fonseca, J.; Taghva, K. Alzheimer’s disease drug development pipeline: 2022. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2022, 8, e12295. [Google Scholar] [CrossRef] [PubMed]
- DeVos, S.L.; Miller, R.L.; Schoch, K.M.; Holmes, B.B.; Kebodeaux, C.S.; Wegener, A.J.; Chen, G.; Shen, T.; Tran, H.; Nichols, B.; et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci. Transl. Med. 2017, 9, eaag0481. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, W.; Xia, X.; Lei, T.; Yang, Z.; Jia, W.; Zhou, Y.; Cheng, G.; Gao, H. Intranasal Delivery of BACE1 siRNA and Rapamycin by Dual Targets Modified Nanoparticles for Alzheimer’s Disease Therapy. Small 2022, 18, e2203182. [Google Scholar] [CrossRef]
- Zhu, M.; Tian, X.; Han, X.; Ma, Y.; Fa, W.; Wang, N.; Liu, R.; Dong, Y.; Ren, Y.; Liu, C.; et al. Synergistic associations of CD33 variants and hypertension with brain and cognitive aging among dementia-free older adults: A population-based study. Alzheimer’s Dement. 2024, 20, 7193–7204. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, S.; Wang, J.; Shang, H.; Chen, X. Advancements in Pharmacological Treatment of Alzheimer’s Disease: The Advent of Disease-Modifying Therapies (DMTs). Brain Sci. 2024, 14, 990. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.K.; Kuan, Y.C.; Lin, H.W.; Hu, C.J. Clinical trials of new drugs for Alzheimer disease: A 2020–2023 update. J. Biomed. Sci. 2023, 30, 83. [Google Scholar] [CrossRef]
- Ameen, T.B.; Kashif, S.N.; Abbas, S.M.I.; Babar, K.; Ali, S.M.S.; Raheem, A. Unraveling Alzheimer’s: The promise of aducanumab, lecanemab, and donanemab. Egypt. J. Neurol. Psychiatry Neurosurg. 2024, 60, 72. [Google Scholar] [CrossRef]
- Jin, M.; Noble, J.M. What’s in It for Me? Contextualizing the Potential Clinical Impacts of Lecanemab, Donanemab, and Other Anti-β-amyloid Monoclonal Antibodies in Early Alzheimer’s Disease. eNeuro 2024, 11, ENEURO.0088-24. [Google Scholar] [CrossRef]
- Shi, M.; Chu, F.; Zhu, F.; Zhu, J. Impact of Anti-amyloid-β Monoclonal Antibodies on the Pathology and Clinical Profile of Alzheimer’s Disease: A Focus on Aducanumab and Lecanemab. Front. Aging Neurosci. 2022, 14, 870517. [Google Scholar] [CrossRef]
- Soderberg, L.; Johannesson, M.; Nygren, P.; Laudon, H.; Eriksson, F.; Osswald, G.; Moller, C.; Lannfelt, L. Lecanemab, Aducanumab, and Gantenerumab—Binding Profiles to Different Forms of Amyloid-Beta Might Explain Efficacy and Side Effects in Clinical Trials for Alzheimer’s Disease. Neurotherapeutics 2022, 20, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Easton, A.; Jensen, M.L.; Wang, C.; Hagedorn, P.H.; Li, Y.; Weed, M.; Meredith, J.E.; Guss, V.; Jones, K.; Gill, M.; et al. Identification and characterization of a MAPT-targeting locked nucleic acid antisense oligonucleotide therapeutic for tauopathies. Mol. Ther. Nucleic Acids 2022, 29, 625–642. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wang, P.N.; Chiu, M.J.; Finstad, C.L.; Lin, F.; Lynn, S.; Tai, Y.H.; De Fang, X.; Zhao, K.; Hung, C.H.; et al. UB-311, a novel UBITh® amyloid β peptide vaccine for mild Alzheimer’s disease. Alzheimer’s Dement. 2017, 3, 262–272. [Google Scholar] [CrossRef]
- Mullard, A. Parsing clinical success rates. Nat. Rev. Drug Discov. 2016, 15, 447. [Google Scholar] [CrossRef]
- Zhao, J.; Nussinov, R.; Ma, B. Mechanisms of recognition of amyloid-β (Aβ) monomer, oligomer, and fibril by homologous antibodies. J. Biol. Chem. 2017, 292, 18325–18343. [Google Scholar] [CrossRef]
- Miles, L.A.; Crespi, G.A.; Doughty, L.; Parker, M.W. Bapineuzumab captures the N-terminus of the Alzheimer’s disease amyloid-beta peptide in a helical conformation. Sci. Rep. 2013, 3, 1302. [Google Scholar] [CrossRef]
- Bateman, R.J.; Cummings, J.; Schobel, S.; Salloway, S.; Vellas, B.; Boada, M.; Black, S.E.; Blennow, K.; Fontoura, P.; Klein, G.; et al. Gantenerumab: An anti-amyloid monoclonal antibody with potential disease-modifying effects in early Alzheimer’s disease. Alzheimer’s Res. Ther. 2022, 14, 178. [Google Scholar] [CrossRef]
- Høilund-Carlsen, P.F.; Revheim, M.E.; Costa, T.; Kepp, K.P.; Castellani, R.J.; Perry, G.; Alavi, A.; Barrio, J.R. FDG-PET versus Amyloid-PET Imaging for Diagnosis and Response Evaluation in Alzheimer’s Disease: Benefits and Pitfalls. Diagnostics 2023, 13, 2254. [Google Scholar] [CrossRef]
- Teipel, S.; Tang, Y.; Khachaturian, A. Clinical efficacy of anti-amyloid antibodies in apolipoprotein E ε4 homozygotes: A Bayesian reanalysis of lecanemab and donanemab phase 3 results. Alzheimer’s Dement. 2025, 11, e70083. [Google Scholar] [CrossRef] [PubMed]
- Daly, T.; Kepp, K.P.; Imbimbo, B.P. Are lecanemab and donanemab disease-modifying therapies? Alzheimer’s Dement. 2024, 20, 6659–6661. [Google Scholar] [CrossRef]
- Brier, M.R.; Gordon, B.; Friedrichsen, K.; McCarthy, J.; Stern, A.; Christensen, J.; Owen, C.; Aldea, P.; Su, Y.; Hassenstab, J.; et al. Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease. Sci. Transl. Med. 2016, 8, 338ra66. [Google Scholar] [CrossRef]
- Congdon, E.E.; Ji, C.; Tetlow, A.M.; Jiang, Y.; Sigurdsson, E.M. Tau-targeting therapies for Alzheimer disease: Current status and future directions. Nat. Rev. Neurol. 2023, 19, 715–736. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.; Toth, B.; Brunstein, F.; Bobbala, A.; Datta, S.; Ceniceros, R.; Sanabria Bohorquez, S.M.; Anania, V.G.; Wildsmith, K.R.; Schauer, S.P.; et al. Randomized Phase II Study of the Safety and Efficacy of Semorinemab in Participants with Mild-to-Moderate Alzheimer Disease: Lauriet. Neurology 2023, 101, e1391–e1401. [Google Scholar] [CrossRef] [PubMed]
- Imbimbo, B.P.; Balducci, C.; Ippati, S.; Watling, M. Initial failures of anti-tau antibodies in Alzheimer’s disease are reminiscent of the amyloid-β story. Neural Regen. Res. 2023, 18, 117–118. [Google Scholar] [CrossRef]
- Shulman, M.; Kong, J.; O’Gorman, J.; Ratti, E.; Rajagovindan, R.; Viollet, L.; Huang, E.; Sharma, S.; Racine, A.M.; Czerkowicz, J.; et al. TANGO: A placebo-controlled randomized phase 2 study of efficacy and safety of the anti-tau monoclonal antibody gosuranemab in early Alzheimer’s disease. Nat. Aging 2023, 3, 1591–1601. [Google Scholar] [CrossRef]
- Lemere, C.A.; Masliah, E. Can Alzheimer disease be prevented by amyloid-beta immunotherapy? Nat. Rev. Neurol. 2010, 6, 108–119. [Google Scholar] [CrossRef]
- Yu, H.J.; Dickson, S.P.; Wang, P.N.; Chiu, M.J.; Huang, C.C.; Chang, C.C.; Liu, H.; Hendrix, S.B.; Dodart, J.C.; Verma, A.; et al. Safety, tolerability, immunogenicity, and efficacy of UB-311 in participants with mild Alzheimer’s disease: A randomised, double-blind, placebo-controlled, phase 2a study. EBioMedicine 2023, 94, 104665. [Google Scholar] [CrossRef]
- Shahpasand, K.; Sepehri Shamloo, A.; Nabavi, S.M.; Lu, K.P.; Zhou, X.Z. “Tau immunotherapy: Hopes and hindrances”. Hum. Vaccines Immunother. 2018, 14, 277–284. [Google Scholar] [CrossRef]
- Sandusky-Beltran, L.A.; Sigurdsson, E.M. Tau immunotherapies: Lessons learned, current status and future considerations. Neuropharmacology 2020, 175, 108104. [Google Scholar] [CrossRef] [PubMed]
- Kovacech, B.; Cullen, N.C.; Novak, P.; Hanes, J.; Kontsekova, E.; Katina, S.; Parrak, V.; Fresser, M.; Vanbrabant, J.; Feldman, H.H.; et al. Post hoc analysis of ADAMANT, a phase 2 clinical trial of active tau immunotherapy with AADvac1 in patients with Alzheimer’s disease, positive for plasma p-tau217. Alzheimer’s Res. Ther. 2024, 16, 254. [Google Scholar] [CrossRef] [PubMed]
- Islam, W.; Niidome, T.; Sawa, T. Enhanced Permeability and Retention Effect as a Ubiquitous and Epoch-Making Phenomenon for the Selective Drug Targeting of Solid Tumors. J. Pers. Med. 2022, 12, 1964. [Google Scholar] [CrossRef]
- Mummery, C.J.; Börjesson-Hanson, A.; Blackburn, D.J.; Vijverberg, E.G.B.; De Deyn, P.P.; Ducharme, S.; Jonsson, M.; Schneider, A.; Rinne, J.O.; Ludolph, A.C.; et al. Tau-targeting antisense oligonucleotide MAPT(Rx) in mild Alzheimer’s disease: A phase 1b, randomized, placebo-controlled trial. Nat. Med. 2023, 29, 1437–1447. [Google Scholar] [CrossRef]
- Edwards, A.L.; Collins, J.A.; Junge, C.; Kordasiewicz, H.; Mignon, L.; Wu, S.; Li, Y.; Lin, L.; DuBois, J.; Hutchison, R.M.; et al. Exploratory Tau Biomarker Results from a Multiple Ascending-Dose Study of BIIB080 in Alzheimer Disease: A Randomized Clinical Trial. JAMA Neurol. 2023, 80, 1344–1352. [Google Scholar] [CrossRef] [PubMed]
- McCartan, R.; Khorkova, O.; Volmar, C.H.; Wahlestedt, C. Nucleic acid-based therapeutics for the treatment of central nervous system disorders. Front. Genet. 2023, 14, 1250276. [Google Scholar] [CrossRef]
- Emerich, D.F.; Thanos, C.G. NT-501: An ophthalmic implant of polymer-encapsulated ciliary neurotrophic factor-producing cells. Curr. Opin. Mol. Ther. 2008, 10, 506–515. [Google Scholar]
- Wang, T.; Kuang, W.; Chen, W.; Xu, W.; Zhang, L.; Li, Y.; Li, H.; Peng, Y.; Chen, Y.; Wang, B.; et al. A phase II randomized trial of sodium oligomannate in Alzheimer’s dementia. Alzheimer’s Res. Ther. 2020, 12, 110. [Google Scholar] [CrossRef]
- Wang, X.; Sun, G.; Feng, T.; Zhang, J.; Huang, X.; Wang, T.; Xie, Z.; Chu, X.; Yang, J.; Wang, H.; et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 2019, 29, 787–803. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, G.; Kwok, L.Y.; Sun, Z. Gut microbiome-targeted therapies for Alzheimer’s disease. Gut Microbes 2023, 15, 2271613. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Xiang, H.; Wang, J.; Jiang, Y.; Pan, C.; Ji, B.; Zhang, A. Fecal microbiota transplantation: A novel strategy for treating Alzheimer’s disease. Front. Microbiol. 2023, 14, 1281233. [Google Scholar] [CrossRef] [PubMed]
- Alaeddin, S.; Chatterjee, A.; Roberts, T.L.; Steiner-Lim, G.Z.; Jensen, S.O.; Gyengesi, E.; Muench, G.; Ho, V. Exploring the effects of faecal microbiota transplantation on cognitive function: A review of clinical trials. Brain Behav. Immun. Health 2025, 48, 101049. [Google Scholar] [CrossRef] [PubMed]
- Aisen, P.S.; Cummings, J.; Doody, R.; Kramer, L.; Salloway, S.; Selkoe, D.J.; Sims, J.; Sperling, R.A.; Vellas, B. The Future of Anti-Amyloid Trials. J. Prev. Alzheimer’s Dis. 2020, 7, 146–151. [Google Scholar] [CrossRef]
- Yoshida, K.; Moein, A.; Bittner, T.; Ostrowitzki, S.; Lin, H.; Honigberg, L.; Jin, J.Y.; Quartino, A. Pharmacokinetics and pharmacodynamic effect of crenezumab on plasma and cerebrospinal fluid beta-amyloid in patients with mild-to-moderate Alzheimer’s disease. Alzheimer’s Res. Ther. 2020, 12, 16. [Google Scholar] [CrossRef]
- Cummings, J. The Role of Biomarkers in Alzheimer’s Disease Drug Development. Adv. Exp. Med. Biol. 2019, 1118, 29–61. [Google Scholar] [CrossRef]
- Hansson, O.; Edelmayer, R.M.; Boxer, A.L.; Carrillo, M.C.; Mielke, M.M.; Rabinovici, G.D.; Salloway, S.; Sperling, R.; Zetterberg, H.; Teunissen, C.E. The Alzheimer’s Association appropriate use recommendations for blood biomarkers in Alzheimer’s disease. Alzheimer’s Dement. 2022, 18, 2669–2686. [Google Scholar] [CrossRef]
- Reiss, Y.; Bauer, S.; David, B.; Devraj, K.; Fidan, E.; Hattingen, E.; Liebner, S.; Melzer, N.; Meuth, S.G.; Rosenow, F.; et al. The neurovasculature as a target in temporal lobe epilepsy. Brain Pathol. 2023, 33, e13147. [Google Scholar] [CrossRef]
- Cummings, J.L.; Atri, A.; Feldman, H.H.; Hansson, O.; Sano, M.; Knop, F.K.; Johannsen, P.; León, T.; Scheltens, P. evoke and evoke+: Design of two large-scale, double-blind, placebo-controlled, phase 3 studies evaluating efficacy, safety, and tolerability of semaglutide in early-stage symptomatic Alzheimer’s disease. Alzheimer’s Res. Ther. 2025, 17, 14. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Chen, Q.; Chen, X.; Han, F.; Chen, Z.; Wang, Y. The blood–brain barrier: Structure, regulation and drug delivery. Signal Transduct. Target. Ther. 2023, 8, 217. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.T.; Wei, K.C.; Liu, H.L. Focused Ultrasound Combined with Microbubbles in Central Nervous System Applications. Pharmaceutics 2021, 13, 1084. [Google Scholar] [CrossRef] [PubMed]
- Sims, J.R.; Zimmer, J.A.; Evans, C.D.; Lu, M.; Ardayfio, P.; Sparks, J.; Wessels, A.M.; Shcherbinin, S.; Wang, H.; Monkul Nery, E.S.; et al. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial. JAMA 2023, 330, 512–527. [Google Scholar] [CrossRef]
- Tarawneh, R.; Pankratz, V.S. The search for clarity regarding “clinically meaningful outcomes” in Alzheimer disease clinical trials: CLARITY-AD and Beyond. Alzheimer’s Res. Ther. 2024, 16, 37. [Google Scholar] [CrossRef]
- Simrén, J.; Elmgren, A.; Blennow, K.; Zetterberg, H. Fluid biomarkers in Alzheimer’s disease. Adv. Clin. Chem. 2023, 112, 249–281. [Google Scholar] [CrossRef]
- Heneka, M.T.; Gauthier, S.; Chandekar, S.A.; Hviid Hahn-Pedersen, J.; Bentsen, M.A.; Zetterberg, H. Neuroinflammatory fluid biomarkers in patients with Alzheimer’s disease: A systematic literature review. Mol. Psychiatry 2025, 30, 2783–2798. [Google Scholar] [CrossRef]
- Molinuevo, J.L.; Cami, J.; Carné, X.; Carrillo, M.C.; Georges, J.; Isaac, M.B.; Khachaturian, Z.; Kim, S.Y.; Morris, J.C.; Pasquier, F.; et al. Ethical challenges in preclinical Alzheimer’s disease observational studies and trials: Results of the Barcelona summit. Alzheimer’s Dement. 2016, 12, 614–622. [Google Scholar] [CrossRef]
Drug | Target | Biologic Type | Mechanism of Action | Dosage | Clinical Trial Phase | AD Stage | Sponsor |
---|---|---|---|---|---|---|---|
Aducanumab | Aβ aggregates | mAb | FcγR-mediated microglial clearance of aggregated Aβ | IV: 10 mg/kg | Approved/Phase IV (NCT04241068, NCT02484547) | Early/mild AD | Biogen, Cambridge, MA, USA |
CM383 | Binds aggregated Aβ to promote clearance and reduce plaque-associated neurotoxicity | / | Phase I (NCT06619613) | MCI/mild AD | Keymed Biosciences, Chengdu, China | ||
IBC-Ab002 | Targets aggregated Aβ to enhance clearance through Fc-mediated phagocytosis | / | Phase I (NCT05551741) | Early AD | ImmunoBrain Checkpoint, Rehovot, Israe | ||
Lecanemab | Aβ protofibrils | Binds protofibrillar Aβ to reduce plaque formation and neurotoxicity | IV: 10 mg/kg | Approved/Phase IV (NCT03887455, NCT01767311) | Early AD | Eisai, Tokyo, Japan | |
Sabrinetug | Binds Aβ protofibrils to neutralize toxicity and facilitate immune clearance | IV: 35 or 50 mg/kg | Phase I & II (NCT06335173) | Early AD | Acumen Pharmaceuticals, Greater Boston, MA, USA | ||
ALIA-1758 | Binds Aβ protofibrils to promote clearance and inhibit neurotoxicity | / | Phase I (NCT06406348) | Early AD | AbbVie, North Chicago, IL, USA | ||
APNmAb005 | Binds to amyloid protofibrils to neutralize neurotoxic aggregates | IV: from 5 to 70 mg/kg | Phase I (NCT05344989) | Early AD | APRINOIA Therapeutics, Suzhou, Chi | ||
MK-2214 | Binds protofibrillar Aβ to facilitate immune clearance | / | Phase I (NCT05466422) | Early AD | Merck & Co. (MSD), Rahway, NJ, USA | ||
Donanemab | Pyroglutamate-modified Aβ | Targets modified plaques to clear established amyloid | IV: 1400 mg/4 weeks | Approved/Phase IV (NCT04437511, NCT05026866) | Early/mild AD | Eli Lilly, Indianapolis, IN, USA | |
Remterneutug | Targets pyroglutamate-modified Aβ to remove established amyloid plaques | / | Phase III (NCT06653153) | Early symptomatic AD | Eli Lilly, Indianapolis, IN, USA | ||
ABBV-916 | N3 pyroglutamate Aβ | Binds N-terminal truncated Aβ (pyroglutamate) to clear plaques | / | Phase II (NCT05291234) | Early AD | AbbVie, North Chicago, IL, USA | |
LY3954068 | Aβ oligomers | Binds toxic Aβ oligomers to neutralize neurotoxicity | / | Phase I (NCT06297590) | Early AD | Eli Lilly, Indianapolis, IN, USA | |
Bepranemab | Extracellular full-length tau | Targets extracellular tau to prevent propagation of pathological species | / | Phase II (NCT04867616) | Early AD | UCB Biopharma, Brussels, Belgium | |
E2814 | Tau MTBR (microtubule-binding region) | Binds extracellular MTBR-tau to inhibit seeding and propagation of pathogenic tau species, clearance mediated by microglia | IV: 750 or 1500 mg | Phase II (NCT04971733, NCT06602258 with Lecanemab) | Early/sporadic AD & DIAD | Eisai, Toky, Japan | |
BMS-986446 | Binds MTBR-tau to inhibit tau aggregation and spread | / | Phase II (NCT06268886) | Early AD | Bristol-Myers Squibb, New York, NY, USA | ||
PMN310 | Misfolded tau aggregates | Targets pathological tau conformers to block downstream neurodegeneration | IV: from 175 to 2800 mg | Phase I (NCT06105528) | MCI/Early AD | ProMIS Neurosciences, Toronto, ON, Canada | |
JNJ-63733657 | p-tau | Binds p-tau to inhibit extracellular spread and promote clearance | / | Phase II (NCT04619420) | Early AD | Janssen, Raritan, NJ, USA | |
Trontinemab | Tau oligomers | Targets extracellular tau oligomers to prevent propagation | / | Phase I (NCT04639050) | Early/mild AD | Roche, Basel, Switzerland | |
SHR-1707 | TREM2 | Activates microglial TREM2 signaling to promote phagocytosis and reduce inflammation | / | Phase I & II (NCT06199037) | Early AD | Hengrui Pharma, Shanghai, China | |
AL101 | Sortilin receptor (elevates progranulin, PGRN) | Downregulates Sortilin to increase PGRN levels, enhancing lysosomal function and neuroprotection | / | Phase II (NCT06079190) | Early AD | GSK, London, UK | |
Foralumab | CD3 on T lymphocytes | Modulates neuroinflammation via nasal anti-CD3 immunotherapy | / | Phase II (NCT06489548) | Early AD | Brigham and Women’s Hospital, Boston, MA, USA | |
BIIB080 | MAPT mRNA (tau) | ASO | Reduces tau production by degrading MAPT mRNA via RNase H–dependent ASO mechanism, targets intracellular tau broadly | / | Phase II (NCT05399888) | MCI/mild AD dementia | Biogen, Cambridge, MA, USA |
ION269 | Reduces tau expression by degrading MAPT mRNA via RNase H mechanism | / | Phase I (NCT06673069) | Mild AD | Ionis, Carlsbad, CA, USA | ||
NIO752 | Reduces tau protein production via intrathecal ASO targeting MAPT mRNA | / | Phase I (NCT05469360, NCT06372821) | Early AD/MCI | Novartis, Basel, Switzerland | ||
ALN-APP | APP mRNA | siRNA (LNP) | Suppresses APP expression to reduce Aβ production | / | Phase I & II (NCT05231785, NCT06393712) | Early AD (presymptomatic/MCI) | Alnylam, Cambridge, MA, USA |
LY3954068 | MAPT mRNA (tau) | siRNA | Reduces tau production by degrading MAPT mRNA | / | Phase I (NCT06297590) | Early AD | Eli Lilly, Indianapolis, IN, USA |
LX1001 | ApoE4 homozygotes | ApoE2 mRNA | Increase expression of ApoE2 | / | Phase II (NCT03634007) | Mild to moderate AD | Lexeo Therapeutics, New York, NY, USA |
Leuprolide | GnRH receptor (GNRHR) | Hormonal analog | Modulates sex hormones to potentially slow neurodegeneration in postmenopausal women | / | Phase II (NCT03649724) | MCI/mild AD | Weill Cornell, New York, NY, USA |
Insulin | CNS insulin receptor | Peptide hormone | Improves brain glucose metabolism and cognition via central insulin signalling | / | Phase II/III (NCT01767909) | MCI/mild AD | USC, Los Angeles, CA, USA |
Semaglutide | GLP-1 receptor | Peptide agonist | Modulates insulin signalling, reduces neuroinflammation, promotes neuroprotection | Oral: 14 mg/day | Phase III (NCT04777396, NCT04777409) | Early AD | Novo Nordisk, Bagsværd, Denmark |
Posiphen | Aβ antigen (adjuvant only) | TLR9 agonist adjuvant | Enhances immune response to co-administered Aβ vaccine antigens via TLR9 activation | Oral: 80 mg/day | Phase I (NCT04524351) | Mild AD | Annovis Bio, Berwyn, PA, USA |
AV-1959D | Aβ1–11 epitope | DNA Vaccine | Induces polyclonal antibodies against Aβ to clear plaques | / | Phase I (NCT05642429) | Early AD | IMM, Oxford, UK |
ACI-24.060 | Aβ oligomers & pyroglutamate Aβ | Active immunization (vaccine) | Induces polyclonal antibodies targeting pathogenic Aβ species, promoting immune-mediated clearance | / | Phase II (NCT05462106) | Prodromal AD & Down syndrome | AC Immune SA, Lausanne, Switzerland |
ALZ-101 | Aβ1–42 peptide | Elicits antibodies against Aβ1–42 to promote clearance | / | Phase I/II (NCT05328115) | Early AD | Alzinova AB, Mölndal Sweden | |
JNJ-2056 | p-tau | Elicits antibodies against phosphorylated tau epitopes to inhibit intracellular aggregation | / | Phase I/IIa (NCT04445831) | MCI/mild AD | AC Immune SA, Lausanne, Switzerland | |
BCG Vaccine | Trained innate immunity (macrophages) | Live attenuated vaccine | Boosts innate immune surveillance to mitigate neuroinflammation | / | Phase I/II (NCT05004688) | Early AD | Massachusetts General Hospital, Boston, MA, USA |
Aldesleukin | IL-2 receptor on Tregs | Recombinant cytokine | Low-dose IL-2 selectively expands regulatory T cells to reduce neuroinflammation | / | Phase IIa (NCT05468073) | Early AD | Centre Hospitalier St Anne, Paris, France |
Sargramostim | Granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor | Stimulates innate immune cells to enhance Aβ clearance and neuroprotection | / | Phase II (NCT04902703) | Mild-to-moderate AD | University of Colorado, Denver, CO, USA | |
ExPlas | Plasma factors | Plasma exchange biologic | Transfuses young plasma components to support neuronal health | IV: 200 mL/week | Phase IIa (NCT05068830) | Mild AD to moderate | Norwegian University of Science and Technology, Trondheim, Norway |
Recombinant Human Serum Albumin | Circulating Aβ | Plasma protein infusion | Alters peripheral Aβ dynamics to promote central Aβ clearance | / | Phase I (NCT06489015) | Mild to moderate AD | Protgen, Beijing, Chin |
XPro1595 | Soluble TNFα | Dominant-negative TNF biologic | Inhibits soluble TNFα to reduce neuroinflammation and synaptic loss | SC: from 0.3 to 1.0 mg/kg | Phase II (NCT03943264) | Mild AD | INmune Bio, Boca Raton, FL, USA |
ADEL-Y01 | TGF-β1 pathway | Stem cell-derived biologic | Adipose-derived stem cell secretome modulates neuroinflammation and synaptic repair | IV: 20 mg/kg | Phase Ia/Ib (NCT06247345) | Mild to moderate AD | ADEL, Seoul, South Korea |
Lomecel-B | MSC-secreted immunomodulatory and neurovascular factors | Allogeneic MSC therapy | Anti-inflammatory, pro-vascular, tissue repair, immunomodulatory, and low immunogenicity | / | Phase IIa (NCT05233774) | Mild AD | Longeveron, Miami, FL, USA |
GV-971 | Gut microbiota | Sodium oligomannate | Reconditions the dysbiosis of gut microbiota, inhibits the inflammatory response in the brain | Oral: 900 mg/day | Phase IV (NCT05058040) | Mild to moderate AD | Green Valley, Shanghai, China |
Probiotics | Gut microbiota | Microbial consortia/dietary | Modulates gut–brain axis to reduce systemic inflammation and improve cognitive function | / | Phase II (NCT05145881) | MCI | Hsieh-Hsun Ho, Taiwan, China |
Drug | Target | Biologic Type | Mechanism of Actin | Dosage | Clinical Trial Phase (At Failure) | Reason for Failure/Outcome | Sponsor |
---|---|---|---|---|---|---|---|
Gantenerumab | Fibrillar Aβ | mAb | Clears fibrillar Aβ via microglial activation | / | Phase III (GRADUATE 1: NCT03444870, GRADUATE 2: NCT03443973) | Despite significant plaque reduction, no cognitive benefit was observed in interim analyses, leading to early termination. | Roche, Basel, Switzerland |
Bapineuzumab | Targets Aβ plaques via Fc-mediated phagocytosis | IV: 0.5 or 1.0 mg/kg | Phase III (Studies 301/302: NCT00667810, NCT00667824) | Failed to meet co-primary cognitive and function endpoints in ApoE4 carriers & non-carriers, incidence of ARIA, all trials subsequently discontinued | Pfizer, New York, NY, USA | ||
Solanezumab | Soluble Aβ | Enhances peripheral clearance of soluble Aβ | IV: from 400 to 1600 mg/4 weeks | Phase III (EXPEDITION 1–3: NCT02008357, A4: NCT02008357) | Failed to meet primary cognitive endpoints in mild-to-moderate and preclinical AD, subgroup analyses showed only marginal trends without statistical power. | Eli Lilly, Indianapolis, IN, USA | |
Ponezumab | Peripheral sink effect, targets Aβ to enhance systemic clearance | IV: 7.5 or 10 mg/kg | Phase II (NCT00945672) | No cognitive or biomarker benefit in mild-to-moderate AD patients | Prizer, New York, NY, USA | ||
Crenezumab | Aβ oligomers | Binds oligomeric Aβ, reduced Fc effector activity (IgG4) | IV: 60 mg/kg every 4 weeks | Phase III (NCT03491150) | Terminated after futility analyses revealed no significant clinical benefit in prodromal/mild AD, also failed in the Alzheimer’s Prevention Initiative (API) for autosomal dominant AD. | Roche, Basel, Switzerland | |
Gantenerumab | Aggregated Aβ | Anti-Aβ monoclonal antibody | SC: from 105 to 1200 mg/4 weeks | Phase 3 (NCT01224106) | Trial completed with no follow-up, development not continued | Roche, Basel, Switzerland | |
GSK933776 | Binds plaque-forming Aβ to lower CNS Aβ without ARIA | IV: from 0.001 to 10 mg/kg | Phase I (NCT00459550, NCT01424436) | Engaged target and altered Aβ levels, but no subsequent efficacy trials, likely discontinued | GSK, London, UK | ||
Gosuranemab | Extracellular N-terminal tau | Binds N-terminal tau to block cell-to-cell propagation | / | Phase II (TANGO: NCT03352557) | Trial failed to demonstrate clinical benefit despite target engagement, program discontinued. | Biogen, Cambridge, MA, USA | |
Semorinemab | Targets N-terminal tau to inhibit spreading of pathology | / | Phase II (Tauriel: NCT03289143, Lauriet: NCT03828747) | No significant slowing of cognitive or functional decline observed in mild-to-moderate AD patients. | Genentech, South San Francisco, CA, USA | ||
AL002 | TREM2 | Activates microglia via TREM2 to enhance Aβ clearance and modulate neuroinflammation | / | Phase II (NCT05744401) | Parent study failed to meet the primary endpoint and there were no treatment effects that favored AL002 on secondary clinical and functional endpoints. | Alector, South San Francisco, CA, USA | |
AN-1792 | Full-length Aβ1–42 | Peptide vaccine | Induces polyclonal anti-Aβ antibody response | / | Phase II (NCT00021723) | Induced meningoencephalitis in ~5% of participants due to autoimmune T-cell response, program halted for safety reasons. | Janssen, South San Francisco, CA, USA |
ACC-001 | Aβ1–7 peptide (with QS-21 adjuvant) | Vaccine targeting Aβ1–7 with QS-21 adjuvant | / | Phase II (NCT01284387) | Terminated due to injection-site reactions and lack of efficacy | Janssen, South San Francisco, CA, USA | |
ABvac40 | C-terminal Aβ40 epitope | Induces antibodies targeting Aβ40 to prevent aggregation | / | Phase II (NCT03113812) | Phase II results unpublished, program status unclear, likely discontinued | Araclon Biotech, Zaragoza, Spain | |
UB-311 | Aβ1–14 (soluble and aggregated forms) | Induces Th2-skewed anti-Aβ antibody response | / | Phase IIa (NCT03531710) | Trial completed, no publicly reported efficacy outcomes since 2021 | United Neuroscience Ltd. Cork, Ireland | |
AADvac1 | Truncated pathological tau | Induces antibodies against misfolded tau protein | / | Phase II (NCT02579252) | No significant slowing of cognitive decline, biomarker changes modest, development halted or stalled | AXON Neuroscience SE, Larnaca, Cyprus | |
BIIB092 | N-terminal extracellular tau | Binds extracellular tau to block seeding and spread | / | Phase II (NCT03352557) | Failed to slow clinical decline despite tau binding, development discontinued | Biogen, Cambridge, MA, USA | |
RO7105705 | Blocks tau propagation in extracellular space | / | Phase II (NCT03828747) | Modest biomarker changes but failed to slow clinical progression | Genentech, South San Francisco, CA, USA | ||
Lu AF20513 | Multi-epitope Aβ | DNA vaccine | Targets multiple Aβ epitopes | / | Phase I (NCT03668405) | Study completed with no publication or further clinical development | H. Lundbeck A/S, Copenhagen, Denmark |
CAD106. | Aβ1–6 | Active vaccine | Induces Aβ antibodies while avoiding T-cell response | IM: 450 µg | Phase II/III (NCT02565511) | Did not meet cognitive endpoints in patients with prodromal AD | Novartis, Basel, Switzerland |
Octagam IVIG | Polyvalent antibodies | IV immunoglobulin therapy | Hypothesized to clear Aβ/Opsonize for immune-mediated clearance | / | Phase III (NCT01561053) | Failed to meet cognitive or functional endpoints in mild-to-moderate AD | Instituto Grifols, Barcelona, Spain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Shen, X.; Zhang, B.; Zhu, Z. Biologics as Therapeutical Agents Under Perspective Clinical Studies for Alzheimer’s Disease. Molecules 2025, 30, 3479. https://doi.org/10.3390/molecules30173479
Li H, Shen X, Zhang B, Zhu Z. Biologics as Therapeutical Agents Under Perspective Clinical Studies for Alzheimer’s Disease. Molecules. 2025; 30(17):3479. https://doi.org/10.3390/molecules30173479
Chicago/Turabian StyleLi, Huan, Xinai Shen, Beiyu Zhang, and Zheying Zhu. 2025. "Biologics as Therapeutical Agents Under Perspective Clinical Studies for Alzheimer’s Disease" Molecules 30, no. 17: 3479. https://doi.org/10.3390/molecules30173479
APA StyleLi, H., Shen, X., Zhang, B., & Zhu, Z. (2025). Biologics as Therapeutical Agents Under Perspective Clinical Studies for Alzheimer’s Disease. Molecules, 30(17), 3479. https://doi.org/10.3390/molecules30173479