Plant-Based Innovation: Using Kabocha Pumpkin Peels for Sustainable Starch
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization
2.1.1. Chemical Composition
2.1.2. Swelling Power (SP) and Water Solubility Index (WSI)
2.2. Morphology of Starch Granules
2.3. X-Ray Diffraction Analysis
2.4. Thermal Properties of Starch Granules
2.5. Pasting Properties
Parameters | Starches | ||||
---|---|---|---|---|---|
KPPS | * Winter Squash [26] | * Pumpkin [26] | * Edible Kudzu [38] | * High-Amylose Corn [53] | |
Pasting temperature (°C) | 69.1 ± 04 | 72.28 | 75.15 | 86.55 | 126.6 |
Peak viscosity (cP) | 5293 ± 26 | 6266 | 4468 | 4585 | 71 |
Trough viscosity (cP) | 2804 ± 19 | 3876.5 | 3116 | 2644 | |
Breakdown viscosity (cP) | 2849 ± 33 | 2389 | 1352 | 1944 | 49 |
Final viscosity (cP) | 3550 ± 27 | 4663.5 | 4075 | 4372 | 216 |
Setback viscosity (cP) | 746 ± 42 | 787.0 | 959 | 1736 | 194 |
3. Materials and Methods
3.1. Raw Material
3.2. Starch Extraction
3.3. Characterization
3.3.1. The Chemical Composition of Kabocha Pumpkin Peel Starch
3.3.2. Measurement of Amylose and Amylopectin
3.3.3. Swelling Power and Water Solubility Index
3.4. Morphology
3.4.1. Scanning Electron Microscopy (SEM)
3.4.2. Optical Microscopy
3.5. X-Ray Diffraction (XRD)
3.6. Thermal Properties: Thermogravimetric Analysis (TG) and Derivative Thermogravimetry (DTG)
3.7. Pasting Properties (Rapid Viscosity Analyzer-RVA)
4. Potential Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Temperature (°C) | SP (g·g−1) | WSI (%) |
---|---|---|
55 | 2.06 ± 0.024 | 0.079 ± 0.001 |
65 | 5.87 ± 0.078 | 1.11 ± 0.049 |
75 | 10.69 ± 0.066 | 2.43 ± 0.055 |
85 | 13.77 ± 0.088 | 4.94 ± 0.026 |
95 | 22.6 ± 0.073 | 8.78 ± 0.054 |
References
- Shi, X.; Wu, H.; Shi, J.; Xue, J.; Wang, D.; Wang, W.; Cheng, A.; Gong, Z.; Chen, X.; Wang, C. Effect of modifier on the composition and antioxidant activity of carotenoid extracts from pumpkin (Cucurbita maxima) by supercritical CO2. LWT—Food Sci. Technol. 2013, 51, 433–440. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organizations of the United Nations—FAO Database. 2024. Available online: http://www.fao.org/faostat/en/#data (accessed on 9 August 2025).
- IBGE. Censo Agropecuário, 2017. Abóboras (Morangas e Jerimum). Número de Estabelecimentos Agropecuários, Quantidade Produzida e Área Colhida, Por Produtos da Lavoura Temporária—Resultados Definitivos 2017. 2024. Available online: https://censoagro2017.ibge.gov.br/templates/censo_agro/resultadosagro/agricultura.html?localidade=0&tema=76409 (accessed on 9 August 2025).
- Amaro, G.B.; Silva, G.O.; Boiteux, L.S.; Carvalho, A.D.; Lopes, J.F. Agronomic performance of pumpkin type Tetsukabuto hybrids for fruits traits. Hortic. Bras. 2017, 35, 180–185. [Google Scholar] [CrossRef]
- Gomes, C.F.; Sarkis, J.R.; Marczak, D.F. Ohmic blanching of Tetsukabuto pumpkin: Effects on peroxidase inactivation kinetics and color changes. J. Food Eng. 2018, 233, 74–80. [Google Scholar] [CrossRef]
- Provesi, J.G.; Amante, R. Chapter 9—Carotenoids in Pumpkin and Impact of Processing Treatments and Storage. In Processing and Impact on Active Components in Food; Preedy, V., Ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 71–80. [Google Scholar] [CrossRef]
- Yoshida, M.; Tabata, A.; Niino, T.; Chiku, K.; Nakashita, R.; Suzuki, Y. Potential application of light element stable isotope ratio in crude fiber for geographical origin verification of raw and cooked kabocha pumpkin (Cucurbita maxima). Food Chem. 2022, 373, 131462. [Google Scholar] [CrossRef] [PubMed]
- HEI (Health Effects Institute). State of Global Air 2024; Special Report; Health Effects Institute: Boston, MA, USA, 2024; ISSN 2578-6873. [Google Scholar]
- Ng, H.S.; Kee, P.E.; Yim, H.S.; Chen, P.-T.; Wei, Y.-H.; Lan, J.C.-W. Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresour. Technol. 2020, 302, 122889. [Google Scholar] [CrossRef] [PubMed]
- Rees, W.E.; Pascual, U. Ecological Footprint, Concept of. In Encyclopedia of Biodiversity, 3rd ed.; Scheiner, S.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 449–463. [Google Scholar] [CrossRef]
- Sharma, P.; Gaur, V.K.; Sirohi, R.; Varjani, S.; Kim, S.H.; Wong, J.W. Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresour. Technol. 2021, 325, 124684. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Dissanayake, P.D.; Igalavithana, A.D.; Tang, R.; Cai, Y.; Chang, S.X. Converting food waste into soil amendments for improving soil sustainability and crop productivity: A review. Sci. Total. Environ. 2023, 881, 163311. [Google Scholar] [CrossRef]
- OECD-FAO. OECD-FAO Agricultural Outlook 2024-2033 Paris and Rome; OECD-FAO: Rome, Italy, 2024. [Google Scholar]
- Pomoni, D.I.; Koukou, M.K.; Vrachopoulos, M.G.; Vasiliadis, L. Circular economy: A multilevel approach for natural resources and wastes under an agri-food perspective. Water-Energy Nexus 2024, 7, 103–123. [Google Scholar] [CrossRef]
- McMath, A.L.; Barton, J.M.; Cai, T.; Khan, N.A.; Fiese, B.H.; Donovan, S.M. Western, Healthful, and Low-Preparation Diet Patterns in Preschoolers of the STRONG Kids2 Program. J. Nutr. Educ. Behav. 2024, 56, 219–229. [Google Scholar] [CrossRef]
- Garcia, M.A.V.T.; Cesar, A.L.A.; Garcia, C.F.; Faraco, A.A.G. Chapter 16—Starch applied for pharmaceutical use. In Starch Industries: Processes and Innovative Products in Food and Non-Food Uses; Cereda, M.P., Vilpoux, O.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 349–376. [Google Scholar] [CrossRef]
- Shetty, S.; Govindaraju, I.; Rebello, A.S.; Chatterjee, D.; Rahman, M.H.; Mazumder, N. Chapter 1—Physicochemical modification and characterization of starch used in the food industry: A review. In Advanced Biophysical Techniques for Polysaccharides Characterization; Mazumder, N., Ed.; Academic Press: Cambridge, MA, USA, 2024; pp. 1–46. [Google Scholar] [CrossRef]
- Bertoft, E. Understanding Starch Structure: Recent Progress. In Starch: Chemistry and Technology; BeMiller, J.N., Whistler, R.L., Eds.; Academic Press: Cambridge, MA, USA, 2017; p. 56. [Google Scholar]
- Liu, Q. Understanding Starches and Their Role in Food. In Food carbohydrates: Chemistry, Physical Properties, and Applications; Cui, S.W., Ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2005; pp. 309–349. ISBN 0-8493-1574-3. [Google Scholar]
- Glittenberg, D. 10.07—Starch-Based Biopolymers in Paper, Corrugating, and Other Industrial Applications. In Polymer Science: A Comprehensive Reference; Matyjaszewski, K., Möller, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 165–193. [Google Scholar] [CrossRef]
- McCann, J. 3—Identification of design requirements for smart clothes and wearable technology. In Smart Clothes and Wearable Technology (Second Edition); McCann, J., Bryson, D., Eds.; The Textile Institute Book Series; Woodhead Publishing: Cambridge, UK, 2023; pp. 327–369. [Google Scholar] [CrossRef]
- Aijaz, M.O.; Alnaser, I.A.; Farooq, I.; Siddiqui, M.I.H.; Yang, S.B.; Shakeel, F.; Karim, M.R. Developing novel multifunctional protective clothes for disabled individuals using bio-based electrospun nanofibrous membranes. Int. J. Biol. Macromol. 2024, 275 Pt 1, 133598. [Google Scholar] [CrossRef]
- Islam, M.R.; Karim, F.-E.; Al Hasan, A.; Afrose, D.; Hasan, M.S.; Sikdar, H.; Siddique, A.B.; Begum, H.A. Sustainable development of three distinct starch based bio-composites reinforced with the cotton spinning waste collected from fiber preparation stage. Heliyon 2024, 10, e31534. [Google Scholar] [CrossRef]
- Dutta, D.; Sit, N. Comprehensive review on developments in starch-based films along with active ingredients for sustainable food packaging. Sustain. Chem. Pharm. 2024, 39, 101534. [Google Scholar] [CrossRef]
- Kumari, B.; Sit, N. Comprehensive review on single and dual modification of starch: Methods, properties and applications. Int. J. Biol. Macromol. 2023, 253, 126952. [Google Scholar] [CrossRef]
- Yuan, T.; Ye, F.; Chen, T.; Li, M.; Zhao, G. Structural characteristics and physicochemical properties of starches from winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch. ex Poir.). Food Hydrocoll. 2022, 122, 107115. [Google Scholar] [CrossRef]
- Barandiaran, A.; Montanes, N.; Gomez-Caturla, J.; Balart, R.; Florez-Prieto, M.A.; Ávila-Martin, L.; Perilla, J.E. Development and characterization of edible films based on starch isolated from different Colombian potato varieties. Int. J. Biol. Macromol. 2024, 263, 130165. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Wani, A.; Wani, A.; Masoodi, A. Comparative study of the physico-chemical properties of rice and corn starches grown in Indian temperate climate. J. Saudi Soc. Agric. Sci. 2016, 15, 75–82. [Google Scholar] [CrossRef]
- RDC-Nº711. Resolução da Diretoria Colegiada. 1 July 2022. Available online: https://antigo.anvisa.gov.br/documents/10181/6482578/RDC_711_2022_.pdf/c739c4a9-6d94-424d-b27b-5ffed15474cf#:~:text=REQUISI-TOS%20DE%20COMPOSI%C3%87%C3%83O%2C%20QUALIDADE%2C%20SEGURAN%C3%87A%20E%20ROTULAGEM&text=descaracterizem%20o%20produto.-,Art.,caso%20 (accessed on 9 August 2025).
- Maningat, C.C.; Seib, P.A.; Bassi, S.P.; Woo, K.S.; Lasater, G.D. Wheat starch, production, properties, modification and uses. In Starch: Chemistry and Technology, 3rd ed.; BeMiller, J., Whistler, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Chapter 10; p. 457. [Google Scholar]
- Watanabe, S.; Nishitsuji, Y.; Hayakawa, K.; Shi, Y.-C. Pasting properties of A- and B-type wheat starch granules and annealed starches in relation to swelling and solubility. Int. J. Biol. Macromol. 2024, 261, 129738. [Google Scholar] [CrossRef]
- de Castro, D.S.; Moreira, I.d.S.; Silva, L.M.d.M.; Lima, J.P.; da Silva, W.P.; Gomes, J.P.; de Figueirêdo, R.M.F. Isolation and characterization of starch from pitomba endocarp. Food Res. Int. 2019, 124, 181–187. [Google Scholar] [CrossRef]
- Hedayati, S.; Niakousari, M. Microstructure, pasting and textural properties of wheat starch-corn starch citrate composites. Food Hydrocoll. 2018, 81, 1–5. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Wen, F.; Zhang, S.; Shen, R.; Jiang, W.; Kan, J.; Jin, C. Morphology, structural and physicochemical properties of starch from the root of Cynanchum auriculatum Royle ex Wight. Int. J. Biol. Macromol. 2016, 93, 107–116. [Google Scholar] [CrossRef]
- Zhu, F. Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydr. Polym. 2015, 122, 456–480. [Google Scholar] [CrossRef]
- Sharlina, M.E.; Yaacob, W.A.; Lazim, A.M.; Fazry, S.; Lim, J.; Abdullah, S.; Noordin, A.; Kumaran, M. Physicochemical Properties of Starch from Dioscorea pyrifolia tubers. Food Chem. 2017, 220, 225–232. [Google Scholar] [CrossRef]
- Jiang, Q.; Gao, W.; Li, X.; Xia, Y.; Wang, H.; Wu, S.; Huang, L.; Liu, C.; Xiao, P. Characterizations of starches isolated from five different Dioscorea L. species. Food Hydrocoll. 2012, 29, 35–41. [Google Scholar] [CrossRef]
- Reddy, K.; Luan, F.; Xu, B. Morphology, crystallinity, pasting, thermal and quality characteristics of starches from adzuki bean (Vigna angularis L.) and edible kudzu (Pueraria thomsonii Benth). Int. J. Biol. Macromol. 2017, 105, 354–362. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Wang, S.; Wang, S. Annealing improves paste viscosity and stability of starch. Food Hydrocoll. 2017, 62, 203–211. [Google Scholar] [CrossRef]
- Obadi, M.; Qi, Y.; Xu, B. High-amylose maize starch: Structure, properties, modifications and industrial applications. Carbohydr. Polym. 2023, 299, 120185. [Google Scholar] [CrossRef] [PubMed]
- Taglienti, A.; Sequi, P.; Cafiero, C.; Cozzolino, S.; Ritota, M.; Ceredi, G.; Valentini, M. Hayward kiwifruits and Plant Growth Regulators: Detection and effects in post-harvest studied by Magnetic Resonance Imaging and Scanning Electron Microscopy. Food Chem. 2011, 126, 731–736. [Google Scholar] [CrossRef]
- Tao, J.; Huang, J.; Yu, L.; Li, Z.; Liu, H.; Yuan, B.; Zeng, D. A new methodology combining microscopy observation with Artificial Neural Networks for the study of starch gelatinization. Food Hydrocoll. 2018, 74, 151–158. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, S.; Xu, W.; Yin, Y.; Xu, D.; Zhang, L.; Liu, G.-Q.; Luo, F.; Sun, S.; Lin, Q.; et al. The study on starch granules by using darkfield and polarized light microscopy. J. Food Compos. Anal. 2020, 92, 103576. [Google Scholar] [CrossRef]
- Sun, Z.; Shi, J.; Shi, Y.-C. Dissolution of waxy maize pyrodextrin granules in mixtures of glycerol and water, separating loss of crystallinity from loss of birefringence. Carbohydr. Polym. 2022, 281, 119062. [Google Scholar] [CrossRef]
- Londoño-Restrepo, S.M.; Jeronimo-Cruz, R.; Millán-Malo, B.M.; Rivera-Muñoz, E.M.; Rodriguez-García, M.E. Effect of the Nano Crystal Size on the X-ray Diffraction Patterns of Biogenic Hydroxyapatite from Human, Bovine, and Porcine Bones. Sci. Rep. 2019, 9, 5915. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, E.; Hernandez-Landaverde, A.; Delgado, M.; Ramirez-Gutierrez, F.; Ramirez-Cardona, M.; Millan-Malo, B.M.; Londoño-Restrepo, S.M. Crystalline structures of the main components of starch. Curr. Opin. Food Sci. 2021, 37, 107–111. [Google Scholar] [CrossRef]
- Abelti, L.; Teka, A.; Bultosa, G. Structural and physicochemical characterization of starch from water lily (Nymphaea lotus) for food and non-food applications. Carbohydr. Polym. Technol. Appl. 2024, 7, 100458. [Google Scholar] [CrossRef]
- Lopez-Rubio, A.; Flanagan, B.M.; Gilbert, E.P.; Gidley, M.J. A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers 2008, 89, 761–768. [Google Scholar] [CrossRef]
- Subroto, E.; Cahyana, Y.; Indiarto, R.; Rahmah, T.A. Modification of Starches and Flours by Acetylation and Its Dual Modifications: A Review of Impact on Physicochemical Properties and Their Applications. Polymers 2023, 15, 2990. [Google Scholar] [CrossRef] [PubMed]
- Ionashiro, M.; Giolito, I. Fundamentos da Termogravimetria, Análise Térmica Diferencial, Calorimetria Exploratória Diferencial; Giz Editorial: São Paulo, Brazil, 2005. [Google Scholar]
- Malumba, P.; Bungu, D.; Katanga, J.; Doran, L.; Danthine, S.; Béra, F. Structural and physicochemical characterization of Sphenostylis stenocarpa (Hochst. ex A. Rich.) Harms tuber starch. Food Chem. 2016, 212, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Gunaratne, A.; Hoover, R. Effect of heat–moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydr. Polym. 2002, 49, 425–437. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; You, X.; Fang, F.; Li, B. Impacts of guar and xanthan gums on pasting and gel properties of high-amylose corn starches. Int. J. Biol. Macromol. 2020, 146, 1060–1068. [Google Scholar] [CrossRef]
- Singh, J.; Singh, N. Studies on the morphological, thermal and rheological properties of starch separated from some Indian potato cultivars. Food Chem. 2001, 75, 67–77. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis of the Association Analytical Chemists (Methods: 926.12, 900.02); AOAC: Washington, DC, USA, 1995. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association Analytical Chemists (Methods: 920.39); AOAC: Washington, DC, USA, 2012. [Google Scholar]
- IAL (Instituto Adolfo Lutz). Normas Analíticas do Instituto Adolfo Lutz; IAL: São Paulo, Brazil, 2008. [Google Scholar]
- Li, G.; Zhu, F. Physicochemical properties of quinoa flour as affected by starch interactions. Food Chem. 2017, 221, 1560–1568. [Google Scholar] [CrossRef]
- Rocha, S.; Demiate, M.; Franco, C.M. Structural and physicochemical characteristics of Peruvian carrot (Arracacia xanthorrhiza). Food Sci. Technol. 2008, 28, 620–628. [Google Scholar] [CrossRef]
- ICC (International Association for Cereal Science and Technology). Rapid Pasting Method Using the Newport Rapid Visco Analyser; Standard n° 162; ICC: Wien, Austria, 1996. [Google Scholar]
- Singh, N.; Singh, J.; Kaur, L.; Sodhi, N.S.; Gill, B.S. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003, 81, 219–231. [Google Scholar] [CrossRef]
- Joseph, M.; Sathian, A.; Joshy, K.; Mahapatra, K.; Haponiuk, J.T.; Thomas, S. Chapter 2—Modifications of starch and its characterizations. In Handbook Natural Polymers; Sadasivan, M., Ravindran, L., Goda, K., Thomas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 23–48. [Google Scholar] [CrossRef]
- Navaf, M.; Sunooj, K.V.; Tvisha, M.; Bangar, S.P.; George, J. Native and Modified Starches for Bakery and Confectionery Products. Curr. Food Sci. Technol. Rep. 2024, 2, 333–345. [Google Scholar] [CrossRef]
- Cornejo-Ramírez, I.; Martínez-Cruz, O.; Del Toro-Sánchez, C.L.; Wong-Corral, J.; Borboa-Flores, J.; Cinco-Moroyoqui, F.J. The structural characteristics of starches and their functional properties. J. Food 2018, 16, 1003–1017. [Google Scholar] [CrossRef]
- Egharevba, H.O. Chemical Properties of Starch and Its Application in the Food Industry. In Chemical Properties of Starch; Emeje, M., Ed.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
Industries | Properties Techno-Functional (e.g.) | Reference |
---|---|---|
Foods | Stabilizers, encapsulation, thickener, texturizers, binder and gelatinization | [17] |
Pharmaceutical | Solubilizing, suspending, thickening, preserving, and emulsifying | [16] |
Paper | Thickening and gelling agent, colloidal stabilizer, and help form pastes and adhesives. | [20] |
Textile | Resilience, elasticity, and resistance. | [21,22] |
Packaging | Strength, help form pastes, and stickiness. Physical properties similar to synthetic polymeric material: tasteless, transparent, no odor, and resistance to gases such as O2 and CO2 | [23,24] |
3D printing | Improve structural strength, resistance, texture, and gel firmness. | [25] |
Characteristics (%) | Starches | |||||
---|---|---|---|---|---|---|
* KPPS | Winter Squash [26] | Pumpkin [26] | Potato [27] | Corn [28] | Rice [28] | |
Lipid | 0.35 ± 0.01 | 1.01 | 1.21 | 0.22 | 0.67 | 0.33 |
Protein | 0.39 ± 0.01 | 0.16 | 0.89 | 0.46 | 0.40 | 0.40 |
Ash | 0.03 ± 0.02 | 0.19 | 0.25 | 0.42 | 0.20 | 0.33 |
Amylose | 23.19 ± 0.22 | 30.17 | 21.35 | 32.0 | 7.52 | 4.90 |
Amylopectin | 76.21 ± 0.22 | 69.83 ** | 78.65 ** | 68.0 | 92.48 ** | 95.1 ** |
Modification | Products | Characteristics | Reference |
---|---|---|---|
Reticulation | Bread, pies, samosas, wafers, biscuits, and sausages | Greater resistance to oven cooking temperatures of 120 ≥ 230 °C | [65] |
Oxidation | Candy, sweets, and sweetmeat | High clarity or transmittance, Low viscosity Low temperature stability | [65] |
Esterification and Crosslinking | Soups, sauces, tomato paste, or ketchup | Clarity of starch paste Greater viscosity Reduced syneresis Freeze–thaw stability | [65] |
Hydrolyzed and Esterification | Mayonnaises, salad dressing, ice cream, spreads, and beverages | Lower gelatinization temperature Retrogradation emulsion stabilizers Encapsulation | [62,65] |
Pre-gelatinization and Crosslinking | Spaghettis, macaroni, others | Elasticity and softness Delectableness Digestibility. Structural firmness | [62,65] |
Pre-gelatinization | Custard, bread mixtures | Increased absorption Retention of water Agglutinant in the meat industry | [62,65] |
Grafting | Filmmaking, water-absorbing materials, and textiles | Biodegradability Thermal stability | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, V.d.S.; Arias, L.V.A.; Velasco, J.I.; Fakhouri, F.M.; de Oliveira, R.A. Plant-Based Innovation: Using Kabocha Pumpkin Peels for Sustainable Starch. Molecules 2025, 30, 3363. https://doi.org/10.3390/molecules30163363
Silva VdS, Arias LVA, Velasco JI, Fakhouri FM, de Oliveira RA. Plant-Based Innovation: Using Kabocha Pumpkin Peels for Sustainable Starch. Molecules. 2025; 30(16):3363. https://doi.org/10.3390/molecules30163363
Chicago/Turabian StyleSilva, Viviane de Souza, Luna Valentina Angulo Arias, José Ignacio Velasco, Farayde Matta Fakhouri, and Rafael Augustus de Oliveira. 2025. "Plant-Based Innovation: Using Kabocha Pumpkin Peels for Sustainable Starch" Molecules 30, no. 16: 3363. https://doi.org/10.3390/molecules30163363
APA StyleSilva, V. d. S., Arias, L. V. A., Velasco, J. I., Fakhouri, F. M., & de Oliveira, R. A. (2025). Plant-Based Innovation: Using Kabocha Pumpkin Peels for Sustainable Starch. Molecules, 30(16), 3363. https://doi.org/10.3390/molecules30163363