Lipids from Oilcakes—High Quality Ingredients for Functional Food Products
Abstract
1. Introduction
2. Results
2.1. Oilseeds
2.2. Oilcakes
2.3. Cluster Analysis
2.4. FA Profile via Fourier Transform Infrared-Attenuated Total Reflection (FTIR-ATR)
3. Discussion and Future Perspectives
4. Materials and Methods
4.1. Samples
4.2. Analytical Methods
4.3. Nutritional Indices
- total saturated fatty acids (ΣSFAs);
- total monounsaturated fatty acids (ΣMUFA);
- total polyunsaturated fatty acids (ΣPUFA);
- ratio of total n-6 and n-3 families of polyunsaturated fatty acids (Σn6 PUFA/Σn3 PUFA);
- ratio of polyunsaturated to saturated fatty acids (PUFA/SFA);
- atherogenicity index (IA) indicating the relationship between the sum of SFA and UFA (Equation (1)) considered with pro- and anti-atherogenic potential (capacity to favor/inhibit the accumulation of plaque on the circulatory system), respectively [14];
- thrombogenicity index (IT, Equation (2)) indicating the relationship between the sum of pro- and anti-thrombogenic potential (capacity to favor/inhibit the formation of clots in blood vessels) [92];
- hypocholesterolemic to hyercholesterolemic ratio (h/H) indicating the relationship between hypocholesterolemic and hypercholesterolemic FA, calculated according to Equation (3) [93].
4.4. FTIR Analysis of Oilseeds and Oilcakes FA Profiles
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALA | α-Linolenic acid |
FA | Fatty acids |
FS | Flax seeds |
FSOC | Flaxseed oilcake |
HS | Hemp seeds |
HSOC | Hempseed oilcake |
h/H | hypocholesterolemic to hyercholesterolemic ratio |
IA | Atherogenicity index |
IT | Thrombogenicity index |
LA | Linoleic acid |
MUFA | Monounsaturated fatty acids |
PUFA | Polyunsaturated fatty acids |
RS | Rape seeds |
RSOC | Rapeseed oilcake |
SFA | Saturated fatty acids |
SFOC | Sunflower oilcake |
SFS | Sunflower seeds |
SOC | Sesame oilcake |
SS | Sesame seeds |
WOC | Walnut oilcake |
WK | Walnut kernels |
References
- Faustino, M.; Veiga, M.; Sousa, P.; Costa, E.M.; Silva, S.; Pintado, M. Agro-Food Byproducts as a New Source of Natural Food Additives. Molecules 2019, 24, 1056. [Google Scholar] [CrossRef]
- Ancuța, P.; Sonia, A. Oil Press-Cakes and Meals Valorization through Circular Economy Approaches: A Review. Appl. Sci. 2020, 10, 7432. [Google Scholar] [CrossRef]
- Petraru, A.; Amariei, S. Recovery of Bioactive Compounds From Oilcakes—A Review. Food Environ. Saf. J. 2022, 21, 364–381. [Google Scholar] [CrossRef]
- Sharma, P.; Gaur, V.K.; Gupta, S.; Varjani, S.; Pandey, A.; Gnansounou, E.; You, S.; Ngo, H.H.; Wong, J.W.C. Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability. Sci. Total Environ. 2022, 811, 152357. [Google Scholar] [CrossRef] [PubMed]
- Socas-Rodríguez, B.; Álvarez-Rivera, G.; Valdés, A.; Ibáñez, E.; Cifuentes, A. Food by-products and food wastes: Are they safe enough for their valorization? Trends Food Sci. Technol. 2021, 114, 133–147. [Google Scholar] [CrossRef]
- Alejandro Ruiz, F.E.; Ortega Jácome, J.F.; Mora, J.R.; Landázuri, A.C.; Vásconez Duchicela, P.; Vásconez Espinoza, J.; Beltrán-Ayala, P.; Andrade-Cuvi, M.J.; Alvarez-Suarez, J.M. Comprehensive characterization and valorization potential of Amazonian Sacha inchi (Plukenetia volubilis L.) seeds, oil, and oilcake by-products for sustainable food applications. Front. Nutr. 2025, 12, 1597300. [Google Scholar] [CrossRef]
- Aït-Kaddour, A.; Hassoun, A.; Tarchi, I.; Loudiyi, M.; Boukria, O.; Cahyana, Y.; Ozogul, F.; Khwaldia, K. Transforming plant-based waste and by-products into valuable products using various “Food Industry 4.0” enabling technologies: A literature review. Sci. Total Environ. 2024, 955, 176872. [Google Scholar] [CrossRef]
- Gupta, A.; Sharma, R.; Sharma, S.; Singh, B. Oilseed as Potential Food Ingredient. In Trends and Prospects in Foods Technology, Processing and Preservation; Today and Tomorrow’s Printers and Publishers: Delhi, India, 2019; pp. 191–215. [Google Scholar]
- Serrapica, F.; Masucci, F.; Raffrenato, E.; Sannino, M.; Vastolo, A.; Barone, C.M.A.; Di Francia, A. High fiber cakes from mediterranean multipurpose oilseeds as protein sources for ruminants. Animals 2019, 9, 918. [Google Scholar] [CrossRef]
- Popović, S.; Hromiš, N.; Šuput, D.; Bulut, S.; Romanić, R.; Lazić, V. Valorization of By-Products from the Production of Pressed Edible Oils to Produce Biopolymer Films, 1st ed.; Academic Press: London, UK, 2020; ISBN 9780128181881. [Google Scholar]
- Grahovac, N.; Aleksić, M.; Trajkovska, B.; Marjanović Jeromela, A.; Nakov, G. Extraction and Valorization of Oilseed Cakes for Value-Added Food Components—A Review for a Sustainable Foodstuff Production in a Case Process Approach. Foods 2025, 14, 2244. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, T.; Liang, Y.; Jiang, L.; Sui, X. Dietary Bioactive Lipids: A Review on Absorption, Metabolism, and Health Properties. J. Agric. Food Chem. 2021, 69, 8929–8943. [Google Scholar] [CrossRef] [PubMed]
- Frydrych, A.; Kulita, K.; Jurowski, K.; Piekoszewski, W. Lipids in Clinical Nutrition and Health: Narrative Review and Dietary Recommendations. Foods 2025, 14, 473. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Zárate, R.; el Jaber-Vazdekis, N.; Tejera, N.; Pérez, J.A.; Rodríguez, C. Significance of long chain polyunsaturated fatty acids in human health. Clin. Transl. Med. 2017, 6, e25. [Google Scholar] [CrossRef] [PubMed]
- Mititelu, M.; Lupuliasa, D.; Neacșu, S.M.; Olteanu, G.; Busnatu, Ș.S.; Mihai, A.; Popovici, V.; Măru, N.; Boroghină, S.C.; Mihai, S.; et al. Polyunsaturated Fatty Acids and Human Health: A Key to Modern Nutritional Balance in Association with Polyphenolic Compounds from Food Sources. Foods 2024, 14, 46. [Google Scholar] [CrossRef]
- Liu, A.G.; Ford, N.A.; Hu, F.B.; Zelman, K.M.; Mozaffarian, D.; Kris-Etherton, P.M. A healthy approach to dietary fats: Understanding the science and taking action to reduce consumer confusion. Nutr. J. 2017, 16, 53. [Google Scholar] [CrossRef] [PubMed]
- Actis Dato, V.; Lange, S.; Cho, Y. Metabolic Flexibility of the Heart: The Role of Fatty Acid Metabolism in Health, Heart Failure, and Cardiometabolic Diseases. Int. J. Mol. Sci. 2024, 25, 1211. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xu, L.; Ballantyne, C.M. Dietary and Pharmacological Fatty Acids and Cardiovascular Health. J. Clin. Endocrinol. Metab. 2020, 105, 1030–1045. [Google Scholar] [CrossRef]
- Marangoni, F.; Agostoni, C.; Borghi, C.; Catapano, A.L.; Cena, H.; Ghiselli, A.; La Vecchia, C.; Lercker, G.; Manzato, E.; Pirillo, A.; et al. Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis 2020, 292, 90–98. [Google Scholar] [CrossRef]
- Kapoor, B.; Kapoor, D.; Gautam, S.; Singh, R.; Bhardwaj, S. Dietary Polyunsaturated Fatty Acids (PUFAs): Uses and Potential Health Benefits. Curr. Nutr. Rep. 2021, 10, 232–242. [Google Scholar] [CrossRef]
- Rebello, C.J. Polyunsaturated Fatty Acid Intake and Brain Health: Balance is the Key. Am. J. Geriatr. Psychiatry 2022, 30, 774–776. [Google Scholar] [CrossRef]
- Stachowicz, K. The role of polyunsaturated fatty acids in neuronal signaling in depression and cognitive processes. Arch. Biochem. Biophys. 2023, 737, 109555. [Google Scholar] [CrossRef]
- Magnusson, J.; Ekström, S.; Kull, I.; Håkansson, N.; Nilsson, S.; Wickman, M.; Melén, E.; Risérus, U.; Bergström, A. Polyunsaturated fatty acids in plasma at 8 years and subsequent allergic disease. J. Allergy Clin. Immunol. 2018, 142, 510–516.e6. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Xu, Q.; Chen, S.-S. Omega-3 fatty acids as a treatment for non-alcoholic fatty liver disease in children: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2018, 37, 516–521. [Google Scholar] [CrossRef]
- Senila, L.; Neag, E.; Cadar, O.; Kovacs, M.H.; Becze, A. Chemical, Nutritional and Antioxidant Characteristics of Different Food Seeds. Appl. Sci. 2020, 10, 1589. [Google Scholar] [CrossRef]
- Rakita, S.; Kokić, B.; Manoni, M.; Mazzoleni, S.; Lin, P.; Luciano, A.; Ottoboni, M.; Cheli, F.; Pinotti, L. Cold-Pressed Oilseed Cakes as Alternative and Sustainable Feed Ingredients: A Review. Foods 2023, 12, 432. [Google Scholar] [CrossRef]
- Barnard, N.D.; Bunner, A.E.; Agarwal, U. Saturated and trans fats and dementia: A systematic review. Neurobiol. Aging 2014, 35, S65–S73. [Google Scholar] [CrossRef]
- Maki, K.C.; Dicklin, M.R.; Kirkpatrick, C.F. Saturated fats and cardiovascular health: Current evidence and controversies. J. Clin. Lipidol. 2021, 15, 765–772. [Google Scholar] [CrossRef]
- Islam, M.A.; Amin, M.N.; Siddiqui, S.A.; Hossain, M.P.; Sultana, F.; Kabir, M.R. Trans fatty acids and lipid profile: A serious risk factor to cardiovascular disease, cancer and diabetes. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 1643–1647. [Google Scholar] [CrossRef]
- Petersen, K.S.; Maki, K.C.; Calder, P.C.; Belury, M.A.; Messina, M.; Kirkpatrick, C.F.; Harris, W.S. Perspective on the health effects of unsaturated fatty acids and commonly consumed plant oils high in unsaturated fat. Br. J. Nutr. 2024, 132, 1039–1050. [Google Scholar] [CrossRef] [PubMed]
- Petraru, A.; Amariei, S. Rapeseed—An Important Oleaginous Plant in the Oil Industry and the Resulting Meal a Valuable Source of Bioactive Compounds. Plants 2024, 13, 3085. [Google Scholar] [CrossRef] [PubMed]
- Petraru, A.; Amariei, S.; Senila, L. Flaxseed Oilcake: An Ingredient with High Nutritional Value in the Realization of Innovative Food Products. Foods 2025, 14, 1087. [Google Scholar] [CrossRef]
- Pasieczna-Patkowska, S.; Cichy, M.; Flieger, J. Application of Fourier Transform Infrared (FTIR) Spectroscopy in Characterization of Green Synthesized Nanoparticles. Molecules 2025, 30, 684. [Google Scholar] [CrossRef]
- Ozulku, G.; Yildirim, R.M.; Toker, O.S.; Karasu, S.; Durak, M.Z. Rapid detection of adulteration of cold pressed sesame oil adultered with hazelnut, canola, and sunflower oils using ATR-FTIR spectroscopy combined with chemometric. Food Control 2017, 82, 212–216. [Google Scholar] [CrossRef]
- Daoud, S.; Bou-maroun, E.; Dujourdy, L.; Waschatko, G.; Billecke, N.; Cayot, P. Fast and direct analysis of oxidation levels of oil-in-water emulsions using ATR-FTIR. Food Chem. 2019, 293, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Alshuiael, S.M.; Al-Ghouti, M.A. Multivariate analysis for FTIR in understanding treatment of used cooking oil using activated carbon prepared from olive stone. PLoS ONE 2020, 15, e0232997. [Google Scholar] [CrossRef] [PubMed]
- de Souza, T.R.P.; Olenka, L.; Peternella, W.S. A Study of Degradation in Vegetable Oils by Exposure to Sunlight Using Fourier Transform Infrared Spectroscopy. Mater. Sci. Appl. 2020, 11, 678–691. [Google Scholar] [CrossRef]
- Mehany, T.; González-Sáiz, J.M.; Pizarro, C. Recent advances in spectroscopic approaches for assessing the stability of bioactive compounds and quality indices of olive oil during deep-frying: Current knowledge, challenges, and implications. Food Chem. 2025, 464, 141624. [Google Scholar] [CrossRef]
- Poiana, M.-A.; Alexa, E.; Munteanu, M.-F.; Gligor, R.; Moigradean, D.; Mateescu, C. Use of ATR-FTIR spectroscopy to detect the changes in extra virgin olive oil by adulteration with soybean oil and high temperature heat treatment. Open Chem. 2015, 13, 000010151520150110. [Google Scholar] [CrossRef]
- Rexhepi, F.; Behrami, A.; Samaniego-Sánchez, C.; Rebezov, M.; Shariati, M.A.; Bastian da Silva, A.; Bertoli, S.L.; Krebs de Souza, C. Chemical changes of pumpkin seed oils and the impact on lipid stability during thermal treatment: Study by FTIR—Spectroscopy. J. Microbiol. Biotechnol. Food Sci. 2022, 11, e5839. [Google Scholar] [CrossRef]
- Di Lena, G.; Del Pulgar, J.S.; Lucarini, M.; Durazzo, A.; Ondrejíčková, P.; Oancea, F.; Frincu, R.M.; Aguzzi, A.; Nicoli, S.F.; Casini, I.; et al. Valorization potentials of rapeseed meal in a biorefinery perspective: Focus on nutritional and bioactive components. Molecules 2021, 26, 6787. [Google Scholar] [CrossRef]
- Andronie, L.; Pop, I.D.; Sobolu, R.; Diaconeasa, Z.; Truţă, A.; Hegeduş, C.; Rotaru, A. Characterization of Flax and Hemp Using Spectrometric Methods. Appl. Sci. 2021, 11, 8341. [Google Scholar] [CrossRef]
- Bouyanfif, A.; Liyanage, S.; Hequet, E.; Moustaid-Moussa, N.; Abidi, N. FTIR microspectroscopy reveals fatty acid-induced biochemical changes in C. elegans. Vib. Spectrosc. 2019, 102, 8–15. [Google Scholar] [CrossRef]
- Ferreira, R.; Lourenço, S.; Lopes, A.; Andrade, C.; Câmara, J.S.; Castilho, P.; Perestrelo, R. Evaluation of Fatty Acids Profile as a Useful Tool towards Valorization of By-Products of Agri-Food Industry. Foods 2021, 10, 2867. [Google Scholar] [CrossRef]
- Mármol, I.; Quero, J.; Ibarz, R.; Ferreira-Santos, P.; Teixeira, J.A.; Rocha, C.M.R.; Pérez-Fernández, M.; García-Juiz, S.; Osada, J.; Martín-Belloso, O.; et al. Valorization of agro-food by-products and their potential therapeutic applications. Food Bioprod. Process. 2021, 128, 247–258. [Google Scholar] [CrossRef]
- Lewinska, A.; Zebrowski, J.; Duda, M.; Gorka, A.; Wnuk, M. Fatty Acid Profile and Biological Activities of Linseed and Rapeseed Oils. Molecules 2015, 20, 22872–22880. [Google Scholar] [CrossRef]
- Farid, Z.; Abdennouri, M.; Barka, N.; Jannani, Y.; Sadiq, M. Study of the effect of pH, conditioning and flotation time on the flotation efficiency of phosphate ores by a soybean oil collector. J. Met. Mater. Miner. 2022, 32, 101–108. [Google Scholar] [CrossRef]
- Matwijczuk, A.; Zając, G.; Kowalski, R.; Kachel-Jakubowska, M.; Gagoś, M. Spectroscopic Studies of the Quality of Fatty Acid Methyl Esters Derived from Waste Cooking Oil. Pol. J. Environ. Stud. 2017, 26, 2643–2650. [Google Scholar] [CrossRef]
- Khan, M.U.; Hassan, M.F.; Rauf, A. Determination of trans Fat in Selected Fast Food Products and Hydrogenated Fats of India Using Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy. J. Oleo Sci. 2017, 66, 251–257. [Google Scholar] [CrossRef] [PubMed]
- da Costa Filho, P.A. Developing a rapid and sensitive method for determination of trans-fatty acids in edible oils using middle-infrared spectroscopy. Food Chem. 2014, 158, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Martins, Z.E.; Pinho, O.; Ferreira, I. Food industry by-products used as functional ingredients of bakery products. Trends Food Sci. Technol. 2017, 67, 106–128. [Google Scholar] [CrossRef]
- Abedini, A.; Alizadeh, A.M.; Mahdavi, A.; Golzan, S.A.; Salimi, M.; Tajdar-Oranj, B.; Hosseini, H. Oilseed Cakes in the Food Industry: A Review on Applications, Challenges, and Future Perspectives. Curr. Nutr. Food Sci. 2021, 17, 345–362. [Google Scholar] [CrossRef]
- Mikulec, A.; Kowalski, S.; Sabat, R.; Skoczylas, Ł.; Tabaszewska, M.; Wywrocka-Gurgul, A. Hemp flour as a valuable component for enriching physicochemical and antioxidant properties of wheat bread. LWT 2019, 102, 164–172. [Google Scholar] [CrossRef]
- Melo, D.; Álvarez-ortí, M.; Nunes, M.A.; Costa, A.S.G.; Machado, S.; Alves, R.C.; Pardo, J.E.; Oliveira, M.B.P.P. Whole or defatted sesame seeds (Sesamum indicum L.)? The effect of cold pressing on oil and cake quality. Foods 2021, 10, 2108. [Google Scholar] [CrossRef]
- So, K.K.Y.; Duncan, R.W. Breeding Canola (Brassica napus L.) for Protein in Feed and Food. Plants 2021, 10, 2220. [Google Scholar] [CrossRef]
- Mihai, A.L.; Negoiță, M.; Horneț, G.-A.; Belc, N. Valorization Potential of Oil Industry By-Products as Sources of Essential Fatty Acids. Processes 2022, 10, 2373. [Google Scholar] [CrossRef]
- Gharby, S.; Asbbane, A.; Nid Ahmed, M.; Gagour, J.; Hallouch, O.; Oubannin, S.; Bijla, L.; Goh, K.W.; Bouyahya, A.; Ibourki, M. Vegetable oil oxidation: Mechanisms, impacts on quality, and approaches to enhance shelf life. Food Chem. X 2025, 28, 102541. [Google Scholar] [CrossRef]
- Grajzer, M.; Szmalcel, K.; Kuźmiński, Ł.; Witkowski, M.; Kulma, A.; Prescha, A. Characteristics and Antioxidant Potential of Cold-Pressed Oils—Possible Strategies to Improve Oil Stability. Foods 2020, 9, 1630. [Google Scholar] [CrossRef]
- Kumari Singh, P.; Chopra, R.; Garg, M.; Chauhan, K.; Singh, N.; Homroy, S.; Agarwal, A.; Mishra, A.K.; Kamle, M.; Mahato, D.K.; et al. Shelf Life Enhancement of Structured Lipids Rich in Omega-3 Fatty Acids Using Rosemary Extract: A Sustainable Approach. ACS Omega 2024, 9, 31359–31372. [Google Scholar] [CrossRef]
- Bianchetti, G.; Azoulay-Ginsburg, S.; Keshet-Levy, N.Y.; Malka, A.; Zilber, S.; Korshin, E.E.; Sasson, S.; De Spirito, M.; Gruzman, A.; Maulucci, G. Investigation of the Membrane Fluidity Regulation of Fatty Acid Intracellular Distribution by Fluorescence Lifetime Imaging of Novel Polarity Sensitive Fluorescent Derivatives. Int. J. Mol. Sci. 2021, 22, 3106. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.-W.; Zhang, J.-G.; Ni, Z.-J.; Zhang, F.; Thakur, K.; Hu, F.; Wei, Z.-J. Functional and emulsification characteristics of phospholipids and derived o/w emulsions from peony seed meal. Food Chem. 2022, 389, 133112. [Google Scholar] [CrossRef] [PubMed]
- Vichare, S.A.; Morya, S. Exploring waste utilization potential: Nutritional, functional and medicinal properties of oilseed cakes. Front. Food Sci. Technol. 2024, 4, 1441029. [Google Scholar] [CrossRef]
- Franco, D.; Martins, A.; López-Pedrouso, M.; Purriños, L.; Cerqueira, M.; Vicente, A.; Pastrana, L.; Zapata, C.; Lorenzo, J. Strategy towards Replacing Pork Backfat with a Linseed Oleogel in Frankfurter Sausages and Its Evaluation on Physicochemical, Nutritional, and Sensory Characteristics. Foods 2019, 8, 366. [Google Scholar] [CrossRef]
- Dinh, T.T.N.; To, K.V.; Schilling, M.W. Fatty Acid Composition of Meat Animals as Flavor Precursors. Meat Muscle Biol. 2021, 5, 1–16. [Google Scholar] [CrossRef]
- Alharbi, A.; Ghonimy, M. Environmental Benefits of Olive By-Products in Energy, Soil, and Sustainable Management. Sustainability 2025, 17, 4722. [Google Scholar] [CrossRef]
- Rai, N.; Pavankumar, T.L.; Ghotra, B.; Dhillon, S.; Juneja, V.; Amaly, N.; Pandey, P. Essential recycling and repurposing of food waste for environment and sustainability. Front. Sustain. Food Syst. 2025, 9, 1575113. [Google Scholar] [CrossRef]
- Güçlü, H. Characteristic of Essential Oils Extracted from the Industrial-Scale Processing By-Products of Agro-foods. Curr. Nutr. Rep. 2025, 14, 34. [Google Scholar] [CrossRef]
- Mihai, A.L.; Negoiţă, M.; Horneţ, G.-A. Nutritional potential of some cold pressed vegetable oils in terms of fatty acids. Curr. Trends Nat. Sci. 2020, 9, 104–116. [Google Scholar] [CrossRef]
- Alasalvar, C.; Chang, S.K.; Bolling, B.; Oh, W.Y.; Shahidi, F. Specialty seeds: Nutrients, bioactives, bioavailability, and health benefits: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2382–2427. [Google Scholar] [CrossRef] [PubMed]
- Burbano, J.J.; Correa, M.J. Composition and Physicochemical Characterization of Walnut Flour, a By-product of Oil Extraction. Plant Foods Hum. Nutr. 2021, 76, 233–239. [Google Scholar] [CrossRef]
- Pop, A.; Paucean, A.; Socaci, S.A.; Alexa, E.; Man, S.M.; Muresan, V.; Chis, M.S.; Salanta, L.; Popescu, I.; Berbecea, A.; et al. Quality characteristics and volatile profile of macarons modified with walnut oilcake by-product. Molecules 2020, 25, 2214. [Google Scholar] [CrossRef] [PubMed]
- Mueed, A.; Shibli, S.; Korma, S.A.; Madjirebaye, P.; Esatbeyoglu, T.; Deng, Z. Flaxseed Bioactive Compounds: Chemical Composition, Functional Properties, Food Applications and Health Benefits-Related Gut Microbes. Foods 2022, 11, 3307. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.P.; Sharma, S.; Nema, P. Physico-chemical and functional properties of flour prepared from native and roasted whole linseeds. J. Pharmacogn. Phytochem. 2020, 9, 1428–1433. [Google Scholar]
- Miklankova, D.; Markova, I.; Hüttl, M.; Stankova, B.; Malinska, H. The Different Insulin-Sensitising and Anti-Inflammatory Effects of Palmitoleic Acid and Oleic Acid in a Prediabetes Model. J. Diabetes Res. 2022, 2022, 4587907. [Google Scholar] [CrossRef]
- Yang, Z.; Pryor, M.; Noguchi, A.; Sampson, M.; Johnson, B.; Pryor, M.; Donkor, K.; Amar, M.; Remaley, A.T. Dietary Palmitoleic Acid Attenuates Atherosclerosis Progression and Hyperlipidemia in Low-Density Lipoprotein Receptor-Deficient Mice. Mol. Nutr. Food Res. 2019, 63, 1900120. [Google Scholar] [CrossRef]
- Joris, P.J.; Mensink, R.P. Role of cis-Monounsaturated Fatty Acids in the Prevention of Coronary Heart Disease. Curr. Atheroscler. Rep. 2016, 18, 38. [Google Scholar] [CrossRef]
- Latifi, M.; Jalali Bidgoli, F.; Hajihassani, H.; Hassani, D.; Ingvarsson, P.K.; Farrokhi, N. Recent advances and future directions on GLA-producing organisms. Front. Bioeng. Biotechnol. 2025, 13, 1567840. [Google Scholar] [CrossRef]
- Nagy, K.; Iacob, B.-C.; Bodoki, E.; Oprean, R. Investigating the Thermal Stability of Omega Fatty Acid-Enriched Vegetable Oils. Foods 2024, 13, 2961. [Google Scholar] [CrossRef]
- Vetter, W.; Darwisch, V.; Lehnert, K. Erucic acid in Brassicaceae and salmon—An evaluation of the new proposed limits of erucic acid in food. NFS J. 2020, 19, 9–15. [Google Scholar] [CrossRef]
- Russo, M.; Yan, F.; Stier, A.; Klasen, L.; Honermeier, B. Erucic acid concentration of rapeseed (Brassica napus L.) oils on the German food retail market. Food Sci. Nutr. 2021, 9, 3664–3672. [Google Scholar] [CrossRef] [PubMed]
- Sumara, A.; Stachniuk, A.; Montowska, M.; Kotecka-Majchrzak, K.; Grywalska, E.; Mitura, P.; Saftić Martinović, L.; Kraljević Pavelić, S.; Fornal, E. Comprehensive Review of Seven Plant Seed Oils: Chemical Composition, Nutritional Properties, and Biomedical Functions. Food Rev. Int. 2023, 39, 5402–5422. [Google Scholar] [CrossRef]
- Khalili Tilami, S.; Kouřimská, L. Assessment of the Nutritional Quality of Plant Lipids Using Atherogenicity and Thrombogenicity Indices. Nutrients 2022, 14, 3795. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef]
- Horman, T.; Fernandes, M.F.; Tache, M.C.; Hucik, B.; Mutch, D.M.; Leri, F. Dietary n-6/n-3 Ratio Influences Brain Fatty Acid Composition in Adult Rats. Nutrients 2020, 12, 1847. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Budoff, M.J.; Mason, R.P. A Revolution in Omega-3 Fatty Acid Research. J. Am. Coll. Cardiol. 2020, 76, 2098–2101. [Google Scholar] [CrossRef]
- Venegas-Calerón, M.; Sayanova, O.; Napier, J.A. An alternative to fish oils: Metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Prog. Lipid Res. 2010, 49, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.G.; Song, Z.X.; Yin, H.; Wang, Y.Y.; Shu, G.F.; Lu, H.X.; Wang, S.K.; Sun, G.J. Low n-6/n-3 PUFA Ratio Improves Lipid Metabolism, Inflammation, Oxidative Stress and Endothelial Function in Rats Using Plant Oils as n-3 Fatty Acid Source. Lipids 2016, 51, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Pojić, M.; Mišan, A.; Sakač, M.; Hadnađev, T.D.; Šarić, B.; Milovanović, I.; Hadnađev, M. Characterization of byproducts originating from hemp oil processing. J. Agric. Food Chem. 2014, 62, 12346–12442. [Google Scholar] [CrossRef] [PubMed]
- Petraru, A.; Ursachi, F.; Amariei, S. Nutritional characteristics assessment of sunflower seeds, oil and cake. Perspective of using sunflower oilcakes as a functional ingredient. Plants 2021, 10, 2487. [Google Scholar] [CrossRef]
- Piskernik, S.; Levart, A.; Korošec, M.; Perme, K.; Salobir, J.; Žontar, T.P. Fatty acid profiles, nutritional quality and sensory characteristics of unconventional oils and fats on the slovenian market. J. Food Nutr. Res. 2021, 60, 373–383. [Google Scholar]
- Dal Bosco, A.; Cavallo, M.; Menchetti, L.; Angelucci, E.; Cartoni Mancinelli, A.; Vaudo, G.; Marconi, S.; Camilli, E.; Galli, F.; Castellini, C.; et al. The Healthy Fatty Index Allows for Deeper Insights into the Lipid Composition of Foods of Animal Origin When Compared with the Atherogenic and Thrombogenicity Indexes. Foods 2024, 13, 1568. [Google Scholar] [CrossRef]
- Czerwonka, M.; Białek, A. Fatty Acid Composition of Pseudocereals and Seeds Used as Functional Food Ingredients. Life 2023, 13, 217. [Google Scholar] [CrossRef] [PubMed]
SFS | HS | RS * | FS * | SS | WK | |
---|---|---|---|---|---|---|
Lipids, % | 64.76 ± 0.28 a | 25.54 ± 0.53 e | 35.22 ± 1.39 d | 27.74 ± 0.48 e | 46.23 ± 0.43 c | 59.55 ± 2.23 b |
SFA, % | ||||||
Caprylic acid (C8:0) | 0.33 ± 0.01 d | 1.12 ± 0.03 b | 0.41 ± 0.01 c | 0.32 ± 0.01 d | 0.25 ± 0.01 e | 0.13 ± 0.01 f |
Capric acid (C10:0) | nd | 0.27 ± 0.01 e | 0.36 ± 0.03 d | nd | nd | nd |
Lauric acid (C12:0) | nd | 0.26 ± 0.00 e | 0.37 ± 0.02 d | 0.35 ± 0.01 d | nd | nd |
Myristic acid (C14:0) | 0.43 ± 0.00 d | 0.41 ± 0.02 d | 0.55 ± 0.04 c | 0.46 ± 0.02 d | 0.28 ± 0.01 e | 0.18 ± 0.02 f |
Pentadecanoic acid (C15:0) | 1.19 ± 0.01 e | 4.72 ± 0.12 d | 4.45 ± 0.28 d | 11.86 ± 0.04 c | 0.53 ± 0.03 f | 0.27 ± 0.02 f |
Palmitic acid (C16:0) | nd | nd | 12.27 ± 0.87 c | 6.79 ± 0.03 e | 8.44 ± 0.06 d | nd |
Heptadecanoic acid (C17:0) | 1.30 ± 0.03 d | 1.72 ± 0.06 c | nd | 7.80 ± 0.14 b | 1.04 ± 0.01 d | 0.62 ± 0.04 e |
Stearic acid (C18:0) | 1.20 ± 0.08 d | 0.76 ± 0.00 e | 1.08 ± 0.03 d | 1.65 ± 0.08 c | 0.39 ± 0.00 f | 0.36 ± 0.00 f |
Arachidic acid (C20:0) | 20.60 ± 0.21 b | 1.04 ± 0.05 e | nd | 8.50 ± 0.06 c | 3.15 ± 0.21 d | nd |
Heneicosanoic acid (C21:0) | nd | nd | 0.38 ± 0.01 c | 0.52 ± 0.00 b | 0.26 ± 0.01 d | 0.18 ± 0.01 e |
Eicosadienoic acid (C22:0) | nd | 0.14 ± 0.00 e | 0.21 ± 0.01 cd | 0.15 ± 0.00 d | 0.23 ± 0.01 c | nd |
Tricosanoic acid (C23:0) | nd | 2.92 ± 0.11 e | 4.15 ± 0.03 d | 4.05 ± 0.03 d | nd | nd |
Lignoceric acid (C24:0) | 0.20 ± 0.01 c | 0.14 ± 0.00 e | 0.17 ± 0.01 cd | 0.14 ± 0.00 de | nd | nd |
MUFA, % | ||||||
Myristoleic acid (C14:1, n-5) | 0.15 ± 0.00 de | 0.18 ± 0.01 cd | 0.21 ± 0.01 c | 0.19 ± 0.01 c | 0.14 ± 0.01 e | 0.06 ± 0.01 f |
cis-10-pentadecanoic acid (C15:1, n-5) | 1.10 ± 0.01 d | nd | 6.21 ± 0.03 c | nd | 1.01 ± 0.01 e | nd |
Palmitoleic acid (C16:1, n-7) | 0.40 ± 0.01 c | 0.51 ± 0.02 b | 0.52 ± 0.01 b | 0.19 ± 0.01 e | 0.34 ± 0.01 d | 0.12 ± 0.01 f |
cis-10 heptadecanoic acid (C17:1) | nd | 1.55 ± 0.01 e | nd | 4.34 ± 0.10 c | nd | 1.72 ± 0.01 d |
Oleic acid + Elaidic acid (C18:1, cis + trans, n-9) | 12.00 ± 0.25 e | 28.22 ± 0.30 b | 10.24 ± 0.49 f | 20.64 ± 0.07 d | 33.76 ± 0.34 a | 26.47 ± 0.31 c |
Gondoic acid (C20:1, n-9) | nd | 0.78 ± 0.04 e | nd | 1.90 ± 0.01 c | 1.51 ± 0.01 d | nd |
Erucic acid (C22:1, n-9) | 4.88 ± 0.03 e | 4.21 ± 0.04 d | 5.57 ± 0.18 b | 4.89 ± 0.01 c | 3.88 ± 0.04 e | 1.94 ± 0.03 f |
PUFA, % | ||||||
Linoleic acid + linolelaidic acid (C18:2, cis + trans, n-6) | 54.50 ± 0.28 c | 46.11 ± 0.23 d | 44.72 ± 0.64 d | 18.03 ± 0.19 f | 39.93 ± 0.04 e | 65.68 ± 0.67 b |
γ-Linolenic acid (C18:3, n-6) | nd | nd | 0.64 ± 0.00 d | 1.05 ± 0.06 c | nd | 0.33 ± 0.02 e |
α-Linolenic acid (C18:3, n-3) | 1.25 ± 0.01 c | 0.72 ± 0.03 e | 1.17 ± 0.07 cd | 2.46 ± 0.02 b | 1.03 ± 0.04 d | 0.37 ± 0.02 f |
cis-11,14-eicosadienoic acid (C20:2, n-6) + cis-8,11,14-eicosatrienoic acid (C20:3, n-6) | 1.00 ± 0.00 c | 0.28 ± 0.04 ef | 1.26 ± 0.01 b | 0.43 ± 0.01 d | 0.35 ± 0.02 e | 0.25 ± 0.00 f |
cis-11,14,17-eicosatrienoic acid (C20:3, n-3) | 0.66 ± 0.01 c | 0.15 ± 0.01 e | 0.31 ± 0.01 d | 0.25 ± 0.01 e | 0.14 ± 0.00 f | 0.33 ± 0.02 d |
Arachidonic acid (C20:4, n-6) | 0.31 ± 0.00 e | 0.16 ± 0.01 f | 0.46 ± 0.06 d | 0.28 ± 0.01 e | 0.14 ± 0.00 f | 0.27 ± 0.02 e |
cis-5,8,11,14,17-eicosapentenoic acid (C20:5, n-3) | 0.25 ± 0.01 c | 0.15 ± 0.00 d | nd | 0.15 ± 0.00 c | nd | 0.06 ± 0.00 e |
Docosa-dienoic acid (C22:2, n-6) | 0.30 ± 0.01 d | 0.72 ± 0.04 b | nd | 0.18 ± 0.00 e | 0.58 ± 0.00 c | nd |
Docosa-hexanoic acid (C22:6, n-3) + nervonic acid (C24:1, n-9) | 3.08 ± 0.03 d | 2.75 ± 0.07 de | 4.31 ± 0.11 c | 2.45 ± 0.04 e | 2.60 ± 0.01 e | 0.65 ± 0.05 f |
SFOC | HSOC | RSOC * | FSOC * | SOC | WOC | |
---|---|---|---|---|---|---|
Lipids, % | 15.48 ± 0.22 b | 9.96 ± 0.02 e | 13.24 ± 0.03 c | 11.61 ± 0.40 d | 24.66 ± 0.10 a | 9.63 ± 0.08 e |
SFA, % | ||||||
Caprylic acid (C8:0) | 0.59 ± 0.04 d | 1.33 ± 0.04 b | 0.65 ± 0.04 d | 1.01 ± 0.04 c | 0.29 ± 0.00 e | 0.16 ± 0.01 f |
Capric acid (C10:0) | nd | 0.56 ± 0.02 b | 0.23 ± 0.01 d | 0.37 ± 0.02 c | nd | 0.12 ± 0.01 e |
Undecanoic acid (C11:0) | nd | 0.31 ± 0.00 f | nd | nd | nd | nd |
Lauric acid (C12:0) | nd | nd | 0.21 ± 0.00 d | 0.40 ± 0.01 c | nd | 0.13 ± 0.01 e |
Tridecanoic acid (C13:0) | nd | nd | nd | 0.23 ± 0.00 f | nd | nd |
Myristic acid (C14:0) | 0.68 ± 0.01 d | 0.98 ± 0.03 c | 0.48 ± 0.03 e | 0.61 ± 0.01 d | 4.26 ± 0.03 b | 0.33 ± 0.02 f |
Pentadecanoic acid (C15:0) | 7.50 ± 0.14 c | 7.29 ± 0.41 c | 5.45 ± 0.35 d | 4.98 ± 0.14 d | 1.87 ± 0.05 e | 0.60 ± 0.01 f |
Palmitic acid (C16:0) | 2.95 ± 0.08 b | nd | nd | 0.92 ± 0.03 c | 0.57 ± 0.01 d | 0.31 ± 0.00 e |
Heptadecanoic acid (C17:0) | 1.90 ± 0.08 f | 14.03 ± 0.04 d | 22.17 ± 0.26 c | 1.31 ± 0.07 f | 15.03 ± 0.07 d | 10.13 ± 0.43 e |
Stearic acid (C18:0) | 4.11 ± 0.15 b | 2.39 ± 0.13 c | 0.47 ± 0.02 e | 1.16 ± 0.01 d | nd | 0.36 ± 0.00 e |
Arachidic acid (C20:0) | 38.12 ± 0.17 d | nd | nd | nd | nd | 2.04 ± 0.14 e |
Heneicosanoic acid (C21:0) | nd | 0.93 ± 0.04 b | 0.50 ± 0.04 d | 0.69 ± 0.01 c | 0.33 ± 0.01 e | 0.36 ± 0.01 e |
Eicosadienoic acid (C22:0) | nd | nd | 0.10 ± 0.00 e | 0.23 ± 0.01 c | nd | 0.12 ± 0.00 d |
Tricosanoic acid (C23:0) | nd | 6.47 ± 0.04 e | nd | nd | nd | nd |
Lignoceric acid (C24:0) | nd | 0.34 ± 0.00 f | nd | 0.21 ± 0.00 f | nd | nd |
MUFA, % | ||||||
Myristoleic acid(C14:1, n-5) | 0.38 ± 0.01 e | 0.64 ± 0.00 d | 1.71 ± 0.06 c | 0.31 ± 0.01 ef | 2.17 ± 0.10 b | 0.18 ± 0.01 f |
cis-10-pentadecanoic acid (C15:1, n-5) | 1.17 ± 0.04 d | nd | nd | 4.27 ± 0.04 c | 0.36 ± 0.01 e | nd |
Palmitoleic acid (C16:1, n-7) | 0.32 ± 0.00 f | 0.74 ± 0.00 d | 0.65 ± 0.04 e | 0.68 ± 0.01 de | 0.70 ± 0.00 d | 0.39 ± 0.01 f |
cis-10 heptadecanoic acid (C17:1) | nd | nd | nd | 8.06 ± 0.16 d | nd | 4.28 ± 0.09 e |
Oleic acid + elaidic acid (C18:1, cis + trans, n-9) | 9.41 ± 0.57 e | 17.66 ± 0.13 d | 9.12 ± 0.16 e | 34.29 ± 0.05 b | 29.14 ± 0.37 c | 2.54 ± 0.00 f |
Gondoic acid (C20:1, n-9) | nd | 3.59 ± 0.08 d | nd | 1.08 ± 0.03 e | nd | 1.16 ± 0.05 e |
Erucic acid (C22:1, n-9) | 8.75 ± 0.35 b | 5.16 ± 0.23 d | 3.75 ± 0.14 ef | 5.98 ± 0.04 c | 4.27 ± 0.04 e | 3.29 ± 0.11 f |
PUFA, % | ||||||
Linoleic acid + Linolelaidic acid (C18:2, cis + trans, n-6) | 15.03 ± 0.04 f | 22.74 ± 0.06 e | 39.63 ± 0.67 c | 22.91 ± 0.16 e | 34.47 ± 0.44 d | 70.22 ± 1.22 b |
γ-Linolenic acid (C18:3, n-6) | nd | 1.49 ± 0.01 c | nd | 1.43 ± 0.01 d | 0.48 ± 0.00 e | nd |
α-Linolenic acid (C18:3, n-3) | 1.16 ± 0.06 e | 6.83 ± 0.04 b | 12.48 ± 0.03 a | 1.65 ± 0.02 d | 1.92 ± 0.06 c | 0.21 ± 0.01 f |
cis-11,14-eicosadienoic acid (C20:2, n-6) + cis-8,11,14-eicosatrienoic acid (C20:3, n-6) | 0.58 ± 0.01 e | nd | 1.75 ± 0.07 c | 0.87 ± 0.01 d | 0.20 ± 0.01 f | 1.07 ± 0.08 d |
cis-11,14,17-eicosatrienoic acid (C20:3, n-3) | 0.56 ± 0.00 c | 0.35 ± 0.01 de | 0.40 ± 0.03 d | 0.34 ± 0.0 e | 0.26 ± 0.00 f | 0.66 ± 0.02 b |
Arachidonic acid (C20:4, n-6) | nd | 0.41 ± 0.04 e | nd | 0.33 ± 0.01 e | nd | 0.56 ± 0.04 d |
cis-5,8,11,14,17-eicosapentenoic acid (C20:5, n-3) | nd | 0.43 ± 0.01 c | nd | 0.35 ± 0.01 d | nd | 0.11 ± 0.01 e |
Docosa-dienoic acid (C22:2, n-6) | 0.32 ± 0.01 d | 0.31 ± 0.01 d | 0.25 ± 0.014 e | 0.30 ± 0.30 d | 0.48 ± 0.01 c | nd |
docosa-hexanoic acid (C22:6, n-3) + nervonic acid (C24:1, n-9) | 6.47 ± 0.38 c | 5.02 ± 0.03 d | nd | 5.03 ± 0.03 d | 3.21 ± 0.04 e | 0.59 ± 0.04 f |
Characteristic | Mean | p-Value | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
C8:0 | 0.622 a | 0.299 a | 1.330 b | 0.468 a | 0.002 * |
C10:0 | 0.198 a | 0.030 a | 0.555 b | 0.113 a | 0.001 * |
C11:0 | 0.000 a | 0.000 a | 0.310 a | 0.000 a | 0.000 * |
C12:0 | 0.273 b | 0.032 a | 0.000 a | 0.105 ab | 0.001 * |
C13:0 | 0.246 a | 0.000 a | 0.000 a | 0.000 a | 0.228 |
C14:0 | 0.457 a | 0.403 a | 0.980 ab | 2.370 b | 0.006 * |
C14:1, n-5 | 0.205 a | 0.191 a | 0.640 b | 1.938 c | 0.000 * |
C15:0 | 5.306 a | 2.386 a | 7.290 a | 3.655 a | 0.179 |
C15:1, n-5 | 2.296 a | 0.566 a | 0.000 a | 0.183 a | 0.112 |
C16:0 | 5.685 a | 0.814 a | 0.000 a | 0.283 a | 0.014 * |
C16:1, n-7 | 0.450 ab | 0.305 a | 0.740 b | 0.660 b | 0.001 * |
C17:0 | 2.393 a | 3.485 a | 14.030 b | 18.598 b | 0.000 * |
C17:1 | 2.791 a | 1.499 a | 0.000 a | 0.000 a | 0.209 |
(C18:0 | 1.009 a | 1.505 a | 2.390 a | 0.233 a | 0.096 |
C18:1, cis + trans, n-9 | 25.830 b | 12.601 a | 17.655 ab | 19.128 ab | 0.059 |
C18:2, cis + trans, n-6 | 34.340 a | 50.355 a | 22.740 a | 37.048 a | 0.105 |
C18:3, n-6 | 0.625 ab | 0.082 a | 1.485 b | 0.240 a | 0.002 * |
C18:3, n-3 | 1.404 a | 0.745 a | 6.830 b | 7.200 b | 0.000 * |
C20:0 | 2.557 a | 15.189 a | 0.000 a | 0.000 a | 0.040 * |
C20:1, n-9 | 1.058 b | 0.289 a | 3.585 c | 0.000 a | 0.000 * |
C20:2, n-6 + C20:3, n-6 | 0.635 a | 0.724 a | 0.000 a | 0.978 a | 0.168 |
C20:3, n-3 | 0.236 a | 0.549 b | 0.345 ab | 0.330 a | 0.000 * |
C20:4, n-6 | 0.274 b | 0.284 b | 0.410 b | 0.000 a | 0.014 * |
C20:5, n-3 | 0.139 a | 0.091 a | 0.425 b | 0.000 a | 0.001 * |
C21:0 | 0.370 a | 0.134 a | 0.930 b | 0.415 a | 0.000 * |
C22:0 | 0.199 b | 0.030 a | 0.000 a | 0.051 a | 0.000 * |
C22:1, n-9 | 4.902 a | 4.445 a | 5.160 a | 4.010 a | 0.792 |
C22:2, n-6 | 0.357 a | 0.153 a | 0.305 a | 0.363 a | 0.224 |
C22:6, n-3 + C24:1, n-9) | 3.425 a | 2.695 a | 5.020 a | 1.605 a | 0.175 |
C23:0 | 2.229 b | 0.000 a | 6.470 c | 0.000 a | 0.000 * |
C24:0 | 0.134 b | 0.049 a | 0.340 c | 0.000 a | 0.000 * |
Name | Family | Abbreviation |
---|---|---|
Sunflower: whole seeds (Helianthus annus) oilcake (pellets) | Asteraceae | SFS SFOC |
Hemp: whole seeds (Cannabis sativa) oilcake (pellets) | Cannabaceae | HS HSOC |
Flax: whole seeds (Linum uitatissimum) oilcake (ground flour) | Linaceae | FS FSOC |
Rape: whole seeds (Brassica napus) oilcake (ground flour) | Brassicaceae | RS RSOC |
Sesame: whole seeds (Sesamum indicum) oilcake (ground flour) | Pedaliaceae | SS SOC |
Walnut: kernels (Junglas Regia) oilcake (ground flour) | Juglandaceae | WK WOC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petraru, A.; Amariei, S.; Senila, L. Lipids from Oilcakes—High Quality Ingredients for Functional Food Products. Molecules 2025, 30, 3640. https://doi.org/10.3390/molecules30173640
Petraru A, Amariei S, Senila L. Lipids from Oilcakes—High Quality Ingredients for Functional Food Products. Molecules. 2025; 30(17):3640. https://doi.org/10.3390/molecules30173640
Chicago/Turabian StylePetraru, Ancuța, Sonia Amariei, and Lacrimioara Senila. 2025. "Lipids from Oilcakes—High Quality Ingredients for Functional Food Products" Molecules 30, no. 17: 3640. https://doi.org/10.3390/molecules30173640
APA StylePetraru, A., Amariei, S., & Senila, L. (2025). Lipids from Oilcakes—High Quality Ingredients for Functional Food Products. Molecules, 30(17), 3640. https://doi.org/10.3390/molecules30173640