Defining Phytochemical Metabolomes of Somatic Hybrids Gentiana cruciata L. (+) G. tibetica King ex Hook.f. (Gentianaceae) Using UHPLC-DAD-ESI-MS3 Analysis in Comparison to the Parental Species
Abstract
1. Introduction
2. Results and Discussion
2.1. Comparative Analysis of Secondary Metabolites in Hybrids and Parental Plants
No. | Compound | Metabolite Group | tR [min] | UV-Vis [nm] | [M−H]¯ m/z | MS2 Ions m/z | MS3 Ions m/z | CR | F30A-1 | F30A-2 | F30A-4 | F30A-5 | F30A-6 | TIB | Previously Reported in C/T | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | R | S | R | S | R | S | R | S | R | S | R | S | R | ||||||||||
1 | Gentianose | Carbohydrate | 2.0 | - | 503 | 549 [M − H + HCOOH]− 341 [M − H − Frc]− 179 [M − H − Frc − Glc]− | + | + | + | + | + | + | [68] | ||||||||||
2 | Eustomorusside | Secoiridoid | 3.1 | - | 407 | 453 [M − H + HCOOH]− 329 245 [M − H − Glc]− 209 [M − H − Glc − H2O − H2O]− | + | [69] | |||||||||||||||
3 | Eustoside | Secoiridoid | 13.0 | - | 425 | 471 [M − H + HCOOH]− 263 [M − H − Glc]− 208, 141 | + | + | [6] | ||||||||||||||
4 | Eustomoside | Secoiridoid | 13.8 | - | 389 | 435 [M − H + HCOOH]− 227 [M − H − Glc]− 209 [M − H − Glc − H2O]− 141 | + | + | + | + | + | + | C | [6,70] | |||||||||
5 | 2,3-dihydroxybenzoic acid 3-O-β-D-glucopyranoside | Phenolic acid glycoside | 14.3 | 308 | 315 | 153 [M − H − Glc]− | + | + | + | + | + | + | [71] | ||||||||||
6 | Morroniside | Secoridoid | 20.1 | - | 405 | 451 [M − H + HCOOH]− 243 [M − H − Glc]− | + | + | [6,72] | ||||||||||||||
7 | Loganic acid | Iridoid | 20.3 | - | 375 | 323 213 [M − H − Glc]− 169 [M − H − Glc − CO2]− | + | + | + | + | + | + | + | + | C,T | [6,73] | |||||||
8 | Swertiamarin | Secoiridoid | 23.0 | - | 373 | 419 [M − H + HCOOH]− 211 [M − H − Glc]− 179 [Glc − H]− 161 [Glc − H − H2O]− | + | + | + | + | + | + | + | + | C,T | [6,49,73] | |||||||
9 | 6′-O-β-D-glucopyranosyl gentiopicroside | Secoiridoid | 24.1 | - | 517 | 563 [M − H + HCOOH]− 341 [2Glc + H2O − H]− 323 [2Glc − H]− 281, 251 193 [M − H − 2Glc]− 179 [Glc − H]− | + | + | + | + | + | + | + | + | T | [72,74] | |||||||
10 | Gentiopicroside (syn. gentiopicrin) | Secoiridoid | 25.3 | 274 243 | 355 | 401 [M − H + HCOOH]− 225 193 [M − H − Glc]− 179 [Glc − H]− 143 [Glc − H − 2H2O]− 119 [Glc − H − (CHOH)2]¯ | + | + | + | + | + | + | + | + | + | + | + | + | + | + | C,T | [6,49,73,75] | |
11 | Sweroside | Secoiridoid | 26.6 | 244 | 357 | 403 [M − H + HCOOH]− 267 [M − H − (CHOH)3]− 195 [M − H − Glc]− 179 [Glc − H]− 161 [Glc − H − H2O]− 125 | + | + | + | + | + | + | + | + | C,T | [6,49,73] | |||||||
12 | 4′-O-β-D-glucopyranosyl gentiopicroside | Secoiridoid | 27.5 | - | 517 | 563 [M − H + HCOOH]− 355 [M − H − Glc]− 341 [2Glc + H2O − H]− 179 [Glc − H]− | + | + | + | + | + | + | + | [74] | |||||||||
13 | Saponarin (syn. isovitexin-7-O-β-D-glucopyranoside) | Flavonoid | 28.8 | 214, 270 | 593 | 503 [M − H − (CHOH)3]− 473 [M − H − (CHOH)4]− 431 [M − H − Glc]− 341 [M − H − Glc − (CHOH)3]− 311 [M − H − Glc − (CHOH)4]− 283 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | C,T | [6,72] | |
14 | Mangiferin | Xanthone | 29.1 | 257, 319 | 421 | 403 [M − H − H2O]− 331 [M − H − (CHOH)3]− 301 [M − H − (CHOH)4]− 259 [M − H − Glc]− | + | + | + | + | + | + | + | C | [6,49,72,73] | ||||||||
15 | Isoorientin 4′-O-β-D-glucopyranoside | Flavonoid | 29.2 | 227 | 609 | 447 [M − H − Glc]− 357 [M − H − Glc − (CHOH)3]− 327 [M − H − Glc − (CHOH)4]− 299 | + | + | + | + | [6,72] | ||||||||||||
16 | 2′-(2,3-dihydroxybenzoyl)sweroside | Secoiridoid | 31.9 | - | 493 | 539 [M − H + HCOOH]− 339 [M − H − doBA − H2O]− 179 [Glc − H]− | + | + | + | + | + | T | [48] | ||||||||||
17 | Isovitexin | Flavonoid | 39.9 | 230 | 431 | 413 [M − H − H2O]− 341 [M − H − (CHOH)3]− 311 [M − H − (CHOH)4]− 283 | + | + | + | T | [6] | ||||||||||||
18 | Isovitexin 4′,7-di-O-β-D-glucopyranoside (syn. saponarin 4′-O-β-D-glucopyranoside) | Flavonoid | 42.4 | 216 | 755 | 593 [M − H − Glc]¯ 431 [M − H − 2Glc]− | 311 [M − H − 2Glc − (CHOH)4]¯ | + | + | C | [49] | ||||||||||||
19 | Gentiotrifloroside (syn. 2-O-(2-hydroxy-3-O-β-D-glucopyranosyl-oxybenzoyl)sweroside) | Secoiridoid | 44.1 | 220 | 655 | 493 [M − H − Glc]− 195 [M − H − Glc − doBA − Glc]− | + | + | + | [72] | |||||||||||||
20 | Acanthoside B (syn. eleutheroside E1; syringaresinol 4-O-β-D-glucopyranoside) | Lignan | 44.6 | 231 | 579 | 417 [M − H − Glc]− 181, 166 | + | + | + | + | + | + | [68] | ||||||||||
21 | Macrophylloside D | Chromene derivative | 45.9 | 242, 324 | 557 | 603 [M − H + HCOOH]− 593 [M − H + HCl]− 437, 369 359 [M − H − Glc − 2H2O]− 323, 263, 247, 233 [M − H − 2Glc]− 221 179 [Glc − H]− | + | + | + | + | + | + | + | + | + | T | [76] | ||||||
22 | Swertianolin | Xanthone | 47.9 | 210, 310 | 435 | 417 [M − H − H2O]− 315 [M − H − (CHOH)3]− 287 273 [M − H − Glc]− 197, 187, 137 | 229 [M − H − Glc − CO2]− 185 [M − H − Glc − 2CO2]− | + | + | + | + | + | + | + | [77] | ||||||||
23 | Swetiapuniside | Xanthone | 48.5 | 233 | 597 | 435 [M − H − Glc]− | 315, 299, 297 273 [M − H − 2Glc]− 229 [M − H − 2Glc − CO2]− 195, 153, 137 | + | + | + | + | + | + | + | + | + | + | [78] | |||||
24 | Gentistraminoside A (syn. 4′-O-acetyl-6′-O-(2”-hydroxy-3”-O-β-D-glucopyranosyloxybenzoyl)-sweroside) | Secoiridoid | 50.8 | 219 | 697 | 655 [M − H − Ac]− 571 535 [M − H − Glc]− 409 | 475 [M − H − Glc − Ac − H2O]− 357 [M − H − Glc − doBA − Ac]− 349, 153 | + | + | [72,79] | |||||||||||||
25 | 6′-O-acetyl-3′-O-(2”-hydroxy-3”-O-β-D-glucopyranosyloxybenzoyl)-sweroside | Secoiridoid | 51.1 | 231 | 697 | 743 [M − H + HCOOH]− 535 [M − H − Glc]− | + | [6,72] | |||||||||||||||
26 | Dedihydroxybenzoate-macrophylloside A | Secoiridoid | 59.8 | 232 | 739 | 697 [M − H − Ac]− 577 [M − H − Glc]− 535 [M − H − Glc–Ac]− | 451 | + | [72] | ||||||||||||||
27 | Gelidoside (syn. rindoside) | Secoiridoid | 66.6 | 233 | 797 | 755 [M − H − Ac]− 713 [M − H − 2Ac]− 635 [M − H − Glc]− | 593 [M − H − Glc − Ac]− 373 [M − H − Glc − doBA − 3Ac]− | + | + | + | + | + | + | + | + | + | T | [6,72,79,80] | |||||
28 | Trifloroside | Secoiridoid | 68.4 | 237 | 781 | 739 [M − H − Ac]− 619 [M − H − Glc]− 577 [M − H − Glc − Ac]− 535 [M − H − Glc − 2Ac]− | 195 [M − H − Glc − doBA − Ac3Glc]¯ | + | + | + | + | + | + | + | + | T | [6,72] | ||||||
29 | Macrophylloside A | Secoiridoid | 68.8 | 234 | 875 | 833 [M − H − H2O]− 815 [M − H − H2O]− 782 739 [M − H − doBA]− 721 713 [M − H − Glc]− 697 | 619 577 [M − H − Glc − doBA]− 535 [M − H − Glc − doBA − Ac]− 517, 475, 451, 441, 409 | + | T | [48,72] | |||||||||||||
30 | 1α,2α,3β,24-tetrahydroxyursa-12,20(30)-dien-28-oic acid | Triterpenoid | 72.8 | - | 501 | 547 [M − H + HCOOH]− 469, 455, 439, 424, 405, 389 | + | T | [81] | ||||||||||||||
31 | Caulophyllogenin | Triterpenoid | 75.3 | - | 487 | 469 [M − H − H2O]− 419 | + | [82] |
2.1.1. Iridoids
2.1.2. Secoiridoids
2.1.3. Flavonoids
2.1.4. Xanthones
2.1.5. Lignans
2.1.6. Triterpenoids
2.1.7. Other Compounds
2.2. Evaluation of the TPC, TSC, and Antioxidant Potential Using the DPPH and FRAP Methods
2.3. Quantitative Analysis of Major Iridoids and Secoiridoids in Parental and Somatic Hybrid Gentiana Plants
3. Materials and Methods
3.1. Plant Material
3.2. Extraction of Plant Material
3.3. Qualitative UHPLC-DAD-ESI-MS3 Analysis
3.4. Metabolite Identification Strategy
3.5. Quantitative UHPLC-DAD Analysis
3.6. Determination of Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
3.7. Determination of Antioxidant Activity (DPPH• and FRAP Assays)
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ac | acetyl |
BPC | base peak chromatogram |
CR | Gentiana cruciata |
CMS | cytoplasmic male sterility |
DAD | diode array detector |
DE | dry extract |
DMAPP | dimethylallyl pyrophosphate |
doBA | dihydroxybenzoic acid |
DW | dry weight |
ESI | electrospray ionization |
F30A-1/2/4/5/6 | somatic hybrid lines of G. cruciata (+) G. tibetica |
Frc | fructose |
GAE | gallic acid equivalent |
Glc | glucose |
IPP | isopentenyl pyrophosphate |
MEP | methylerythritol phosphate pathway (plastidial) |
MS | mass spectrometry |
MVA | mevalonic acid pathway (cytosolic) |
S | shoots |
R | roots |
TFC | total flavonoid content |
TPC | total phenolic content |
TE | Trolox equivalent |
TIB | Gentiana tibetica |
UHPLC | ultra-high-performance liquid chromatography |
UPGMA | unweighted pair group method with arithmetic mean |
UV-Vis | ultraviolet-visible spectroscopy |
[M–H]− | deprotonated pseudomolecular ion in negative mode |
References
- WFO. Gentiana Tourn. ex L. 2025. Available online: http://www.worldfloraonline.org/taxon/wfo-4000015502 (accessed on 22 March 2025).
- Köhlein, F. Gentians; Timber Press: Portland, OR, USA, 1991. [Google Scholar]
- Mirzaee, F.; Hosseini, A.; Jouybari, H.B.; Davoodi, A.; Azadbakht, M. Medicinal, biological and phytochemical properties of Gentiana species. J. Tradit. Complement. Med. 2017, 7, 400–408. [Google Scholar] [CrossRef]
- Pan, Y.; Zhao, Y.L.; Zhang, J.; Li, W.Y.; Wang, Y.Z. Phytochemistry and Pharmacological Activities of the Genus Gentiana (Gentianaceae). Chem. Biodivers. 2016, 13, 107–150. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.L.; Dorje, G.; Wang, Z.T. Identification of medicinal plants used as Tibetan Traditional Medicine jie-ji. J. Ethnopharmacol. 2010, 132, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Gadimli, A.I.; Isaev, J.I.; Kashchenko, N.I.; Prokopyev, A.S.; Kataeva, T.N.; Chirikova, N.K.; Vennos, C. Caucasian Gentiana Species: Untargeted LC-MS Metabolic Profiling, Antioxidant and Digestive Enzyme Inhibiting Activity of Six Plants. Metabolites 2019, 9, 271. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K.; Tankhaeva, L.M. Iridoids and Flavonoids of Four Siberian Gentians: Chemical Profile and Gastric Stimulatory Effect. Molecules 2015, 20, 19172–19188. [Google Scholar] [CrossRef]
- Yang, J.-L.; Liu, L.-L.; Shi, Y.-P. Phytochemicals and Biological Activities of Gentiana Species. Nat. Prod. Commun. 2010, 5, 649–664. [Google Scholar] [CrossRef] [PubMed]
- Tovilovic-Kovacevic, G.; Zogovic, N.; Krstic-Milosevic, D. Chapter 19—Secondary metabolites from endangered Gentiana, Gentianella, Centaurium, and Swertia species (Gentianaceae): Promising natural biotherapeutics. In Biodiversity and Biomedicine; Ozturk, M., Egamberdieva, D., Pešić, M., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 335–384. [Google Scholar]
- Jiang, M.; Cui, B.W.; Wu, Y.L.; Nan, J.X.; Lian, L.H. Genus Gentiana: A review on phytochemistry, pharmacology and molecular mechanism. J. Ethnopharmacol. 2021, 264, 113391. [Google Scholar] [CrossRef]
- Jensen, S.R.; Schripsema, J. 6–Chemotaxonomy and pharmacology of Gentianaceae. In Gentianaceae; Struwe, L., Albert, V., Eds.; Cambridge University Press: Cambridge, UK, 2002; pp. 573–631. [Google Scholar]
- Czarnomska, Z.; Markowski, M.; Nawrocka, E.K.; Kozminski, W.; Bazylko, A.; Szypula, W.J. Gentiana capitata Buch.-Ham. ex D.Don Cell Suspension Culture as a New Source of Isosaponarin and 3,7,8-Trimethoxy-9-oxo-9H-xanthen-1-yl 6-O-beta-D-ribopyranosyl-beta-D-allopyranoside and Their Effect on PC-12 Cell Viability. Int. J. Mol. Sci. 2024, 25, 8576. [Google Scholar] [CrossRef]
- Espinosa-Leal, C.A.; Puente-Garza, C.A.; Garcia-Lara, S. In vitro plant tissue culture: Means for production of biological active compounds. Planta 2018, 248, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Kiełkiewicz, R.M.; Obrębski, M.; Śliwińska, A.A.; Równicki, M.; Kawka, M.; Sykłowska-Baranek, K.; Granica, S. Detailed qualitative and quantitative UHPLC-DAD-ESI-MS3 analysis of Aralia spinosa L. (Araliaceae) phytochemical profile to evaluate its potential as novel plant material for bioactive compounds acquisition using in vitro culture. Ind. Crops Prod. 2024, 219, 119123. [Google Scholar] [CrossRef]
- Skrzypczak, L.; Wesolowska, M.; Skrzypczak, E. Gentiana Species: In Vitro Culture, Regeneration, and Production of Secoiridoid Glucosides. In Medicinal and Aromatic Plants IV; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 172–186. [Google Scholar]
- Chueh, F.S.; Chen, C.C.; Sagare, A.P.; Tsay, H.S. Quantitative determination of secoiridoid glucosides in in vitro propagated plants of Gentiana davidii var. formosana by high performance liquid chromatography. Planta Med. 2001, 67, 70–73. [Google Scholar] [PubMed]
- Hayta, S.; Akgun, I.H.; Ganzera, M.; Bedir, E.; Gurel, A. Shoot proliferation and HPLC-determination of iridoid glycosides in clones of Gentiana cruciata L. Plant Cell Tissue Organ Cult. (PCTOC) 2011, 107, 175–180. [Google Scholar]
- Huang, S.H.; Agrawal, D.C.; Wu, F.S.; Tsay, H.S. In vitro propagation of Gentiana scabra Bunge—An important medicinal plant in the Chinese system of medicines. Bot. Stud. 2014, 55, 56. [Google Scholar] [CrossRef]
- Krstić-Milošević, D.; Banjac, N.; Janković, T.; Eler, K.; Vinterhalter, B. Gentiana clusii Perr.&Song.: Enhanced production of secondary metabolites by in vitro propagation. Plant Physiol. Biochem. 2020, 154, 735–744. [Google Scholar] [PubMed]
- Zhang, H.L.; Xue, S.H.; Pu, F.; Tiwari, R.K.; Wang, X.Y. Establishment of hairy root lines and analysis of gentiopicroside in the medicinal plant Gentiana macrophylla. Russ. J. Plant Physiol. 2010, 57, 110–117. [Google Scholar] [CrossRef]
- Hayta, S.; Gurel, A.; Akgun, I.H.; Altan, F.; Ganzera, M.; Tanyolac, B.; Bedir, E. Induction of Gentiana cruciata hairy roots and their secondary metabolites. Biologia 2011, 66, 618–625. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Trivedi, M.; Guang, Z.C.; Guo, G.Q.; Zheng, G.C. Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes: Growth and production of secoiridoid glucoside gentiopicroside in transformed hairy root cultures. Plant Cell Rep. 2007, 26, 199–210. [Google Scholar] [CrossRef]
- Huang, S.H.; Vishwakarma, R.K.; Lee, T.T.; Chan, H.S.; Tsay, H.S. Establishment of hairy root lines and analysis of iridoids and secoiridoids in the medicinal plant Gentiana scabra. Bot. Stud. 2014, 55, 17. [Google Scholar] [CrossRef]
- Tomiczak, K. Molecular and cytogenetic description of somatic hybrids between Gentiana cruciata L. and G. tibetica King. J. Appl. Genet. 2020, 61, 13–24. [Google Scholar] [CrossRef]
- Tomiczak, K.; Sliwinska, E.; Rybczyński, J.J. Protoplast fusion in the genus Gentiana: Genomic composition and genetic stability of somatic hybrids between Gentiana kurroo Royle and G. cruciata L. Plant Cell Tissue Organ Cult. (PCTOC) 2017, 131, 1–14. [Google Scholar] [CrossRef]
- Davey, M. Somatic Hybridization. In Encyclopedia of Applied Plant Sciences (Second Edition); Thomas, B., Murray, B.G., Murphy, D.J., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 480–486. [Google Scholar]
- Mukundan, N.S.; Satyamoorthy, K.; Babu, V.S. Advancing plant protoplasts: Innovative techniques and future prospects. Plant Biotechnol. Rep. 2025. [Google Scholar] [CrossRef]
- Waara, S.; Glimelius, K. The potential of somatic hybridization in crop breeding. Euphytica 1995, 85, 217–233. [Google Scholar] [CrossRef]
- Orczyk, W. Somatic hybrids of Solanum tuberosum—Application to genetics and breeding. Plant Cell Tissue Organ Cult. (PCTOC) 2003, 74, 1–13. [Google Scholar] [CrossRef]
- Dambier, D.; Benyahia, H.; Pensabene-Bellavia, G.; Aka Kacar, Y.; Froelicher, Y.; Belfalah, Z.; Lhou, B.; Handaji, N.; Printz, B.; Morillon, R.; et al. hybridization for citrus rootstock breeding: An effective tool to solve some important issues of the Mediterranean citrus industry. Plant Cell Rep. 2011, 30, 883–900. [Google Scholar] [CrossRef]
- Tiwari, J.K.; Devi, S.; Ali, N.; Luthra, S.K.; Kumar, V.; Bhardwaj, V.; Singh, R.K.; Rawat, S.; Chakrabarti, S.K. Progress in somatic hybridization research in potato during the past 40 years. Plant Cell Tissue Organ Cult. (PCTOC) 2017, 132, 225–238. [Google Scholar] [CrossRef]
- Mizuhiro, M.; Ito, K.; Mii, M. Production and characterization of interspecific somatic hybrids between Primula malacoides and P. obconica. Plant Sci. 2001, 161, 489–496. [Google Scholar] [CrossRef]
- Horita, M.; Morohashi, H.; Komai, F. Production of fertile somatic hybrid plants between Oriental hybrid lily and Lilium x formolongi. Planta 2003, 217, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.W.; Deng, X.X.; Yi, H.L. Somatic hybrids between navel orange (Citrus sinensis) and grapefruit (C. paradisi) for seedless triploid breeding. Euphytica 2000, 116, 281–285. [Google Scholar] [CrossRef]
- Wu, J.-H.; Ferguson, A.R.; Mooney, P.A. Allotetraploid hybrids produced by protoplast fusion for seedless triploid Citrus breeding. Euphytica 2005, 141, 229–235. [Google Scholar] [CrossRef]
- Sato, H.; Yamada, K.; Mii, M.; Hosomi, K.; Okuyama, S.; Uzawa, M.; Ishikawa, H.; Ito, Y. Production of an interspecific somatic hybrid between peppermint and gingermint. Plant Sci. 1996, 115, 101–107. [Google Scholar] [CrossRef]
- Han, L.; Zhou, C.; Shi, J.; Zhi, D.; Xia, G. Ginsenoside Rb1 in asymmetric somatic hybrid calli of Daucus carota with Panax quinquefolius. Plant Cell Rep. 2009, 28, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, C.; Liu, C.; Xia, G.; Xiang, F. Introgression of Swertia mussotii gene into Bupleurum scorzonerifolium via somatic hybridization. BMC Plant Biol. 2011, 11, 71. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, P.; Ji, D.; Kang, G.; Xiang, F. Asymmetric somatic hybridization between Bupleurum scorzonerifolium Willd. and Taxus chinensis var. mairei. Plant Cell Rep. 2011, 30, 1857–1864. [Google Scholar] [CrossRef] [PubMed]
- Iannicelli, J.; Guariniello, J.; Tossi, V.E.; Regalado, J.J.; Di Ciaccio, L.; van Baren, C.M.; Pitta Álvarez, S.I.; Escandón, A.S. The “polyploid effect” in the breeding of aromatic and medicinal species. Sci. Hortic. 2020, 260, 108854. [Google Scholar] [CrossRef]
- Niazian, M.; Nalousi, A.M. Artificial polyploidy induction for improvement of ornamental and medicinal plants. Plant Cell Tissue Organ Cult. (PCTOC) 2020, 142, 447–469. [Google Scholar] [CrossRef]
- Gupta, N.; Bhattacharya, S.; Dutta, A.; Cusimamani, E.F.; Milella, L.; Leuner, O. In Vitro Synthetic Polyploidization in Medicinal and Aromatic Plants for Enhanced Phytochemical Efficacy—A Mini-Review. Agronomy 2024, 14, 1830. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, C.H.; Wang, M.Q.; Zhi, D.Y.; Xia, G.M. Genomic changes at the early stage of somatic hybridization. Genet. Mol. Res. 2014, 13, 1938–1948. [Google Scholar] [CrossRef]
- Liu, S.; Li, F.; Kong, L.; Sun, Y.; Qin, L.; Chen, S.; Cui, H.; Huang, Y.; Xia, G. Genetic and epigenetic changes in somatic hybrid introgression lines between wheat and tall wheatgrass. Genetics 2015, 199, 1035–1045. [Google Scholar] [CrossRef]
- Murthy, H.N.; Lee, E.-J.; Paek, K.-Y. Production of secondary metabolites from cell and organ cultures: Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult. (PCTOC) 2014, 118, 1–16. [Google Scholar] [CrossRef]
- Ochoa-Villarreal, M.; Howat, S.; Hong, S.; Jang, M.O.; Jin, Y.W.; Lee, E.K.; Loake, G.J. Plant cell culture strategies for the production of natural products. BMB Rep. 2016, 49, 149–158. [Google Scholar] [CrossRef]
- Tomiczak, K.; Mikuła, A.; Rybczyński, J.J. Protoplast Culture and Somatic Cell Hybridization of Gentians. In The Gentianaceae-Volume 2: Biotechnology and Applications, 1st ed.; Rybczyński, J., Davey, M., Mikuła, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 163–185. [Google Scholar]
- Tan, R.X.; Kong, L.D.; Wei, H.X. Secoiridoid glycosides and an antifungal anthranilate derivative from Gentiana tibetica. Phytochemistry 1998, 47, 1223–1226. [Google Scholar] [CrossRef]
- Mihailović, V.; Mišić, D.; Matić, S.; Mihailović, M.; Stanić, S.; Vrvić, M.M.; Katanić, J.; Mladenović, M.; Stanković, N.; Boroja, T.; et al. Comparative phytochemical analysis of Gentiana cruciata L. roots and aerial parts, and their biological activities. Ind. Crops Prod. 2015, 73, 49–62. [Google Scholar] [CrossRef]
- Oškinis, V. Relationship between the butterfly Phengaris rebeli and its larval host plant Gentiana cruciata in Lithuanian population. Ekologija 2013, 58, 369–372. [Google Scholar] [CrossRef]
- Mikuła, A.; Rybczyński, J.J. Somatic embryogenesis of Gentiana genus I. The effect of the preculture treatment and primary explant origin on somatic embryogenesis of Gentiana cruciata (L.), G. pannonica (Scop.), and G. tibetica (King). Acta Physiol. Plant. 2001, 23, 15–25. [Google Scholar] [CrossRef]
- Mikuła, A.; Wesołowska, M.; Kapusta, J.; Skrzypczak, L.; Rybczyński, J.J. Cytomorphological studies on somatic embryogenesis of Gentiana tibetica (King) and G. cruciata (L.). Acta Soc. Bot. Pol. 2014, 65, 47–51. [Google Scholar] [CrossRef][Green Version]
- Wójcik, A.I.; Rybczyński, J.J. Genetic transformation of gentian Gentiana tibetica (King) leaf explants with Agrobacterium tumefaciens strain C58C1. Acta Physiol. Plant. 2016, 39, 29. [Google Scholar] [CrossRef]
- Mikuła, A.; Rybczyński, J.J.; Skierski, J.; Latkowska, M.J.; Fiuk, A. Somatic embryogenesis of Gentiana genus IV.: Characterisation of Gentiana cruciata and Gentiana tibetica embryogenic cell suspensions. In Liquid Culture Systems for In Vitro Plant Propagation; Hvoslef-Eide, A.K., Preil, W., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 345–358. [Google Scholar]
- Mikula, A.; Tomiczak, K.; Rybczynski, J.J. Cryopreservation enhances embryogenic capacity of Gentiana cruciata (L.) suspension culture and maintains (epi)genetic uniformity of regenerants. Plant Cell Rep. 2011, 30, 565–574. [Google Scholar] [CrossRef]
- Tomiczak, K.; Sliwinska, E.; Rybczyński, J.J. Comparison of the morphogenic potential of five Gentiana species in leaf mesophyll protoplast culture and ploidy stability of regenerated calli and plants. Plant Cell Tissue Organ Cult. (PCTOC) 2016, 126, 319–331. [Google Scholar] [CrossRef]
- Hajnajafi, K.; Iqbal, M.A. Mass-spectrometry based metabolomics: An overview of workflows, strategies, data analysis and applications. Proteome Sci. 2025, 23, 5. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Zhang, Z.; Luo, E.; Yang, J.; Wang, S. Plant metabolomics: Applications and challenges in the era of multi-omics big data. aBIOTECH 2025, 6, 116–132. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Bharat, J.S.; Kumar, A.; Jaitak, V. Recent advancement in mass based plant metabolomics: Techniques, tools, and analytical approaches. Phytochem. Rev. 2024. [Google Scholar] [CrossRef]
- Yang, J.; Chen, R.; Wang, C.; Li, C.; Ye, W.; Zhang, Z.; Wang, S. A widely targeted metabolite modificomics strategy for modified metabolites identification in tomato. J. Integr. Plant Biol. 2024, 66, 810–823. [Google Scholar] [CrossRef]
- Created in BioRender. Obrębski, M. (2025). Available online: https://BioRender.com/9w2jtlf (accessed on 1 July 2025).
- Zhou, D.; Lv, D.; Zhang, H.; Cheng, T.; Wang, H.; Lin, P.; Shi, S.; Chen, S.; Shen, J. Quantitative analysis of the profiles of twelve major compounds in Gentiana straminea Maxim. Roots by LC-MS/MS in an extensive germplasm survey in the Qinghai-Tibetan plateau. J. Ethnopharmacol. 2021, 280, 114068. [Google Scholar] [CrossRef]
- Jiang, R.W.; Wong, K.L.; Chan, Y.M.; Xu, H.X.; But, P.P.; Shaw, P.C. Isolation of iridoid and secoiridoid glycosides and comparative study on Radix gentianae and related adulterants by HPLC analysis. Phytochemistry 2005, 66, 2674–2680. [Google Scholar] [CrossRef]
- Lavania, U.C.; Vimala, Y. Synthetic hybrid speciation: A resource for breeding novel lineages for secondary metabolites. Nucleus 2022, 65, 1–6. [Google Scholar] [CrossRef]
- Orians, C.M. The effects of hybridization in plants on secondary chemistry: Implications for the ecology and evolution of plant–herbivore interactions. Am. J. Bot. 2000, 87, 1749–1756. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Vrieling, K.; Klinkhamer, P.G. The effect of hybridization on secondary metabolites and herbivore resistance: Implications for the evolution of chemical diversity in plants. Phytochem. Rev. 2011, 10, 107–117. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cheng, R.; Yang, S.; Wang, D.; Qin, F.; Wang, S.; Meng, S. Advances in the Biosynthesis of Plant Terpenoids: Models, Mechanisms, and Applications. Plants 2025, 14, 1428. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Zhang, J.-l.; Fan, J.-y.; Zhao, Q.; Chu, Q.-q.; Zhong, S.-h.; Gu, R. Comprehensive comparison on antioxidant properties and UPLC-Q-TOF/MS-based metabolomics discrimination between Gentiana veitchiorum and G. szechenyii. Arab. J. Chem. 2024, 17, 105695. [Google Scholar] [CrossRef]
- Pan, Z.; Xiong, F.; Chen, Y.L.; Wan, G.G.; Zhang, Y.; Chen, Z.W.; Cao, W.F.; Zhou, G.Y. Traceability of Geographical Origin in Gentiana straminea by UPLC-Q Exactive Mass and Multivariate Analyses. Molecules 2019, 24, 4478. [Google Scholar] [CrossRef]
- Uesato, S.; Hashimoto, T.; Inouye, H. Three new secoiridoid glucosides medical plant Gentiana rigescens. Phytochemistry 1979, 18, 1981–1986. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, J.; Zhao, Y.L.; Wang, Y.Z.; Huang, H.Y. Investigation of metabolites accumulation in medical plant Gentiana rigescens during different growing stage using LC-MS/MS and FT-IR. Bot. Stud. 2015, 56, 14. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Y.; Wei, W.; Li, J.; Li, H.; Huang, Y.; Guo, D.A. Metabolomics Combined with Multivariate Statistical Analysis for Screening of Chemical Markers between Gentiana scabra and Gentiana rigescens. Molecules 2020, 25, 1228. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhang, J.; Shen, T.; Zhao, Y.L.; Wang, Y.Z.; Li, W.Y. Comparative metabolic fingerprinting of Gentiana rhodantha from different geographical origins using LC-UV-MS/MS and multivariate statistical analysis. BMC Biochem. 2015, 16, 9. [Google Scholar] [CrossRef]
- Kakuda, R.; Iijima, T.; Yaoita, Y.; Machida, K.; Kikuchi, M. Secoiridoid glycosides from Gentiana scabra. J. Nat. Prod. 2001, 64, 1574–1575. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Di, Y.-T.; Gesang, S.; Peng, S.-L.; Ding, L.-S. Secoiridoid Glycosides from Swertia mileensis. Helv. Chim. Acta 2006, 89, 94–102. [Google Scholar] [CrossRef]
- Kou, Y.; Yi, X.; Li, Z.; Ai, Y.; Ma, S.; Chen, Q. A Comparative Transcriptomic with UPLC-Q-Exactive MS Reveals Differences in Gene Expression and Components of Iridoid Biosynthesis in Various Parts of Gentiana macrophylla. Genes 2022, 13, 2372. [Google Scholar] [CrossRef] [PubMed]
- Du, X.G.; Wang, W.; Zhang, Q.Y.; Cheng, J.; Avula, B.; Khan, I.A.; Guo, D.A. Identification of xanthones from Swertia punicea using high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 2913–2923. [Google Scholar] [CrossRef]
- Yu, C.; Zhao, Y.; Chen, G. Swertia pseudochinensis, a New Plant Source of Andrographolide. Chem. Nat. Compd. 2013, 49, 119–120. [Google Scholar] [CrossRef]
- Luo, J.; Yuan, H.; Liang, L.; Xie, Q.; Jiang, S.; Fu, Y.; Chen, S.; Wang, W. An integrated strategy for quality control of the multi-origins herb medicine of Gentianae Macrophyllae Radix based on UPLC-Orbitrap-MS/MS and HPLC-DAD. RSC Adv. 2023, 13, 8847–8862. [Google Scholar] [CrossRef] [PubMed]
- Calis, I.; Ruegger, H.; Chun, Z.; Sticher, O. Secoiridoid Glucosides Isolated from Gentiana gelida. Planta Med. 1990, 56, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-J.; Yang, C.-R. Two triterpenoids from Gentiana tibetica. Phytochemistry 1994, 36, 997–999. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Li, L.; Zhang, J.-L.; Zhong, L.-W.; Zhang, J.-Y.; Zhong, S.-H.; Gu, R. Study on pharmacodynamic material basis and mechanism of anti-inflammatory effect of Tibetan medicine Gentiana lawrencei var. farreri based on UPLC-Q-TOF/MS combined with network pharmacology and molecular docking. Arab. J. Chem. 2025, 18, 106085. [Google Scholar]
- Smit, S.J.; Ayten, S.; Radzikowska, B.A.; Hamilton, J.P.; Langer, S.; Unsworth, W.P.; Larson, T.R.; Buell, C.R.; Lichman, B.R. The genomic and enzymatic basis for iridoid biosynthesis in cat thyme (Teucrium marum). Plant J. 2024, 118, 1589–1602. [Google Scholar] [CrossRef]
- Wang, C.; Gong, X.; Bo, A.; Zhang, L.; Zhang, M.; Zang, E.; Zhang, C.; Li, M. Iridoids: Research Advances in Their Phytochemistry, Biological Activities, and Pharmacokinetics. Molecules 2020, 25, 287. [Google Scholar] [CrossRef]
- Cao, X.; Guo, X.; Yang, X.; Wang, H.; Hua, W.; He, Y.; Kang, J.; Wang, Z. Transcriptional Responses and Gentiopicroside Biosynthesis in Methyl Jasmonate-Treated Gentiana macrophylla Seedlings. PLoS ONE 2016, 11, e0166493. [Google Scholar] [CrossRef]
- Peng, Z.; He, J.; Cheng, Y.; Xu, J.; Zhang, W. Biologically active secoiridoids: A comprehensive update. Med. Res. Rev. 2023, 43, 1201–1252. [Google Scholar] [CrossRef]
- Antoniadi, L.; Bartnik, M.; Angelis, A.; Wawruszak, A.; Halabalaki, M.; Kukula-Koch, W.; Skaltsounis, L.A. Gentiopicroside-An Insight into Its Pharmacological Significance and Future Perspectives. Cells 2023, 13, 70. [Google Scholar] [CrossRef]
- Xu, M.; Wu, H.Y.; Liu, H.; Gong, N.; Wang, Y.R.; Wang, Y.X. Morroniside, a secoiridoid glycoside from Cornus officinalis, attenuates neuropathic pain by activation of spinal glucagon-like peptide-1 receptors. Br. J. Pharmacol. 2017, 174, 580–590. [Google Scholar] [CrossRef]
- Inouye, H. Biosynthesis of Iridoid- and Secoiridoid Glucosides. In Pharmacognosy and Phytochemistry; Wagner, H., Hörhammer, L., Eds.; Springer: Berlin/Heidelberg, Germany, 1971; pp. 290–313. [Google Scholar]
- Created in BioRender. Obrębski, M. (2025). Available online: https://BioRender.com/anbr680 (accessed on 1 July 2025).
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed]
- Min, S.Y.; Park, C.H.; Yu, H.W.; Park, Y.J. Anti-Inflammatory and Anti-Allergic Effects of Saponarin and Its Impact on Signaling Pathways of RAW 264.7, RBL-2H3, and HaCaT Cells. Int. J. Mol. Sci. 2021, 22, 8431. [Google Scholar] [CrossRef]
- Saha, S.; Sadhukhan, P.; Sil, P.C. Mangiferin: A xanthonoid with multipotent anti-inflammatory potential. Biofactors 2016, 42, 459–474. [Google Scholar] [CrossRef]
- Urbain, A.; Marston, A.; Grilo, L.S.; Bravo, J.; Purev, O.; Purevsuren, B.; Batsuren, D.; Reist, M.; Carrupt, P.A.; Hostettmann, K. Xanthones from Gentianella amarella ssp. acuta with acetylcholinesterase and monoamine oxidase inhibitory activities. J. Nat. Prod. 2008, 71, 895–897. [Google Scholar]
- Osmakov, D.I.; Kalinovskii, A.P.; Belozerova, O.A.; Andreev, Y.A.; Kozlov, S.A. Lignans as Pharmacological Agents in Disorders Related to Oxidative Stress and Inflammation: Chemical Synthesis Approaches and Biological Activities. Int. J. Mol. Sci. 2022, 23, 6031. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Kim, H.J.; Ali, M.S.; Lee, Y.S. An update on bioactive plant lignans. Nat. Prod. Rep. 2005, 22, 696–716. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ulriksen, E.S.; Hoel, H.; Sandvik, L.; Malterud, K.E.; Inngjerdingen, K.T.; Inngjerdingen, M.; Wangensteen, H. Phytochemical characterization and anti-inflammatory activity of a water extract of Gentiana purpurea roots. J. Ethnopharmacol. 2023, 301, 115818. [Google Scholar] [CrossRef]
- Noushahi, H.A.; Khan, A.H.; Noushahi, U.F.; Hussain, M.; Javed, T.; Zafar, M.; Batool, M.; Ahmed, U.; Liu, K.; Harrison, M.T.; et al. Biosynthetic pathways of triterpenoids and strategies to improve their Biosynthetic Efficiency. Plant Growth Regul. 2022, 97, 439–454. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.X.; Wolfender, J.L.; Zhang, L.X.; Ma, W.G.; Fuzzati, N.; Marston, A.; Hostettmann, K. Acyl secoiridoids and antifungal constituents from Gentiana macrophylla. Phytochemistry 1996, 42, 1305–1313. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, M.; Zhang, Y.J.; Yang, C.R. New Acylated Secoiridoid Glucosides from Gentiana straminea (Gentianaceae). Helv. Chim. Acta 2009, 92, 321–327. [Google Scholar] [CrossRef]
- Li, Y.-W. Chemical constituents from flower of Gentiana tibetica. Chin. Tradit. Herb. Drugs 2015, 46, 2052–2056. [Google Scholar]
- Keller, F.; Wiemken, A. Differential compartmentation of sucrose and gentianose in the cytosol and vacuoles of storage root protoplasts from Gentiana lutea L. Plant Cell Rep. 1982, 1, 274–277. [Google Scholar] [CrossRef]
- Khusnetdinova, L.Z.; Akulov, A.N.; Dubrovnaya, S.A.; Mukhametshina, R.M.; Timofeeva, O.A. Content of Gentiopicroside in Natural Populations of Gentiana cruciata L., Growing in the Territory of the Republic of Tatarstan. Russ. J. Plant Physiol. 2023, 70, 162. [Google Scholar] [CrossRef]
- Reshi, Z.A.; Ahmad, W.; Lukatkin, A.S.; Javed, S.B. From Nature to Lab: A Review of Secondary Metabolite Biosynthetic Pathways, Environmental Influences, and In Vitro Approaches. Metabolites 2023, 13, 895. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Caprioli, G.; Ricciutelli, M.; Maggi, F.; Marin, R.; Vittori, S.; Sagratini, G. Comparative HPLC/ESI-MS and HPLC/DAD study of different populations of cultivated, wild and commercial Gentiana lutea L. Food Chem. 2015, 174, 426–433. [Google Scholar] [CrossRef]
- Pękal, A.; Pyrzynska, K. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef]
- Fukumoto, L.R.; Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food. Chem. 2000, 48, 3597–3604. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Tomiczak, K.; Mikuła, A.; Niedziela, A.; Wójcik-Lewandowska, A.; Domżalska, L.; Rybczyński, J.J. Somatic Embryogenesis in the Family Gentianaceae and Its Biotechnological Application. Front. Plant Sci. 2019, 10, 762. [Google Scholar] [CrossRef]
- Mikuła, A.; Tomiczak, K.; Domżalska, L.; Rybczyński, J.J. Cryopreservation of Gentianaceae: Trends and Applications. In The Gentianaceae; Rybczyński, J., Davey, M., Mikuła, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 2, pp. 267–286. [Google Scholar]
- Markowski, M.; Czarnomska, Z.; Tomiczak, K.; Mikuła, A.; Granica, S.; Podwyszyńska, M.; Szypuła, W.J. The influence of cryopreservation via encapsulation-dehydration on growth kinetics, embryogenic potential and secondary metabolite production of cell suspension cultures of Gentiana capitata Buch.-Ham. ex D.Don and Gentiana decumbens L.f. Ind. Crops Prod. 2024, 212, 118349. [Google Scholar]
Analyte | λdet [nm] | Calibration Equation | n | Correlation Coefficient [R2] | Linear Range [ng per injection] | LOD [ng per injection] | LOQ [ng per injection] |
---|---|---|---|---|---|---|---|
Gentiopicroside | 275 | y = 1.6969x + 27.4931 | 5 | 0.9995 | 100–5000 | 53.3 | 159.9 |
Swertiamarin | 232 | y = 4.3299x + 2.3544 | 5 | 0.9999 | 5–250 | 1.1 | 3.2 |
Sweroside | 246 | y = 5.1749x − 1.2439 | 5 | 1.0000 | 5–250 | 0.8 | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obrębski, M.; Kiełkiewicz, R.M.; Tomiczak, K.; Śliwińska, A.A. Defining Phytochemical Metabolomes of Somatic Hybrids Gentiana cruciata L. (+) G. tibetica King ex Hook.f. (Gentianaceae) Using UHPLC-DAD-ESI-MS3 Analysis in Comparison to the Parental Species. Molecules 2025, 30, 3321. https://doi.org/10.3390/molecules30163321
Obrębski M, Kiełkiewicz RM, Tomiczak K, Śliwińska AA. Defining Phytochemical Metabolomes of Somatic Hybrids Gentiana cruciata L. (+) G. tibetica King ex Hook.f. (Gentianaceae) Using UHPLC-DAD-ESI-MS3 Analysis in Comparison to the Parental Species. Molecules. 2025; 30(16):3321. https://doi.org/10.3390/molecules30163321
Chicago/Turabian StyleObrębski, Maciej, Rafał M. Kiełkiewicz, Karolina Tomiczak, and Anita A. Śliwińska. 2025. "Defining Phytochemical Metabolomes of Somatic Hybrids Gentiana cruciata L. (+) G. tibetica King ex Hook.f. (Gentianaceae) Using UHPLC-DAD-ESI-MS3 Analysis in Comparison to the Parental Species" Molecules 30, no. 16: 3321. https://doi.org/10.3390/molecules30163321
APA StyleObrębski, M., Kiełkiewicz, R. M., Tomiczak, K., & Śliwińska, A. A. (2025). Defining Phytochemical Metabolomes of Somatic Hybrids Gentiana cruciata L. (+) G. tibetica King ex Hook.f. (Gentianaceae) Using UHPLC-DAD-ESI-MS3 Analysis in Comparison to the Parental Species. Molecules, 30(16), 3321. https://doi.org/10.3390/molecules30163321