Effect of Thuja occidentalis L. Essential Oil Combined with Diatomite Against Selected Pests
Abstract
1. Introduction
- EO + DE will cause higher herbivore mortality than its components alone.
- EO + DE will exhibit a stronger and more persistent foraging inhibition effect against PLW and CPB.
- The effect will be dose- and development stage-/sex- dependent.
2. Results
2.1. Aphis fabae Scop.
2.2. Leptinotarsa decemlineata Say.
2.2.1. No-Choice Experiment
2.2.2. Choice Experiment
2.3. Sitona lineatus L.
2.3.1. No-Choice Experiment
2.3.2. Choice Experiment
3. Discussion
3.1. Aphis fabae Scop.
3.2. Leptinotarsa decemlineata Say.
3.3. Sitona lineatus L.
4. Materials and Methods
4.1. Experimental Design
4.2. Aphis fabae Scop.
4.3. Leptinotarsa decemlineata Say.
4.4. Sitona lineatus L.
4.5. Statistical Analysis
5. Conclusions
- The improvement in effectiveness achieved using a mixture of EO + DE instead of the individual components separately against BBA was dependent on both the dose of the components and the developmental stage of the BBA. The addition of DE enhanced the effect of EO at a concentration of 0.5% against wingless females and the effect of EO at a concentration of 0.2% against nymphs, with better effects obtained at a dose of 10% of DE. Despite the observed antagonistic effects of DE (DE 5% for EO 0.2% and EO 1% treatments against wingless females and DE 5% and DE 10% for EO 0.5% against nymphs), the calculated LC50 values indicate a prolongation of the insecticidal effect of EO from T. occidentalis against both developmental stages of BBA due to the addition of DE with a stronger effect at the higher DE dose—10%. This effect is revealed with a delay of 2–3 days. The mixtures tested, in general, did not increase the mortality of CPB and PLW in comparison to individual components alone.
- The effect of enhancing CPB foraging inhibition by using a mixture of EO + DE instead of the individual components separately was obtained at a concentration of 0.2% EO (both females and males of CPB) and 0.5% EO (males) in the no-choice experiments. In the choice experiments, the mixtures EO + DE with both 0.2% and 0.5% EO concentrations resulted in a significant reduction in CPB foraging, with a synergistic DE effect recorded for EO 0.2% for males and for EO 0.5% for both males and females.
- In the case of PLW, a significant strengthening effect of EO via the addition of DE at a dose of 10% in the no-choice experiment was obtained only in the case of males, at an EO concentration of 0.5%, while when the beetles had a choice the synergistic effect of a mixture of EO 0.5% and DE 10% was also apparent in the case of females.
- No significant antagonistic effect of DE in mixtures with EO against CPB and PLW foraging was demonstrated.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pavela, R. Essential oils from Foeniculum vulgare Miller as a safe environmental insecticide against the aphid Myzus persicae Sulzer. Environ. Sci. Pollut. Res. 2018, 25, 10904–10910. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Zorzetto, C.; Sanchez-Mateo, C.C.; Santini, G.; Canale, A.; Maggi, F. Insecticidal activity of the essential oil from Schizogyne sericea (Asteraceae) on four insect pests and two non-target species. Entomol. Gen. 2019, 39, 9–18. [Google Scholar] [CrossRef]
- Parreira, D.S.; Alcantara-de la Cruz, R.; Zanuncio, J.C.; Lemes, P.G.; Rolim, G.D.; Barbosa, L.R.; Leite, G.L.D.; Serrao, J.E. Essential oils cause detrimental effects on biological parameters of Trichogramma galloi immatures. J. Pest Sci. 2018, 91, 887–895. [Google Scholar] [CrossRef]
- Kesraoui, S.; Andres, M.F.; Berrocal-Lobo, M.; Soudani, S.; Gonzalez-Coloma, A. Direct and Indirect Effects of Essential Oils for Sustainable Crop Protection. Plants 2022, 11, 2144. [Google Scholar] [CrossRef]
- Gondek, K.; Micek, P.; Baran, A.; Bajda, T.; Kowa, L.J.; Lis, M.; Wyrobisz-Papiewska, A.; Wojtysiak, D.; Smoroń, K. Modified natural diatomite with various additives and its environmental potential. Materials 2023, 16, 4494. [Google Scholar] [CrossRef]
- Gondek, K.; Baran, A.; Boguta, P.; Bołdak, M. Use of diatomite-based composites for immobilization of toxic heavy metals in industrial wastes using post-flotation sediment as an example. Materials 2024, 17, 6174. [Google Scholar] [CrossRef]
- Bakar, H.E.G.M.M. Diatomite: Its chcracterization, modifications and applications. Asian J. Mater. Sci. 2010, 2, 121–136. [Google Scholar] [CrossRef]
- Ikusika, O.O.; Mpendulo, C.T.; Zindove, T.J.; Okoh, A.I. Fossil shell flour in livestock production: A review. Animals 2019, 9, 70. [Google Scholar] [CrossRef]
- Kaleta, J.; Papciak, D.; Puszkarewicz, A. Clinoptylolite and diatomite respect of their usefulness for water conditioning and wastewater purification. Gospod. Surowcami Miner. Miner. Resour. Manag. 2007, 23, 21–34. [Google Scholar]
- Song, X.; Li, C.; Zhu, Y.; Yang, Y.; Chen, M.; Ma, R.; Ling, X.; Wu, J. Application of diatomite for gallic acid removal from molasses wastewater. Sci. Total Environ. 2021, 765, 142711. [Google Scholar] [CrossRef]
- Aksakal, E.L.; Angin, I.; Oztas, T. Effects of diatomite on soil physical properties. Catena 2012, 88, 1–5. [Google Scholar] [CrossRef]
- Ye, X.; Kang, S.; Wang, H.; Li, H.; Zhang, Y.; Wang, G.; Zhao, H. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soil. J. Hazard. Mater. 2015, 289, 210–218. [Google Scholar] [CrossRef]
- Zeni, V.; Baliota, G.V.; Benelli, G.; Canale, A.; Athanassiou, C.G. Diatomaceous Earth for Arthropod Pest Control: Back to the Future. Molecules 2021, 26, 7487. [Google Scholar] [CrossRef] [PubMed]
- Vayias, B.J.; Athanassiou, C.G.; Koruni’c, Z.; Rozman, V. Evaluation of natural diatomaceous earth deposits from south-eastern Europe for stored-grain protection: The effect of particle size. Pest Manag. Sci. 2009, 65, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Gad, H.; Atta, A.; Abdelgaleil, S. Effectiveness of diatomaceous earth combined with chlorfluazuron and hexaflumuron in the control of Callosobruchus maculatus and C. chinensis on stored cowpea seeds. J. Stored Prod. Res. 2022, 97, 101985. [Google Scholar] [CrossRef]
- Gökçe, M.; Isikber, A.; Saglam, Ö. Efficacy of Local Diatomaceous Earths Mixtures with Odorless Garlic Powder Against Confused Flour beetle, Tribolium confusum du Val. (Coleoptera: Tenebrionidae). Ksu Tarim Doga Derg. 2021, 24, 1237–1246. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, S.; Li, J.; Sun, P.; Xiong, M.; Lei, C.; Zhang, Z.; Huang, Q. Bioactivity of diatomaceous earth against the subterranean termite Reticulitermes chinensis Snyder (Isoptera: Rhinotermitidae). Environ. Sci. Pollut. Res. 2018, 25, 28102–28108. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Koruni’c, Z. Evaluation of two new diatomaceous earth formulations, enhanced with abamectin and bitterbarkomycin, against four stored-grain beetle species. J. Stored Prod. Res. 2007, 43, 468–473. [Google Scholar] [CrossRef]
- Singh, B.; Singh, V. Laboratory and Field Studies Demonstrating the Insecticidal Potential of Diatomaceous Earth against Wheat Aphids in Rice-wheat Cropping System of Punjab (India). Cereal Res. Commun. 2016, 44, 435–443. [Google Scholar] [CrossRef]
- Bounouira, Y.; Benyelles, N.G.; Senouci, H.; Benazzouz, F.Z.; Chaieb, I. The insecticidal activity of a formulation of ammoides verticillata essential oil and diatomaceous earth on Sitophilus zeamais. Int. J. Trop. Insect Sci. 2022, 42, 2979–2985. [Google Scholar] [CrossRef]
- Adarkwah, C.; Obeng-Ofori, D.; Hörmann, V.; Ulrichs, C.; Schöller, M. Bioefficacy of enhanced diatomaceous earth and botanical powders on the mortality and progeny production of Acanthoscelides obtectus (Coleoptera: Chrysomelidae), Sitophilus granarius (Coleoptera: Dryophthoridae) and Tribolium castaneum (Coleoptera: Tenebrionidae) in stored grain cereals. Int. J. Trop. Insect Sci. 2017, 37, 243–258. [Google Scholar] [CrossRef]
- Islam, M.; Hasan, M.; Lei, C.; Mucha-Pelzer, T.; Mewis, I.; Ulrichs, C. Direct and admixture toxicity of diatomaceous earth and monoterpenoids against the storage pests Callosobruchus maculatus (F.) and Sitophilus oryzae (L.). J. Pest Sci. 2010, 83, 105–112. [Google Scholar] [CrossRef]
- Krutzler, M.; Brader, G.; Madercic, M.; Riedle-Bauer, M. Efficacy evaluation of alternative pest control products against Drosophila suzukii in Austrian elderberry orchards. J. Plant Dis. Prot. 2022, 129, 939–954. [Google Scholar] [CrossRef]
- Deza-Borau, G.; Peschiutta, M.; Brito, V.; Usseglio, V.; Zunino, M.; Zygadlo, J. Towards a development of novel bioinsecticides for organic control of Planococcus ficus in vineyards. Vitis 2020, 59, 127–132. [Google Scholar] [CrossRef]
- Kéïta, S.M.; Vincent, C.; Schmidt, J.-P.; Arnason, J.T. Insecticidal effects of Thuja occidentalis (Cupressaceae) essential oil on Callosobruchus maculatus [Coleoptera: Bruchidae]. Can. J. Plant Sci. 2001, 81, 173–177. [Google Scholar] [CrossRef]
- Hosseinzadeh, J.; Farazmand, H.; Karimpour, Y. Insecticidal effect of Thuja occidentalis L. essential oilon adults of Lasioderma serricorne F. (Anobiidae) under laboratory conditions. Iran J. Med. Aromat. Pl. 2014, 30, 123–133. [Google Scholar]
- Abdelgaleil, S.A.M.; Badawy, M.E.I.; Shawir, M.S.; Mohamed, M.I.E. Chemical Composition, Fumigant and Contact Toxicities of Essential Oils Isolated from Egyptian Plants against the Stored Grain Insects Sitophilus oryzae L. and Tribolium castaneum (Herbst). Egypt. J. Biol. Pest Control 2015, 25, 639–647. [Google Scholar]
- Brari, J.; Thakur, D.R. Larvicidal effects of eight essential oils against Plodia interpunctella and Tribolium castaneum, serious pests of stored products worldwide. J. Entomol. Zool. Stud. 2018, 6, 738–742. [Google Scholar]
- Martynov, V.O.; Titov, O.G.; Kolombar, T.M.; Brygadyrenko, V.V. Influence of essential oils of plants on the migration activity of Tribolium confusum (Coleoptera, Tenebrionidae). Biosyst. Divers. 2019, 27, 177–185. [Google Scholar] [CrossRef]
- Pavela, R. Insecticidal properties of several essential oils on the house fly (Musca domestica L.). Phytother. Res. 2008, 22, 274–278. [Google Scholar] [CrossRef]
- Benelli, G.; Flamini, G.; Canale, A.; Cioni, P.L.; Conti, B. Toxicity of some essential oil formulations against the Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera Tephritidae). Crop Protect. 2012, 42, 223–229. [Google Scholar] [CrossRef]
- Gospodarek, J.; Krajewska, A.; Pasmionka, I.; Bruzdzinska, J.; Tamiru, G. Potential of Thuja occidentalis L. Essential Oil and Water Extracts against Field Crop Pests. Molecules 2024, 29, 1457. [Google Scholar] [CrossRef]
- Lis, A.; Liśkiewicz, R.; Krajewska, A. Comparison of chemical composition of essentials oils from different parts of Thuja occidentalis L. ‘Brabant’ and T. occidentalis L. ‘Smaragd’. Herba Pol. 2016, 62, 20–27. [Google Scholar] [CrossRef]
- Caruntu, S.; Ciceu, A.; Olah, N.K.; Don, I.; Hermenean, A.; Cotoraci, C. Thuja occidentalis L. (Cupressaceae): Ethnobotany, Phytochemistry and Biological Activity. Molecules 2020, 25, 5416. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Wang, W.; Hua, J.; Guo, Z.; Luo, S. Defensive functions of volatile organic compounds and essential oils from northern white-cedar in China. BMC Plant Biol. 2020, 20, 500. [Google Scholar] [CrossRef] [PubMed]
- Fitsev, I.M.; Nikitin, E.N.; Rakhmaeva, A.M.; Terenzhev, D.A.; Sakhno, T.M.; Nasybullina, Z.R. Chemical Composition of Cupressus sempervirens L. and Thuja occidentalis L. Essential Oils and Their Activity against Phytopathogenic Fungi. Uchenye Zap. Kazan. Univ.-Seriya Estestv. Nauk. 2022, 164, 392–407. [Google Scholar] [CrossRef]
- Zhu, Y.; Stahl, A.; Rostas, M.; Will, T. Temporal and species-specific resistance of sugar beet to green peach aphid and black bean aphid: Mechanisms and implications for breeding. Pest Manag. Sci. 2023, 80, 404–413. [Google Scholar] [CrossRef]
- Shannag, H.K.; Ababneh, J.A. Influence of black bean aphid, Aphis fabae Scopoli on growth rates of faba bean. World J. Agric. Sci. 2007, 3, 344–349. [Google Scholar]
- Hanavan, R.P.; Bosque-Pérez, N.A. Effects of tillage practices on pea leaf weevil (Sitona lineatus L., Coleoptera: Curculionidae) biology and crop damage: A farm-scale study in the US Pacific Northwest. Bull. Entomol. Res. 2012, 102, 682–691. [Google Scholar] [CrossRef]
- Lohaus, K.; Vidal, S. Abundance of Sitona lineatus L. (Col., Curculionidae) in peas (Pisum sutivum L.): Effects on yield parameters and nitrogen balance. Crop Protect. 2010, 29, 283–289. [Google Scholar] [CrossRef]
- EPPO. Leptinotarsa decemlineata. EPPO Datasheets on Pests Recommended for Regulation. 2025. Available online: https://gd.eppo.int (accessed on 16 June 2025).
- Gospodarek, J.; Krajewska, A.; Pasmionka, I.B. Contact and Gastric Effect of Peppermint Oil on Selected Pests and Aphid Predator Harmonia axyridis Pallas. Molecules 2023, 28, 4647. [Google Scholar] [CrossRef] [PubMed]
- Gospodarek, J.; Endalamew, A.; Worsdale, M.; Pasmionka, I. Effects of Artemisia dracunculus L. Water Extracts on Selected Pests and Aphid Predator Coccinella septempunctata L. Agronomy 2022, 12, 788. [Google Scholar] [CrossRef]
- Valizadeh, H.; Abbasipour, H.; Farazmand, H.; Askarianzadeh, A. Evaluation of Kaolin Application on Oviposition Control of the Vine Cicada, Psalmocharias alhageos in Vineyards Homoptera: Cicadidae. Entomol. Gen. 2013, 34, 279–286. [Google Scholar] [CrossRef]
- Hernández-Suárez, E.; Arjona-López, J.; Rizza, R.; Perera, S.; Siverio, F.; Hervalejo, A.; Arenas-Arenas, F. Comparative efficacy of seven biorational insecticides to manage African citrus psyllid (Trioza erytreae) in European organic citriculture. Biol. Agric. Hortic. 2023, 39, 194–206. [Google Scholar] [CrossRef]
- Paponja, I.; Rozman, V.; Liska, A. Natural Formulation Based on Diatomaceous Earth and Botanicals against Stored Product Insects. Insects 2020, 11, 613. [Google Scholar] [CrossRef]
- Bachrouch, O.; Nefzi, H.; Belloumi, S.; Horchani-Naifer, K.; Eljazi, J.; Hamdi, S.; Msaada, K.; Labidi, J.; Abderrabba, M.; Ben Jemaa, J. Insecticidal effects of two Tunisian diatomaceous earth loaded with Thymus capitatus (L.) Hoffmans and Links as an ecofriendly approach for stored coleopteran pest control. Int. J. Environ. Health Res. 2023, 33, 398–412. [Google Scholar] [CrossRef]
- Atay, T.; Alkan, M.; Ertürk, S.; Toprak, U. Individual and combined effects of α-Pinene and a native diatomaceous earth product on control of stored product beetle pests. J. Asia-Pac. Entomol 2023, 26, 102149. [Google Scholar] [CrossRef]
- Batistic, L.; Bohinc, T.; Horvat, A.; Kosir, I.; Trdan, S. Laboratory Investigation of Five Inert Dusts of Local Origin as Insecticides against the Colorado Potato Beetle (Leptinotarsa decemlineata [Say]). Agronomy 2023, 13, 1165. [Google Scholar] [CrossRef]
- Prasantha, B.; Reichmuth, C.; Adler, C. Lethality and kinetic of diatomaceous earth uptake by the bean weevil (Acanthoscelides obtectus [Say] Coleoptera: Bruchinae): Influence of short-term exposure period. J. Stored Prod. Res. 2019, 84, 101509. [Google Scholar] [CrossRef]
- de Paula, M.; Flinn, P.; Subramanyam, B.; Lazzari, S. Effects of age and sex on mortality of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) exposed to INSECTO®-treated wheat. J. Kans. Entomol. Soc. 2002, 75, 158–162. [Google Scholar]
- Lazarevic, J.; Jevremovic, S.; Kostic, I.; Vuleta, A.; Jovanovic, S.; Kostic, M.; Jovanovic, D. Assessment of Sex-Specific Toxicity and Physiological Responses to Thymol in a Common Bean Pest Acanthoscelides obtectus Say. Front. Physiol. 2022, 13, 842314. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R.; Maggi, F.; Mazzara, E.; Torresi, J.; Cianfaglione, K.; Benelli, G.; Canale, A. Prolonged sublethal effects of essential oils from non-wood parts of nine conifers on key insect pests and vectors. Ind. Crops Prod. 2021, 168, 113590. [Google Scholar] [CrossRef]
- Kwiecien, N.; Gospodarek, J.; Boliglowa, E. The Effects of Water Extracts from Tansy on Pea Leaf Weevil and Black Bean Aphid. J. Ecol. Eng. 2020, 21, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Finney, D. Probit Analysis, 3rd ed.; Cambridge University Press: Cambridge, UK, 1971. [Google Scholar]
Hours | EO 0 | EO 0.2 | EO 0.5 | EO 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DE 0 | DE 5 | DE 10 | DE 0 | DE 5 | DE 10 | DE 0 | DE 5 | DE 10 | DE 0 | DE 5 | DE 10 | |
6 | 100.00 (±0.00) c* | 100.00 (±0.00) c | 100.00 (±0.00) c | 100.00 (±0.00) c | 100.00 (±0.00) c | 100.00 (±0.00) c | 100.00 (±0.00) c | 100.00 (±0.00) c | 98.00 (±1.63) c | 0.00 (±0.00) a | 31.67 (±7.03) b | 23.33 (±10.54) b |
18 | 100.00 (±0.00) c | 100.00 (±0.00) c | 100.00 (±0.00) c | 98.00 (±1.63) c | 96.00 (±2.00) c | 98.00 (±1.63) c | 100.00 (±0.00) c | 100.00 (±0.00) c | 98.00 (±1.63) c | 0.00 (±0.00) a | 31.67 (±7.03) b | 23.33 (±10.54) b |
30 | 100.00 (±0.00) c | 100.00 (±0.00) c | 98.00 (±1.63) c | 94.00 (±3.27) c | 96.00 (±2.00) c | 96.00 (±2.00) c | 100.00 (±0.00) c | 100.00 (±0.00) c | 94.00 (±3.27) c | 0.00 (±0.00) a | 21.67 (±5.43) b | 23.33 (±10.54) b |
42 | 100.00 (±0.00) c | 100.00 (±0.00) c | 98.00 (±1.63) c | 92.00 (±3.06) c | 92.00 (±1.63) c | 92.00 (±1.63) c | 100.00 (±0.00) c | 90.00 (±8.16) c | 90.00 (±6.32) c | 0.00 (±0.00) a | 21.67 (±5.43) b | 23.33 (±10.54) b |
54 | 98.00 (±1.63) e | 90.00 (±2.58) de | 86.00 (±3.27) d | 84.00 (±2.00) cd | 90.00 (±2.58) de | 86.00 (±2.00) d | 92.00 (±1.63) de | 75.00 (±5.48) bc | 70.00 (±7.30) b | 0.00 (±0.00) a | 8.33 (±3.07) a | 5.00 (±3.42) a |
66 | 96.00 (±2.00) e | 78.00 (±5.42) d | 74.00 (±3.27) cd | 74.00 (±4.90) cd | 76.18 (±4.27) d | 76.00 (±4.16) d | 84.00 (±3.27) d | 63.00 (±7.70) c | 50.00 (±5.16) b | 0.00 (±0.00) a | 1.67 (±1.67) a | 3.33 (±2.11) a |
78 | 90.00 (±2.58) f | 71.56 (±4.65) e | 66.00 (±4.16) d | 56.00 (±7.12) cd | 70.36 (±3.83) d | 64.00 (±3.27) de | 72.00 (±4.76) e | 49.00 (±10.68) bc | 36.00 (±7.12) b | 0.00 (±0.00) a | 1.67 (±1.67) a | 0.00 (±0.00) a |
90 | 74.00 (±3.27) f | 61.56 (±5.18) de | 62.00 (±4.76) de | 48.00 (±7.92) cd | 64.36 (±5.72) e | 54.00 (±2.00) de | 66.00 (±5.54) e | 36.50 (±8.15) bc | 24.00 (±6.63) b | 0.00 (±0.00) a | 0.00 (±0.00) a | 0.00 (±0.00) a |
102 | 68.00 (±3.06) g | 48.89 (±4.56) def | 56.00 (±6.11) efg | 40.00 (±8.94) bcd | 57.09 (±5.06) efg | 46.00 (±3.27) cde | 66.00 (±5.54) fg | 32.50 (±6.77) bc | 26.00 (±7.12) b | 0.00 (±0.00) a | 0.00 (±0.00) a | 0.00 (±0.00) a |
114 | 58.00 (±4.00) e | 44.89 (±3.16) de | 48.00 (±4.76) de | 30.00 (±8.56) bc | 39.09 (±6.65) cd | 28.00 (±4.76) bc | 54.00 (±8.41) e | 20.50 (±5.02) b | 18.00 (±4.76) b | 0.00 (±0.00) a | 0.00 (±0.00) a | 0.00 (±0.00) a |
Hours | EO 0 | EO 0.2 | EO 0.5 | EO 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DE 0 | DE 5 | DE 10 | DE 0 | DE 5 | DE 10 | DE 0 | DE 5 | DE 10 | DE 0 | DE 5 | DE 10 | |
6 | 100.00 (±0.00) c * | 100.00 (±0.00) c | 100.00 (±0.00) c | 100.00 (±0.00) c | 100.00 (±0.00) c | 100.00 (±0.00) c | 100.00 (±0.00) c | 97.78 (±1.81) b | 100.00 (±0.00) c | 0.00 (±0.00) a | 0.00 (±0.00) a | 0.00 (±0.00) a |
18 | 100.00 (±0.00) e | 100.00 (±0.00) e | 98.00 (±1.63) de | 97.78 (±1.81) de | 96.00 (±2.00) d | 100.00 (±0.00) e | 45.45 (±11.00) b | 79.56 (±5.78) c | 87.14 (±4.75) cd | 0.00 (±0.00) a | 0.00 (±0.00) a | 0.00 (±0.00) a |
30 | 100.00 (±0.00) e | 98.00 (±1.63) e | 98.00 (±1.63) e | 93.78 (±2.08) e | 88.00 (±6.00) de | 96.00 (±2.00) e | 40.45 (±10.87) b | 73.56 (±7.06) c | 77.14 (±7.73) cd | 0.00 (±0.00) a | 0.00 (±0.00) a | 0.00 (±0.00) a |
42 | 100.00 (±0.00) f | 95.78 (±2.12) ef | 95.78 (±2.12) ef | 93.78 (±2.08) ef | 81.78 (±6.98) de | 92.00 (±3.06) ef | 35.45 (±11.05) b | 55.70 (±7.59) c | 69.14 (±11.61) cd | 0.00 (±0.00) a | 0.00 (±0.00) a | 0.00 (±0.00) a |
54 | 100.00 (±0.00) e | 93.78 (±3.32) de | 95.78 (±2.12) e | 93.78 (±2.08) de | 77.78 (±6.96) d | 88.00 (±3.06) de | 32.95 (±11.03) b | 47.25 (±7.32) bc | 52.64 (±11.61) c | 0.00 (±0.00) a | 0.00 (±0.00) a | 0.00 (±0.00) a |
66 | 94.00 (±2.00) d | 90.92 (±3.24) cd | 83.56 (±5.60) cd | 85.56 (±3.42) cd | 75.78 (±7.51) c | 78.00 (±5.42) cd | 25.45 (±11.98) b | 35.43 (±9.64) b | 38.79 (±9.81) b | 0.00 (±0.00) a | 0.00 (±0.00) a | 0.00 (±0.00) a |
78 | 94.00 (±2.00) f | 84.48 (±1.97) ef | 73.11 (±8.41) de | 83.33 (±4.55) ef | 73.78 (±7.50) de | 66.00 (±5.54) d | 13.64 (±8.62) ab | 29.39 (±9.20) bc | 31.07 (±8.59) c | 0.00 (±0.00) a | 0.00 (±0.00) a | 0.00 (±0.00) a |
90 | 90.00 (±4.47) e | 80.25 (±4.04) de | 63.11 (±6.40) c | 79.33 (±5.40) de | 67.78 (±9.37) cd | 54.00 (±6.63) c | 4.55 (±2.87) a | 23.17 (±9.59) b | 25.71 (±6.61) b | 0.00 (±0.00) a | 0.00 (±0.00) a | 0.00 (±0.00) a |
102 | 88.00 (±6.00) f | 73.59 (±8.73) ef | 57.11 (±8.44) de | 69.33 (±2.64) e | 61.56 (±10.01) de | 46.00 (±6.63) d | 2.27 (±1.44) ab | 17.54 (±6.89) bc | 23.71 (±7.08) c | 0.00 (±0.00) a | 0.00 (±0.00) a | 0.00 (±0.00) a |
114 | 81.78 (±4.70) f | 66.73 (±7.85) e | 52.89 (±8.17) de | 59.33 (±4.97) de | 50.44 (±4.86) d | 32.00 (±4.76) c | 2.27 (±1.44) a | 9.49 (±5.76) ab | 17.71 (±7.85) bc | 0.00 (±0.00) a | 0.00 (±0.00) a | 0.00 (±0.00) a |
Life Stage | Hours | EO | EO + DE 5 | EO + DE 10 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
LC50 (%) | Slope * | (X2) ** | LC50 (%) | Slope * | (X2) ** | LC50 (%) | Slope * | (X2) ** | ||
Wingless females | 18 | 0.7181 | 7.8505 | 355.3289 | 0.9022 | 3.5197 | 34.6348 | 0.8638 | 4.1740 | 45.4694 |
30 | 0.7039 | 5.6527 | 161.9125 | 0.8513 | 3.9660 | 40.1321 | 0.8325 | 3.3057 | 33.1705 | |
42 | 0.6978 | 5.0852 | 107.8235 | 0.7879 | 2.7300 | 25.1243 | 0.8022 | 2.6686 | 33.0724 | |
54 | 0.6398 | 3.5678 | 40.0723 | 0.6376 | 3.0195 | 12.4940 | 0.5851 | 2.9668 | 16.8741 | |
66 | 0.5763 | 2.7490 | 41.6216 | 0.5001 | 2.7469 | 20.3934 | 0.4573 | 2.6327 | 10.7502 | |
78 | 0.4493 | 1.9822 | 43.5270 | 0.4261 | 2.5742 | 22.2935 | 0.3390 | 2.7539 | 12.2589 | |
90 | 0.3741 | 1.7494 | 44.3555 | 0.3467 | 2.7643 | 17.2943 | 0.2478 | 2.7629 | 10.5112 | |
102 | 0.3142 | 1.5142 | 52.8055 | 0.2915 | 2.5395 | 13.8415 | 0.1992 | 2.3294 | 14.1463 | |
114 | 0.1402 | 1.2991 | 51.7609 | 0.1328 | 2.2953 | 13.5444 | 0.0023 | 1.9314 | 12.5355 | |
Nymphs | 18 | 0.4886 | 6.8461 | 20.0916 | 0.6083 | 5.2449 | 19.3283 | - | - | - |
30 | 0.4645 | 5.3497 | 18.0705 | 0.5740 | 3.7539 | 36.5791 | 0.5885 | 5.2016 | 18.2798 | |
42 | 0.4489 | 5.6098 | 19.2999 | 0.4847 | 3.3085 | 24.8664 | 0.5503 | 4.3164 | 25.6042 | |
54 | 0.4115 | 4.9089 | 23.5833 | 0.4393 | 3.1616 | 20.5897 | 0.4281 | 3.7787 | 26.8713 | |
66 | 0.3912 | 4.7919 | 27.0346 | 0.3862 | 3.3608 | 24.4905 | 0.3938 | 3.5934 | 17.9112 | |
78 | 0.3441 | 5.6946 | 23.5351 | 0.3569 | 3.4783 | 23.0014 | 0.3226 | 3.1379 | 16.2661 | |
90 | 0.2942 | 7.2231 | 11.0381 | 0.3117 | 3.4200 | 29.4628 | 0.2478 | 2.7635 | 14.6038 | |
102 | 0.2545 | 7.5146 | 3.7803 | 0.2668 | 3.4902 | 23.3281 | 0.1901 | 2.5221 | 16.8019 | |
114 | 0.2275 | 6.7729 | 5.8554 | 0.2021 | 3.8054 | 15.4086 | 0.0569 | 2.2872 | 20.1405 |
Hours | EO 0 | EO 0.2 | EO 0.5 | EO 1 | ||||
---|---|---|---|---|---|---|---|---|
DE 0 | DE 10 | DE 0 | DE 10 | DE 0 | DE 10 | DE 0 | DE 10 | |
6 | 0.39 (±0.27) a* | 0.00 (±0.00) a | 0.00 (±0.00) a | 0.00 (±0.00) a | 0.00 (±0.00) a | 0.00 (±0.00) a | 0.00 (±0.00) a | 0.00 (±0.00) a |
18 | 43.58 (±12.25) a | 46.59 (±15.12) a | 1.05 (±0.52) a | 43.54 (±14.99) a | 26.09 (±14.69) a | 36.48 (±21.23) a | 15.66 (±8.47) a | 20.70 (±13.03) a |
30 | 58.11 (±14.99) a | 75.91 (±14.78) a | 52.65 (±13.59) a | 52.48 (±14.38) a | 36.68 (±13.94) a | 58.45 (±20.15) a | 22.37 (±8.03) a | 28.65 (±13.03) a |
42 | 128.72 (±27.81) c | 106.39 (±31.14) bc | 56.58 (±12.31) ab | 77.90 (±17.84) abc | 43.94 (±12.70) a | 63.26 (±17.65) ab | 33.81 (±11.28) a | 35.81 (±15.32) a |
54 | 132.53 (±28.34) c | 126.34 (±36.25) bc | 60.90 (±10.48) a | 84.22 (±16.64) abc | 51.14 (±13.29) a | 69.54 (±16.38) ab | 35.54 (±10.99) a | 40.81 (±14.16) a |
66 | 143.71 (±26.30) c | 128.96 (±36.89) c | 70.03 (±8.23) ab | 97.73 (±13.89) bc | 63.11 (±11.69) ab | 97.74 (±15.05) bc | 36.32 (±11.04) a | 43.65 (±13.79) ab |
78 | 146.85 (±26.87) d | 132.61 (±35.43) cd | 95.05 (±13.13) bcd | 100.57 (±14.05) bcd | 88.52 (±11.09) abc | 107.26 (±16.34) bcd | 36.71 (±11.07) a | 56.21 (±13.21) ab |
90 | 158.43 (±26.85) c | 146.21 (±33.37) c | 131.46 (±16.96) c | 115.26 (±13.75) c | 108.87 (±13.61) bc | 129.80 (±11.60) c | 38.67 (±10.63) a | 58.96 (±12.75) ab |
102 | 164.32 (±27.90) c | 154.19 (±34.90) c | 139.57 (±16.56) c | 122.03 (±15.84) c | 108.87 (±13.26) bc | 138.82 (±11.76) c | 40.24 (±10.25) a | 59.35 (±12.81) ab |
114 | 164.32 (±27.90) c | 154.84 (±34.65) c | 158.61 (±19.74) c | 124.58 (±16.15) bc | 121.86 (±15.80) bc | 158.14 (±8.46) c | 40.24 (±10.25) a | 67.99 (±15.25) ab |
Hours | EO 0 | EO 0.2 | EO 0.5 | EO 1 | ||||
---|---|---|---|---|---|---|---|---|
DE 0 | DE 10 | DE 0 | DE 10 | DE 0 | DE 10 | DE 0 | DE 10 | |
6 | 1.67 (±0.54) a* | 0.39 (±0.27) a | 6.28 (±4.29) a | 0.00 (±0.00) a | 0.00 (±0.00) a | 0.79 (±0.54) a | 0.00 (±0.00) a | 1.57 (±1.07) a |
18 | 9.13 (±1.73) b | 3.93 (±2.68) ab | 9.03 (±3.88) b | 5.68 (±2.54) ab | 2.06 (±1.41) a | 4.71 (±2.06) ab | 1.28 (±0.55) a | 1.57 (±1.07) a |
30 | 23.64 (±3.52) b | 5.20 (±3.55) a | 18.05 (±7.13) ab | 12.94 (±4.46) ab | 18.21 (±12.44) ab | 7.16 (±2.56) a | 4.02 (±2.04) a | 1.96 (±0.99) a |
42 | 30.02 (±4.37) d | 8.24 (±3.99) ab | 20.80 (±8.73) bcd | 27.57 (±8.51) cd | 20.37 (±10.69) bcd | 10.89 (±3.46) abc | 5.20 (±2.24) ab | 1.96 (±0.99) a |
54 | 37.36 (±4.82) c | 12.46 (±4.25) ab | 29.44 (±10.86) bc | 34.54 (±7.98) c | 20.76 (±10.96) abc | 13.25 (±3.46) ab | 5.20 (±2.24) a | 1.96 (±0.99) a |
66 | 43.73 (±5.03) bc | 15.70 (±4.06) ab | 38.84 (±14.27) bc | 43.75 (±8.42) bc | 46.77 (±23.96) c | 16.78 (±4.27) abc | 5.59 (±2.48) a | 5.50 (±2.42) a |
78 | 60.00 (±7.37) c | 21.57 (±4.97) ab | 41.19 (±15.33) bc | 44.93 (±8.05) bc | 50.01 (±23.20) bc | 21.98 (±5.34) ab | 5.59 (±2.48) a | 7.46 (±3.30) a |
90 | 72.65 (±9.97) d | 28.74 (±7.15) abc | 55.04 (±20.81) bcd | 46.69 (±7.10) bcd | 64.90 (±26.05) cd | 24.72 (±6.42) ab | 5.59 (±2.48) a | 7.85 (±3.19) a |
102 | 90.32 (±14.84) c | 31.88 (±8.40) ab | 60.63 (±22.88) bc | 52.98 (±7.53) bc | 68.82 (±25.41) bc | 29.62 (±7.93) ab | 5.59 (±2.48) a | 9.03 (±3.28) a |
114 | 95.41 (±16.26) d | 42.96 (±13.81) abc | 68.09 (±26.83) cd | 59.65 (±6.50) bcd | 70.39 (±25.23) cd | 31.58 (±8.58) abc | 5.59 (±2.48) a | 14.92 (±7.20) ab |
Dry Matter | Ash | pH H2O | EC * | BET Surface Area | Total Pore Volume | Zn | Pb | Cd | Cu | Ni |
---|---|---|---|---|---|---|---|---|---|---|
g·kg−1 | g·kg−1 | µS·cm−1 | m2·g−1 | cm3·g−1 | mg·kg−1 | |||||
932.05 ± 4.01 1 | 879.25 ± 2.11 | 5.76 ± 0.17 | 203.41 ± 6.23 | 31.30 ± 1.10 | 0.067 ± 0.002 | 36.82 ± 0.72 | 11.43 ± 0.04 | 0.16 ± 0.01 | 47.61 ± 1.93 | 17.52 ± 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gospodarek, J.; Boligłowa, E.; Gondek, K.; Smoroń, K.; Paśmionka, I.B. Effect of Thuja occidentalis L. Essential Oil Combined with Diatomite Against Selected Pests. Molecules 2025, 30, 3300. https://doi.org/10.3390/molecules30153300
Gospodarek J, Boligłowa E, Gondek K, Smoroń K, Paśmionka IB. Effect of Thuja occidentalis L. Essential Oil Combined with Diatomite Against Selected Pests. Molecules. 2025; 30(15):3300. https://doi.org/10.3390/molecules30153300
Chicago/Turabian StyleGospodarek, Janina, Elżbieta Boligłowa, Krzysztof Gondek, Krzysztof Smoroń, and Iwona B. Paśmionka. 2025. "Effect of Thuja occidentalis L. Essential Oil Combined with Diatomite Against Selected Pests" Molecules 30, no. 15: 3300. https://doi.org/10.3390/molecules30153300
APA StyleGospodarek, J., Boligłowa, E., Gondek, K., Smoroń, K., & Paśmionka, I. B. (2025). Effect of Thuja occidentalis L. Essential Oil Combined with Diatomite Against Selected Pests. Molecules, 30(15), 3300. https://doi.org/10.3390/molecules30153300