Harnessing Nanoporous Hexagonal Structures to Control the Coffee Ring Effect and Enhance Particle Patterning
Abstract
1. Introduction
2. Results and Discussion
2.1. Droplet Evaporation Behavior on Various Surface Types
2.2. Particle Aggregation on Different Surface Types
3. Materials and Methods
3.1. Fabrication of Surface Samples
3.2. Evaporation and Particle Aggregation Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, R.; Zhang, L.; Zang, D.; Shen, W. Wetting and Drying of Colloidal Droplets: Physics and Pattern Formation. In Advances in Colloid Science; InTech Open: London, UK, 2016. [Google Scholar]
- Yang, K.P.; Song, J.; Shin, G.J.; Choi, S.; Lee, J.H.; Lee, K. Coffee ring-free inkjet printing using UV-curable quantum dot-acrylate solution for high resolution displays. Colloids Surf. Physicochem. Eng. Asp. 2024, 697, 134313. [Google Scholar] [CrossRef]
- Derby, B. Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 2010, 40, 395–414. [Google Scholar] [CrossRef]
- Kim, K.; Jang, J.; Hong, S.; Kang, H.; Lee, J. Toward submicron inkjet-printed ZnO microdots with suppressed coffee-ring effect via controlled drying conditions for potential solar cell applications. J. Mater. Res. Technol. 2024, 31, 3480–3488. [Google Scholar] [CrossRef]
- Yu, X.; Li, J.; Mo, Y.; Xiang, T.; Ku, Z.; Huang, F.; Long, F.; Peng, Y.; Cheng, Y. “Coffee ring” controlment in spray prepared >19% efficiency Cs0. 19FA0. 81PbI2. 5Br0. 5 perovskite solar cells. J. Energy Chem. 2022, 67, 201–208. [Google Scholar] [CrossRef]
- Zhang, L.; Li, P.; Bu, X.; Wu, J.; Zhang, X.; Zhao, B.; Tian, Y. Combined host-guest complex with coffee-ring effect for constructing ultrasensitive SERS substrate for phenformin hydrochloride detection in healthcare products. Anal. Bioanal. Chem. 2018, 410, 7599–7609. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, T.; Yu, Y.; Asif, M.; Xu, N.; Xiao, F.; Liu, H. Coffee Ring–Inspired Approach toward Oriented Self-Assembly of Biomimetic Murray MOFs as Sweat Biosensor. Small 2018, 14, 1802670. [Google Scholar] [CrossRef]
- Maheshwari, S.; Zhang, L.; Zhu, Y.; Chang, H. Coupling Between Precipitation and Contact-Line Dynamics: Multiring Stains and Stick-Slip Motion. Phys. Rev. Lett. 2008, 100, 044503. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, Y.; Liu, Z.; Li, Z.; Zang, D. Surface wrinkling and cracking dynamics in the drying of colloidal droplets. Eur. Phys. J. E 2014, 37, 1–7. [Google Scholar] [CrossRef]
- Xu, X.; Luo, J. Marangoni flow in an evaporating water droplet. Appl. Phys. Lett. 2007, 91, 124102. [Google Scholar] [CrossRef]
- Deegan, R.D.; Bakajin, O.; Dupont, T.F.; Huber, G.; Nagel, S.R.; Witten, T.A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827–829. [Google Scholar] [CrossRef]
- Yunker, P.J.; Still, T.; Lohr, M.A.; Yodh, A.G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 2011, 476, 308–311. [Google Scholar] [CrossRef]
- Yang, M.; Chen, D.; Hu, J.; Zheng, X.; Lin, Z.; Zhu, H. The application of coffee-ring effect in analytical chemistry. TrAC Trends Anal. Chem. 2022, 157, 116752. [Google Scholar] [CrossRef]
- Durian, D.J.; Franck, C. Wetting phenomena of binary liquid mixtures on chemically altered substrates. Phys. Rev. Lett. 1987, 59, 555. [Google Scholar] [CrossRef]
- Yoon, S.M.; Kim, W.Y.; Han, Y.J.; Yoon, S.N.; Jeong, J.; Kim, S.; Cho, Y.T. Photo-induced liquid-based slippery materials for highly efficient particle aggregation. Appl. Surf. Sci. 2025, 682, 161638. [Google Scholar] [CrossRef]
- Patil, N.D.; Bhardwaj, R.; Sharma, A. Self-sorting of bidispersed colloidal particles near contact line of an evaporating sessile droplet. Langmuir 2018, 34, 12058–12070. [Google Scholar] [CrossRef]
- Yunker, P.J.; Lohr, M.A.; Still, T.; Borodin, A.; Durian, D.J.; Yodh, A.G. Effects of Particle Shape on Growth Dynamics at Edges of Evaporating Drops of Colloidal Suspensions. Phys. Rev. Lett. 2013, 110, 035501. [Google Scholar] [CrossRef]
- Kočišová, E.; Petr, M.; Šípová, H.; Kylián, O.; Procházka, M. Drop coating deposition of a liposome suspension on surfaces with different wettabilities: “Coffee ring” formation and suspension preconcentration. Phys. Chem. Chem. Phys. 2017, 19, 388–393. [Google Scholar] [CrossRef]
- Gonçalves, M.; Kim, J.Y.; Kim, Y.; Rubab, N.; Jung, N.; Asai, T.; Hong, S.; Weon, B.M. Droplet evaporation on porous fabric materials. Sci. Rep. 2022, 12, 1087. [Google Scholar] [CrossRef]
- Kim, S.; Kim, W.Y.; Nam, S.; Shin, S.; Choi, S.H.; Kim, D.H.; Lee, H.; Choi, H.J.; Lee, E.; Park, J. Microstructured surfaces for reducing chances of fomite transmission via virus-containing respiratory droplets. ACS Nano 2021, 15, 14049–14060. [Google Scholar] [CrossRef]
- Shin, S.; Oh, S.; Park, S.R.; Cho, H.; Kim, S.; Cho, Y.T. Multifunctional microcavity surfaces for robust capture and direct rapid sampling of concentrated analytes. Small Struct. 2024, 5, 2300400. [Google Scholar] [CrossRef]
- Shin, S.; Choi, S.H.; Baasanmunkh, S.; Kim, S.; Choi, H.J.; Cho, Y.T. Micro-replication platform for studying the structural effect of seed surfaces on wetting properties. Sci. Rep. 2022, 12, 5607. [Google Scholar] [CrossRef]
- Hidri, F.; Sghaier, N.; Eloukabi, H.; Prat, M.; Nasrallah, S.B. Porous medium coffee ring effect and other factors affecting the first crystallisation time of sodium chloride at the surface of a drying porous medium. Phys. Fluids 2013, 25, 127101. [Google Scholar] [CrossRef]
- Kim, M.S.; Oh, S.; Kim, W.Y.; Park, S.R.; Yoon, S.N.; Choi, S.H.; Shin, S.; Kwon, S.; Woo, K.; Kim, S. Robust air pocket stability of various liquids droplet on micro cavity structures. Appl. Surf. Sci. 2025, 682, 161792. [Google Scholar] [CrossRef]
- Hosseini, M.; Rodriguez, A.; Ducker, W.A. Super-enhanced evaporation of droplets from porous coatings. J. Colloid. Interface Sci. 2023, 633, 132–141. [Google Scholar] [CrossRef]
- Hussain, A.; Sun, D.; Pu, H. SERS detection of urea and ammonium sulfate adulterants in milk with coffee ring effect. Food Addit. Contam. Part A 2019, 36, 851–862. [Google Scholar] [CrossRef]
- Zhu, Q.; Yu, X.; Wu, Z.; Lu, F.; Yuan, Y. Antipsychotic drug poisoning monitoring of clozapine in urine by using coffee ring effect based surface-enhanced Raman spectroscopy. Anal. Chim. Acta 2018, 1014, 64–70. [Google Scholar] [CrossRef]
- Gao, S.; Lin, Y.; Zhao, X.; Gao, J.; Xie, S.; Gong, W.; Yu, Y.; Lin, J. Label-free surface enhanced Raman spectroscopy analysis of blood serum via coffee ring effect for accurate diagnosis of cancers. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2022, 267, 120605. [Google Scholar] [CrossRef]
- Oliver, J.F.; Huh, C.; Mason, S.G. Resistance to spreading of liquids by sharp edges. J. Colloid. Interface Sci. 1977, 59, 568–581. [Google Scholar] [CrossRef]
- Cassie, A.B.D. Contact angles. Discuss. Faraday Soc. 1948, 3, 11–16. [Google Scholar] [CrossRef]
- Patankar, N.A. On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 2003, 19, 1249–1253. [Google Scholar] [CrossRef]
- Murakami, D.; Jinnai, H.; Takahara, A. Wetting transition from the Cassie–Baxter state to the Wenzel state on textured polymer surfaces. Langmuir 2014, 30, 2061–2067. [Google Scholar] [CrossRef]
- Washburn, E.W. The dynamics of capillary flow. Phys. Rev. 1921, 17, 273. [Google Scholar] [CrossRef]
- Wenzel, R.N. Surface Roughness and Contact Angle. J. Phys. Colloid. Chem. 1949, 53, 1466–1467. [Google Scholar] [CrossRef]
- Meiron, T.S.; Marmur, A.; Saguy, I.S. Contact angle measurement on rough surfaces. J. Colloid. Interface Sci. 2004, 274, 637–644. [Google Scholar] [CrossRef]
- Egorov, S.A.; Binder, K. When does Wenzel’s extension of Young’s equation for the contact angle of droplets apply? A density functional study. J. Chem. Phys. 2020, 152, 194707. [Google Scholar] [CrossRef]
- Lago, M.; Araujo, M. Capillary rise in porous media. J. Colloid. Interface Sci. 2001, 234, 35–43. [Google Scholar] [CrossRef]
- Larson, R.G.; Morrow, N.R. Effects of sample size on capillary pressures in porous media. Powder Technol. 1981, 30, 123–138. [Google Scholar] [CrossRef]
- Moffat, J.R.; Sefiane, K.; Shanahan, M.E. Effect of TiO2 nanoparticles on contact line stick− slip behavior of volatile drops. J. Phys. Chem. B 2009, 113, 8860–8866. [Google Scholar] [CrossRef]
- Marć, M.; Wolak, W.; Drzewiński, A.; Dudek, M.R. Coffee-ring formation through the use of the multi-ring mechanism guided by the self-assembly of magnetic nanoparticles. Sci. Rep. 2022, 12, 20131. [Google Scholar] [CrossRef]
- Marć, M.; Wolak, W.; Drzewiński, A.; Mudry, S.; Shtablavyi, I.; Dudek, M.R. The concept of using 2D self-assembly of magnetic nanoparticles for bioassays. Appl. Sci. 2024, 14, 1906. [Google Scholar] [CrossRef]
- Kim, W.Y.; Seo, B.W.; Lee, S.H.; Lee, T.G.; Kwon, S.; Chang, W.S.; Nam, S.; Fang, N.X.; Kim, S.; Cho, Y.T. Quasi-seamless stitching for large-area micropatterned surfaces enabled by Fourier spectral analysis of moiré patterns. Nat. Commun. 2023, 14, 2202. [Google Scholar] [CrossRef]
- Rabbani, A.; Mostaghimi, P.; Armstrong, R.T. Pore network extraction using geometrical domain decomposition. Adv. Water Resour. 2019, 123, 70–83. [Google Scholar] [CrossRef]
- Rabbani, A.; Ayatollahi, S.; Kharrat, R.; Dashti, N. Estimation of 3-D pore network coordination number of rocks from watershed segmentation of a single 2-D image. Adv. Water Resour. 2016, 94, 264–277. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.J.; Kim, M.S.; Yoon, S.M.; Yoon, S.N.; Kim, W.Y.; Kim, S.; Cho, Y.T. Harnessing Nanoporous Hexagonal Structures to Control the Coffee Ring Effect and Enhance Particle Patterning. Molecules 2025, 30, 3146. https://doi.org/10.3390/molecules30153146
Han YJ, Kim MS, Yoon SM, Yoon SN, Kim WY, Kim S, Cho YT. Harnessing Nanoporous Hexagonal Structures to Control the Coffee Ring Effect and Enhance Particle Patterning. Molecules. 2025; 30(15):3146. https://doi.org/10.3390/molecules30153146
Chicago/Turabian StyleHan, Yu Ju, Myung Seo Kim, Seong Min Yoon, Seo Na Yoon, Woo Young Kim, Seok Kim, and Young Tae Cho. 2025. "Harnessing Nanoporous Hexagonal Structures to Control the Coffee Ring Effect and Enhance Particle Patterning" Molecules 30, no. 15: 3146. https://doi.org/10.3390/molecules30153146
APA StyleHan, Y. J., Kim, M. S., Yoon, S. M., Yoon, S. N., Kim, W. Y., Kim, S., & Cho, Y. T. (2025). Harnessing Nanoporous Hexagonal Structures to Control the Coffee Ring Effect and Enhance Particle Patterning. Molecules, 30(15), 3146. https://doi.org/10.3390/molecules30153146