Flavonol Technology: From the Compounds’ Chemistry to Clinical Research
Abstract
1. Introduction
2. Flavonol Chemistry
2.1. Classification
2.2. Structure–Activity Relationships
3. Therapeutic Drug Delivery Nanosystems
3.1. Parenteral Formulations
3.2. Dermatological Systems
3.3. Oral Formulations
4. The Role of Flavonols in Gastrointestinal Dysfunctions and Prophylaxis
4.1. Flavonols Impact on the Gut Microbiome
4.2. Flavonols and Parenteral Nutrition
4.3. Flavonols Bioavailability
5. Flavonols in the Human Body: Concentrations and Clinical Applications
5.1. Population Blood Levels of Flavonols
5.2. Clinical Trials Using Flavonols
5.3. Opportunities and Challenges Affecting Therapy Transfer
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TEAC | Trolox Equivalent Antioxidant Activity |
DPPH | 2,2-diphenyl-1-picrylhydrazyl radical |
topoI | topoisomerase I |
topoII | topoisomerase II |
ROS | reactive oxygen species |
BZF | 2-benzoyl-2-hydroxy-3(2H)-benzofuranones |
LLC | Lewis lung carcinoma |
NLC | nanostructured lipid carriers |
ICD | irritant contact dermatitis |
DoE | Design of Experiment |
SAP | severe acute pancreatitis |
NS | nanospheres |
NC | nanocapsules |
OFAT | one-factor over time |
LPHNP | lipid polymer hybrid nanoparticles |
SAP | L-arginine-induced acute pancreatitis |
T2DM | type 2 diabetes mellitus |
SEM | Scanning electron microscope |
IBD | inflammatory bowel disease |
IgA | immunoglobulin A |
PI3K | phosphoinositide 3-kinase |
AMPK | 5’AMP-activated kinase |
G6Pase | glucose-6-phosphatase |
PEPCK | phosphoenolpyruvate carboxylase |
IBS | irritable bowel syndrome |
IFALD | Intestinal Failure associated Liver Disease |
FXR | farnesyl receptor |
FDA | Food and Drug Administration |
LPH | lactase-phlorizin hydrolase enzyme |
SGLT1 | sodium-dependent glucose transporter |
HPLC | high-performance liquid chromatography |
TC | total cholesterol |
CAD | coronary artery disease |
FFQ | food frequency questionnaire |
KMP | kaempferol aglycone |
TAC | total oxidative capacity |
BMF | bone marrow failure |
FA | Fanconi anemia |
QOL | quality of life |
AI | artificial intelligence |
TPO | thyroid peroxidase |
References
- Saadullah, M.; Rashad, M.; Asif, M.; Shah, M.A. Chapter 4—Biosynthesis of Phytonutrients. In Phytonutrients and Neurological Disorders; Khan, H., Aschner, M., Mirzaei, H., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 57–105. ISBN 978-0-12-824467-8. [Google Scholar]
- Vuong, Q.V.; Hirun, S.; Phillips, P.A.; Chuen, T.L.K.; Bowyer, M.C.; Goldsmith, C.D.; Scarlett, C.J. Fruit-Derived Phenolic Compounds and Pancreatic Cancer: Perspectives from Australian Native Fruits. J. Ethnopharmacol. 2014, 152, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Patra, S.; Pradhan, B.; Nayak, R.; Behera, C.; Das, S.; Patra, S.K.; Efferth, T.; Jena, M.; Bhutia, S.K. Dietary Polyphenols in Chemoprevention and Synergistic Effect in Cancer: Clinical Evidences and Molecular Mechanisms of Action. Phytomed. Int. J. Phytother. Phytopharm. 2021, 90, 153554. [Google Scholar] [CrossRef] [PubMed]
- Ur Rehman, S.; Shafqat, F.; Fatima, B.; Nawaz, M.N.; Niaz, K. Chapter 4—Flavonoids and Other Polyphenols against SARS-CoV-2. In Application of Natural Products in SARS-CoV-2; Niaz, K., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 83–123. ISBN 978-0-323-95047-3. [Google Scholar]
- Kumar Singh, A.; Cabral, C.; Kumar, R.; Ganguly, R.; Kumar Rana, H.; Gupta, A.; Rosaria Lauro, M.; Carbone, C.; Reis, F.; Pandey, A.K. Beneficial Effects of Dietary Polyphenols on Gut Microbiota and Strategies to Improve Delivery Efficiency. Nutrients 2019, 11, 2216. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.-H.; Lin, S.-Y.; Chen, L.-L.; Ouyang, K.-H.; Wang, W.-J. The Interaction between Flavonoids and Intestinal Microbes: A Review. Foods 2023, 12, 320. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, J.; Liu, Z.; Zhi, Y.; Mei, C.; Wang, H. Flavonoids as Promising Natural Compounds for Combating Bacterial Infections. Int. J. Mol. Sci. 2025, 26, 2455. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.L.; Tran, C.T.B.; Pham, D.T.K.; Nguyen, H.T.A.; Nguyen, M.H.; Pham, N.M.; Nguyen, A.T.V.; Phan, D.T.; Do, H.M.; Nguyen, Q.H. Metabolic Engineering of Corynebacterium glutamicum for the Production of Flavonoids and Stilbenoids. Molecules 2024, 29, 2252. [Google Scholar] [CrossRef] [PubMed]
- L’Abbate, S.; Kusmic, C. The Protective Effect of Flavonoids in the Diet on Autophagy-Related Cardiac Impairment. Nutrients 2024, 16, 2207. [Google Scholar] [CrossRef] [PubMed]
- Vazhappilly, C.G.; Amararathna, M.; Cyril, A.C.; Linger, R.; Matar, R.; Merheb, M.; Ramadan, W.S.; Radhakrishnan, R.; Rupasinghe, H.P.V. Current Methodologies to Refine Bioavailability, Delivery, and Therapeutic Efficacy of Plant Flavonoids in Cancer Treatment. J. Nutr. Biochem. 2021, 94, 108623. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.-Y.; Fang, Z.; Ng, K. Dietary Fiber-Based Colon-Targeted Delivery Systems for Polyphenols. Trends Food Sci. Technol. 2020, 100, 333–348. [Google Scholar] [CrossRef]
- Tang, R.; Lin, L.; Liu, Y.; Li, H. Bibliometric and Visual Analysis of Global Publications on Kaempferol. Front. Nutr. 2024, 11, 1442574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, M.; Xiao, J. Stability of Polyphenols in Food Processing. Adv. Food Nutr. Res. 2022, 102, 1–45. [Google Scholar] [CrossRef]
- Li, W.; Chen, H.; Xu, B.; Wang, Y.; Zhang, C.; Cao, Y.; Xing, X. Research Progress on Classification, Sources and Functions of Dietary Polyphenols for Prevention and Treatment of Chronic Diseases. J. Future Foods 2023, 3, 289–305. [Google Scholar] [CrossRef]
- Zhuang, W.-B.; Li, Y.-H.; Shu, X.-C.; Pu, Y.-T.; Wang, X.-J.; Wang, T.; Wang, Z. The Classification, Molecular Structure and Biological Biosynthesis of Flavonoids, and Their Roles in Biotic and Abiotic Stresses. Molecules 2023, 28, 3599. [Google Scholar] [CrossRef] [PubMed]
- Truzzi, F.; Tibaldi, C.; Zhang, Y.; Dinelli, G.; D’Amen, E. An Overview on Dietary Polyphenols and Their Biopharmaceutical Classification System (BCS). Int. J. Mol. Sci. 2021, 22, 5514. [Google Scholar] [CrossRef] [PubMed]
- Papoutsis, K.; Zhang, J.; Bowyer, M.C.; Brunton, N.; Gibney, E.R.; Lyng, J. Fruit, Vegetables, and Mushrooms for the Preparation of Extracts with α-Amylase and α-Glucosidase Inhibition Properties: A Review. Food Chem. 2021, 338, 128119. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.C.; Doss, R.B.; Banerjee, A.; Lall, R.; Srivastava, A.; Sinha, A. Chapter 10—Nutraceuticals in Gastrointestinal Disorders. In Nutraceuticals, 2nd ed.; Gupta, R.C., Lall, R., Srivastava, A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 141–155. ISBN 978-0-12-821038-3. [Google Scholar]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant Flavonoids: Classification, Distribution, Biosynthesis, and Antioxidant Activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef]
- Mahmud, A.R.; Ema, T.I.; Siddiquee, M.F.-R.; Shahriar, A.; Ahmed, H.; Hasan, M.U.; Rahman, N.; Islam, R.; Uddin, M.R.; Mizan, F.R. Natural Flavonols: Actions, Mechanisms, and Potential Therapeutic Utility for Various Diseases. Beni-Suef Univ. J. Basic Appl. Sci. 2023, 12, 47. [Google Scholar] [CrossRef]
- Sudarshan, K.; Aidhen, I.S. Convenient Synthesis of 3-Glycosylated Isocoumarins. Eur. J. Org. Chem. 2017, 2017, 34–38. [Google Scholar] [CrossRef]
- Ramanan, M.; Sinha, S.; Sudarshan, K.; Aidhen, I.S.; Doble, M. Inhibition of the Enzymes in the Leukotriene and Prostaglandin Pathways in Inflammation by 3-Aryl Isocoumarins. Eur. J. Med. Chem. 2016, 124, 428–434. [Google Scholar] [CrossRef]
- Zahr, S.; Zahr, R.; El Hajj, R.; Khalil, M. Phytochemistry and Biological Activities of Citrus sinensis and Citrus limon: An Update. J. Herb. Med. 2023, 41, 100737. [Google Scholar] [CrossRef]
- Tahir, M.S.; Almezgagi, M.; Zhang, Y.; Bashir, A.; Abdullah, H.M.; Gamah, M.; Wang, X.; Zhu, Q.; Shen, X.; Ma, Q.; et al. Mechanistic New Insights of Flavonols on Neurodegenerative Diseases. Biomed. Pharmacother. 2021, 137, 111253. [Google Scholar] [CrossRef] [PubMed]
- Arias-Santé, M.F.; Fuentes, J.; Ojeda, C.; Aranda, M.; Pastene, E.; Speisky, H. Amplification of the Antioxidant Properties of Myricetin, Fisetin, and Morin Following Their Oxidation. Food Chem. 2024, 435, 137487. [Google Scholar] [CrossRef]
- Esselen, M.; Barth, S.W. Chapter Four—Food-Borne Topoisomerase Inhibitors: Risk or Benefit. In Advances in Molecular Toxicology; Fishbein, J.C., Heilman, J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 8, pp. 123–171. [Google Scholar]
- Hirano, R.; Sasamoto, W.; Matsumoto, A.; Itakura, H.; Igarashi, O.; Kondo, K. Antioxidant Ability of Various Flavonoids against DPPH Radicals and LDL Oxidation. J. Nutr. Sci. Vitaminol. 2001, 47, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Burda, S.; Oleszek, W. Antioxidant and Antiradical Activities of Flavonoids. J. Agric. Food Chem. 2001, 49, 2774–2779. [Google Scholar] [CrossRef]
- Arora, A.; Nair, M.G.; Strasburg, G.M. Structure-Activity Relationships for Antioxidant Activities of a Series of Flavonoids in a Liposomal System. Free Radic. Biol. Med. 1998, 24, 1355–1363. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid Antioxidants: Chemistry, Metabolism and Structure-Activity Relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Van Acker, S.A.; de Groot, M.J.; van den Berg, D.-J.; Tromp, M.N.; Donné-Op den Kelder, G.; van der Vijgh, W.J.; Bast, A. A Quantum Chemical Explanation of the Antioxidant Activity of Flavonoids. Chem. Res. Toxicol. 1996, 9, 1305–1312. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-Antioxidant Activity Relationships of Flavonoids and Phenolic Acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef] [PubMed]
- Ratty, A.K.; Das, N.P. Effects of Flavonoids on Nonenzymatic Lipid Peroxidation: Structure-Activity Relationship. Biochem. Med. Metab. Biol. 1988, 39, 69–79. [Google Scholar] [CrossRef]
- Cholbi, M.R.; Paya, M.; Alcaraz, M.J. Inhibitory Effects of Phenolic Compounds on CCl4-Induced Microsomal Lipid Peroxidation. Experientia 1991, 47, 195–199. [Google Scholar] [CrossRef]
- Bensasson, R.V.; Zoete, V.; Jossang, A.; Bodo, B.; Arimondo, P.B.; Land, E.J. Potency of Inhibition of Human DNA Topoisomerase I by Flavones Assessed through Physicochemical Parameters. Free Radic. Biol. Med. 2011, 51, 1406–1410. [Google Scholar] [CrossRef]
- Bolton, J.L.; Dunlap, T.L.; Dietz, B.M. Formation and Biological Targets of Botanical O-Quinones. Food Chem. Toxicol. 2018, 120, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Dugas, A.J.; Castañeda-Acosta, J.; Bonin, G.C.; Price, K.L.; Fischer, N.H.; Winston, G.W. Evaluation of the Total Peroxyl Radical-Scavenging Capacity of Flavonoids: Structure-Activity Relationships. J. Nat. Prod. 2000, 63, 327–331. [Google Scholar] [CrossRef]
- Mora, A.; Payá, M.; Ríos, J.L.; Alcaraz, M.J. Structure-Activity Relationships of Polymethoxyflavones and Other Flavonoids as Inhibitors of Non-Enzymic Lipid Peroxidation. Biochem. Pharmacol. 1990, 40, 793–797. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Cheng, Y.; Gao, H.; Chen, X. A Review of Classification, Biosynthesis, Biological Activities and Potential Applications of Flavonoids. Molecules 2023, 28, 4982. [Google Scholar] [CrossRef] [PubMed]
- Croft, K.D. The Chemistry and Biological Effects of Flavonoids and Phenolic Acids. Ann. N. Y. Acad. Sci. 1998, 854, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yang, J.; Xie, Y. Improvement Strategies for the Oral Bioavailability of Poorly Water-Soluble Flavonoids: An Overview. Int. J. Pharm. 2019, 570, 118642. [Google Scholar] [CrossRef]
- Thilakarathna, S.H.; Rupasinghe, H.P.V. Flavonoid Bioavailability and Attempts for Bioavailability Enhancement. Nutrients 2013, 5, 3367–3387. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, M.; Zhao, M.; Li, C.; Shang, L.; Zhang, S.; Wang, P.; Gao, X. Study on the Effect of Pharmaceutical Excipient PEG400 on the Pharmacokinetics of Baicalin in Cells Based on MRP2, MRP3, and BCRP Efflux Transporters. Pharmaceutics 2024, 16, 731. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, S.; Tian, F.; Zhang, S.-Q.; Jin, H. Advances in Pharmacokinetic Mechanisms of Transporter-Mediated Herb-Drug Interactions. Pharmaceuticals 2022, 15, 1126. [Google Scholar] [CrossRef] [PubMed]
- Schaller, S.; Michon, I.; Baier, V.; Martins, F.S.; Nolain, P.; Taneja, A. Evaluation of BCRP-Related DDIs Between Methotrexate and Cyclosporin A Using Physiologically Based Pharmacokinetic Modelling. Drugs R D 2025, 25, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, K.; Kaplan, M.; Çalış, S. Effects of Nanoparticle Size, Shape, and Zeta Potential on Drug Delivery. Int. J. Pharm. 2024, 666, 124799. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Wang, Y.; Liu, R.; Yu, X.; Gao, H. Shape Transformable Strategies for Drug Delivery. Adv. Funct. Mater. 2021, 31, 2009765. [Google Scholar] [CrossRef]
- Szymczak, J.; Cielecka-Piontek, J. Fisetin—In Search of Better Bioavailability—From Macro to Nano Modifications: A Review. Int. J. Mol. Sci. 2023, 24, 14158. [Google Scholar] [CrossRef]
- Kalidas, S.; Geetha, P. The novel polymeric nanocarrier containing astragalin displays the hepatoprotective effect against CCl4-induced liver injury in vivo. Eur. Chem. Bull. 2022, 11, 1–6. [Google Scholar]
- Aboushanab, A.R.; El-Moslemany, R.M.; El-Kamel, A.H.; Mehanna, R.A.; Bakr, B.A.; Ashour, A.A. Targeted Fisetin-Encapsulated β-Cyclodextrin Nanosponges for Breast Cancer. Pharmaceutics 2023, 15, 1480. [Google Scholar] [CrossRef]
- Zolkiffly, S.Z.I.; Hasan, M.H.; Jusoh, S.A.; Janakiraman, A.K.; Sukumaran, S.K.; Husain, N.; Zakaria, Y.; Chellammal, H.S.J. In Silico and in Vivo Evaluations of Fisetin and Fisetin-Loaded Nanosuspension on Monoamine Oxidase Inhibition in Aβ(25–35) Induced Dementia in Mice Model. Pharmacol. Res.-Mod. Chin. Med. 2024, 13, 100547. [Google Scholar] [CrossRef]
- He, W.; Zhang, J.; Ju, J.; Wu, Y.; Zhang, Y.; Zhan, L.; Li, C.; Wang, Y. Preparation, Characterization, and Evaluation of the Antitumor Effect of Kaempferol Nanosuspensions. Drug Deliv. Transl. Res. 2023, 13, 2885–2902. [Google Scholar] [CrossRef]
- Liu, G.-S.; Chen, H.-A.; Chang, C.-Y.; Chen, Y.-J.; Wu, Y.-Y.; Widhibrata, A.; Yang, Y.-H.; Hsieh, E.-H.; Delila, L.; Lin, I.-C.; et al. Platelet-Derived Extracellular Vesicle Drug Delivery System Loaded with Kaempferol for Treating Corneal Neovascularization. Biomaterials 2025, 319, 123205. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; Figueiró, F.; Dias, A.d.F.; Teixeira, H.F.; Battastini, A.M.O.; Koester, L.S. Kaempferol-Loaded Mucoadhesive Nanoemulsion for Intranasal Administration Reduces Glioma Growth in Vitro. Int. J. Pharm. 2018, 543, 214–223. [Google Scholar] [CrossRef]
- Nafee, N.; Gaber, D.M.; Elzoghby, A.O.; Helmy, M.W.; Abdallah, O.Y. Promoted Antitumor Activity of Myricetin against Lung Carcinoma via Nanoencapsulated Phospholipid Complex in Respirable Microparticles. Pharm. Res. 2020, 37, 82. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Hu, Y.; Zhao, R.; Zhou, Y.-N.; Zhuang, Y.; Zhu, Y.; Ge, X.-L.; Lu, T.-W.; Lin, K.-L.; Xu, Y.-J. Quercetin-Loaded Mesoporous Nano-Delivery System Remodels Osteoimmune Microenvironment to Regenerate Alveolar Bone in Periodontitis via the miR-21a-5p/PDCD4/NF-κB Pathway. J. Nanobiotechnol. 2024, 22, 94. [Google Scholar] [CrossRef]
- Mok, S.-W.; Fu, S.-C.; Cheuk, Y.-C.; Chu, I.-M.; Chan, K.-M.; Qin, L.; Yung, S.-H.; Ho, K.-W.K. Intra-Articular Delivery of Quercetin Using Thermosensitive Hydrogel Attenuate Cartilage Degradation in an Osteoarthritis Rat Model. Cartilage 2020, 11, 490–499. [Google Scholar] [CrossRef]
- Li, Z.; Liang, S.; Sun, H.; Bao, C.; Li, Y. Antilipogenesis Effect of Rutin-Loaded Liposomes Using a Microneedle Delivery System. ACS Appl. Mater. Interfaces 2023, 15, 54294–54303. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Y.; Liu, P.; Zhou, Y.; Jiang, L.; Yuan, C.; Huang, M. Orally Delivered Rutin in Lipid-Based Nano-Formulation Exerts Strong Antithrombotic Effects by Protein Disulfide Isomerase Inhibition. Drug Deliv. 2022, 29, 1824–1835. [Google Scholar] [CrossRef] [PubMed]
- Soar, J.; Standing, J. Parenteral Drug Administration. In Medication Safety: An Essential Guide; Griffiths, M., Courtenay, M., Eds.; Cambridge University Press: Cambridge, MA, USA, 2009; pp. 97–112. ISBN 978-0-511-64227-2. [Google Scholar]
- Martínez, G.; Mijares, M.R.; De Sanctis, J.B. Effects of Flavonoids and Its Derivatives on Immune Cell Responses. Recent Pat. Inflamm. Allergy Drug Discov. 2019, 13, 84–104. [Google Scholar] [CrossRef]
- Seguin, J.; Brullé, L.; Boyer, R.; Lu, Y.M.; Ramos Romano, M.; Touil, Y.S.; Scherman, D.; Bessodes, M.; Mignet, N.; Chabot, G.G. Liposomal Encapsulation of the Natural Flavonoid Fisetin Improves Bioavailability and Antitumor Efficacy. Int. J. Pharm. 2013, 444, 146–154. [Google Scholar] [CrossRef]
- Ragelle, H.; Crauste-Manciet, S.; Seguin, J.; Brossard, D.; Scherman, D.; Arnaud, P.; Chabot, G.G. Nanoemulsion Formulation of Fisetin Improves Bioavailability and Antitumour Activity in Mice. Int. J. Pharm. 2012, 427, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Bothiraja, C.; Yojana, B.D.; Pawar, A.P.; Shaikh, K.S.; Thorat, U.H. Fisetin-Loaded Nanocochleates: Formulation, Characterisation, in Vitro Anticancer Testing, Bioavailability and Biodistribution Study. Expert Opin. Drug Deliv. 2014, 11, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Talaat, S.M.; Elnaggar, Y.S.R.; Gowayed, M.A.; El-Ganainy, S.O.; Allam, M.; Abdallah, O.Y. Novel PEGylated Cholephytosomes for Targeting Fisetin to Breast Cancer: In Vitro Appraisal and in Vivo Antitumoral Studies. Drug Deliv. Transl. Res. 2024, 14, 433–454. [Google Scholar] [CrossRef] [PubMed]
- Nicoleti, L.R.; Di Filippo, L.D.; Duarte, J.L.; Luiz, M.T.; Sábio, R.M.; Chorilli, M. Development, Characterization and in Vitro Cytotoxicity of Kaempferol-Loaded Nanostructured Lipid Carriers in Glioblastoma Multiforme Cells. Colloids Surf. B Biointerfaces 2023, 226, 113309. [Google Scholar] [CrossRef] [PubMed]
- Purnama, L.O.M.J.; Witchitchan, R.; Fristiohady, A.; Uttarawichien, T.; Payuhakrit, W.; Asasutjarit, R. Formulation Development of Thermoresponsive Quercetin Nanoemulgels and in Vitro Investigation of Their Inhibitory Activity on Vascular Endothelial Growth Factor—A Inducing Neovascularization from the Retinal Pigment Epithelial Cells. J. Drug Deliv. Sci. Technol. 2024, 100, 106005. [Google Scholar] [CrossRef]
- Zhang, F.; Li, R.; Yan, M.; Li, Q.; Li, Y.; Wu, X. Ultra-Small Nanocomplexes Based on Polyvinylpyrrolidone K-17PF: A Potential Nanoplatform for the Ocular Delivery of Kaempferol. Eur. J. Pharm. Sci. 2020, 147, 105289. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Chida, R.; Utugi, S.; Sashide, Y.; Takeda, M. Systemic Administration of the Phytochemical, Myricetin, Attenuates the Excitability of Rat Nociceptive Secondary Trigeminal Neurons. Molecules 2025, 30, 1019. [Google Scholar] [CrossRef]
- Kumar, M.; Mandal, U.K.; Mahmood, S. Chapter 20—Dermatological Formulations. In Dosage Forms, Formulation Developments and Regulations; Nayak, A.K., Sen, K.K., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 613–642. ISBN 978-0-323-91817-6. [Google Scholar]
- Raszewska-Famielec, M.; Flieger, J. Nanoparticles for Topical Application in the Treatment of Skin Dysfunctions—An Overview of Dermo-Cosmetic and Dermatological Products. Int. J. Mol. Sci. 2022, 23, 15980. [Google Scholar] [CrossRef]
- Moolakkadath, T.; Aqil, M.; Ahad, A.; Imam, S.S.; Praveen, A.; Sultana, Y.; Mujeeb, M. Preparation and Optimization of Fisetin Loaded Glycerol Based Soft Nanovesicles by Box-Behnken Design. Int. J. Pharm. 2020, 578, 119125. [Google Scholar] [CrossRef]
- Kumar, H.; Chand, P.; Pachal, S.; Mallick, S.; Jain, R.; Madhunapantula, S.V.; Jain, V. Fisetin-Loaded Nanostructured Lipid Carriers: Formulation and Evaluations against Advanced and Metastatic Melanoma. Mol. Pharm. 2023, 20, 6035–6055. [Google Scholar] [CrossRef]
- Su, H.; Liu, Z.; Zhang, Z.; Jing, X.; Meng, L. Development of a Deep Eutectic Solvent-Assisted Kaempferol Hydrogel: A Promising Therapeutic Approach for Psoriasis-like Skin Inflammation. Mol. Pharm. 2023, 20, 6319–6329. [Google Scholar] [CrossRef] [PubMed]
- Sutthammikorn, N.; Supajatura, V.; Yue, H.; Takahashi, M.; Chansakaow, S.; Nakano, N.; Song, P.; Ogawa, T.; Ikeda, S.; Okumura, K.; et al. Topical Gynura Procumbens as a Novel Therapeutic Improves Wound Healing in Diabetic Mice. Plants 2021, 10, 1122. [Google Scholar] [CrossRef]
- Lin, T.-C.; Yang, C.-Y.; Wu, T.-H.; Tseng, C.-H.; Yen, F.-L. Myricetin Nanofibers Enhanced Water Solubility and Skin Penetration for Increasing Antioxidant and Photoprotective Activities. Pharmaceutics 2023, 15, 906. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.; Duan, H.; Qin, Q.; Teng, Z.; Gan, F.; Zhou, X.; Zhou, X. Advances in Oral Drug Delivery Systems: Challenges and Opportunities. Pharmaceutics 2023, 15, 484. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-Y.; Lin, C.-C.; Hsieh, Y.-S.; Wu, Y.-T. Nanoformulation Development to Improve the Biopharmaceutical Properties of Fisetin Using Design of Experiment Approach. Molecules 2021, 26, 3031. [Google Scholar] [CrossRef]
- Awadeen, R.H.; Boughdady, M.F.; Zaghloul, R.A.; Elsaed, W.M.; Abu Hashim, I.I.; Meshali, M.M. Formulation of Lipid Polymer Hybrid Nanoparticles of the Phytochemical Fisetin and Its in Vivo Assessment against Severe Acute Pancreatitis. Sci. Rep. 2023, 13, 19110. [Google Scholar] [CrossRef]
- Upadhyay, M.; Hosur, R.V.; Jha, A.; Bharti, K.; Mali, P.S.; Jha, A.K.; Mishra, B.; Kumar, A. Myricetin Encapsulated Chitosan Nanoformulation for Management of Type 2 Diabetes: Preparation, Optimization, Characterization and in Vivo Activity. Biomater. Adv. 2023, 153, 213542. [Google Scholar] [CrossRef]
- Campión, R.; Gonzalez-Navarro, C.J.; López, A.L.M.; Martínez-Oharriz, M.C.; Matías, C.; Sáiz-Abajo, M.-J.; Collantes, M.; Peñuelas, I.; Irache, J.M. Zein-Based Nanospheres and Nanocapsules for the Encapsulation and Oral Delivery of Quercetin. Int. J. Pharm. 2023, 643, 123216. [Google Scholar] [CrossRef]
- Mohsen, A.M.; Wagdi, M.A.; Salama, A. Rutin Loaded Bilosomes for Enhancing the Oral Activity and Nephroprotective Effects of Rutin in Potassium Dichromate Induced Acute Nephrotoxicity in Rats. Sci. Rep. 2024, 14, 23799. [Google Scholar] [CrossRef]
- Pihl, C.; Granborg, J.R.; Pinto, F.E.; Bjerring, P.; Andersen, F.; Janfelt, C.; Haedersdal, M.; Lerche, C.M. Oral Administration of Quercetin and Fisetin Potentiates Photocarcinogenesis in UVR-Exposed Hairless Mice. Phytomed. Plus 2024, 4, 100547. [Google Scholar] [CrossRef]
- Hawula, Z.J.; Secondes, E.S.; Wallace, D.F.; Rishi, G.; Subramaniam, V.N. The Effect of the Flavonol Rutin on Serum and Liver Iron Content in a Genetic Mouse Model of Iron Overload. Biosci. Rep. 2021, 41, BSR20210720. [Google Scholar] [CrossRef]
- Magni, G.; Riboldi, B.; Petroni, K.; Ceruti, S. Flavonoids Bridging the Gut and the Brain: Intestinal Metabolic Fate, and Direct or Indirect Effects of Natural Supporters against Neuroinflammation and Neurodegeneration. Biochem. Pharmacol. 2022, 205, 115257. [Google Scholar] [CrossRef] [PubMed]
- Ashiqueali, S.A.; Chaudhari, D.; Zhu, X.; Noureddine, S.; Siddiqi, S.; Garcia, D.N.; Gostynska, A.; Stawny, M.; Rubis, B.; Zanini, B.M.; et al. Fisetin Modulates the Gut Microbiota alongside Biomarkers of Senescence and Inflammation in a DSS-Induced Murine Model of Colitis. GeroScience 2024, 46, 3085–3103. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhong, X.; Yan, J.; Sun, C.; Zhao, X.; Wang, X. Potential Roles of Gut Microbes in Biotransformation of Natural Products: An Overview. Front. Microbiol. 2022, 13, 956378. [Google Scholar] [CrossRef] [PubMed]
- Candeliere, F.; Raimondi, S.; Ranieri, R.; Musmeci, E.; Zambon, A.; Amaretti, A.; Rossi, M. β-Glucuronidase Pattern Predicted From Gut Metagenomes Indicates Potentially Diversified Pharmacomicrobiomics. Front. Microbiol. 2022, 13, 826994. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Ma, J.; Kang, M.; Tang, W.; Xia, S.; Yin, J.; Yin, Y. Flavonoids, Gut Microbiota, and Host Lipid Metabolism. Eng. Life Sci. 2024, 24, 2300065. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Zhao, X.; Tong, Q.; Zhou, X.; Chen, J.; Xiong, W.; Fang, J.; Wang, W.; Shi, C. Interactions of Dihydromyricetin, a Flavonoid from Vine Tea (Ampelopsis grossedentata) with Gut Microbiota. J. Food Sci. 2018, 83, 1444–1453. [Google Scholar] [CrossRef]
- Wan, M.L.Y.; Ling, K.H.; El-Nezami, H.; Wang, M.F. Influence of Functional Food Components on Gut Health. Crit. Rev. Food Sci. Nutr. 2019, 59, 1927–1936. [Google Scholar] [CrossRef]
- Berlana, D. Parenteral Nutrition Overview. Nutrients 2022, 14, 4480. [Google Scholar] [CrossRef]
- Ochiai, A.; Othman, M.B.; Sakamoto, K. Kaempferol Ameliorates Symptoms of Metabolic Syndrome by Improving Blood Lipid Profile and Glucose Tolerance. Biosci. Biotechnol. Biochem. 2021, 85, 2169–2176. [Google Scholar] [CrossRef]
- Sandoval, V.; Sanz-Lamora, H.; Arias, G.; Marrero, P.F.; Haro, D.; Relat, J. Metabolic Impact of Flavonoids Consumption in Obesity: From Central to Peripheral. Nutrients 2020, 12, 2393. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; Wang, T.; Zhou, R.; Zhou, Z.; Zhang, C.; Wu, W.; He, K. Myricetin and Myricetrin Alleviate Liver and Colon Damage in a Chronic Colitis Mice Model: Effects on Tight Junction and Intestinal Microbiota. J. Funct. Foods 2021, 87, 104790. [Google Scholar] [CrossRef]
- Ansari, P.; Choudhury, S.T.; Seidel, V.; Rahman, A.B.; Aziz, M.A.; Richi, A.E.; Rahman, A.; Jafrin, U.H.; Hannan, J.M.A.; Abdel-Wahab, Y.H.A. Therapeutic Potential of Quercetin in the Management of Type-2 Diabetes Mellitus. Life 2022, 12, 1146. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Ming, Q.; Qiu, J.; Tian, D.; Liu, J.; Shen, J.; Liu, Q.-H.; Yang, X. Ethanolic Extract of Folium Sennae Mediates the Glucose Uptake of L6 Cells by GLUT4 and Ca2+. Molecules 2018, 23, 2934. [Google Scholar] [CrossRef]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Shah, S.A.A.; Sarian, M.N.; Khattak, M.M.A.K.; Khatib, A.; Sabere, A.S.M.; Yusoff, Y.M.; Latip, J. Flavonoids as Antidiabetic and Anti-Inflammatory Agents: A Review on Structural Activity Relationship-Based Studies and Meta-Analysis. Int. J. Mol. Sci. 2022, 23, 12605. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Wang, C.; Jin, Y.; Meng, Q.; Wu, J.; Sun, H. Kaempferol-Induced GPER Upregulation Attenuates Atherosclerosis via the PI3K/AKT/Nrf2 Pathway. Pharm. Biol. 2021, 59, 1106–1116. [Google Scholar] [CrossRef] [PubMed]
- Kitakaze, T.; Jiang, H.; Nomura, T.; Hironao, K.-Y.; Yamashita, Y.; Ashida, H. Kaempferol Promotes Glucose Uptake in Myotubes through a JAK2-Dependent Pathway. J. Agric. Food Chem. 2020, 68, 13720–13729. [Google Scholar] [CrossRef] [PubMed]
- Al-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules 2019, 9, 430. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yuan, Q.; Xu, G.; Chen, H.; Lei, H.; Su, J. Effects of Quercetin on Proliferation and H2O2-Induced Apoptosis of Intestinal Porcine Enterocyte Cells. Molecules 2018, 23, 2012. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Vila, A.V.; Gacesa, R.; Collij, V.; Stevens, C.; Fu, J.M.; Wong, I.; Talkowski, M.E.; Rivas, M.A.; Imhann, F.; et al. Whole Exome Sequencing Analyses Reveal Gene-Microbiota Interactions in the Context of IBD. Gut 2021, 70, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Liu, P.; Zhong, J.; Hu, Y.; Fan, Y.; Zhuang, S.; Liu, Z. Kaempferol Inhibits Multiple Pathways Involved in the Secretion of Inflammatory Mediators from LPS—induced Rat Intestinal Microvascular Endothelial Cells. Mol. Med. Rep. 2019, 19, 1958–1964. [Google Scholar] [CrossRef]
- Lyu, Y.-L.; Zhou, H.-F.; Yang, J.; Wang, F.-X.; Sun, F.; Li, J.-Y. Biological Activities Underlying the Therapeutic Effect of Quercetin on Inflammatory Bowel Disease. Mediat. Inflamm. 2022, 2022, 5665778. [Google Scholar] [CrossRef]
- Gostyńska, A.; Buzun, K.; Żółnowska, I.; Krajka-Kuźniak, V.; Mańkowska-Wierzbicka, D.; Jelińska, A.; Stawny, M. Natural Bioactive Compounds—The Promising Candidates for the Treatment of Intestinal Failure-Associated Liver Disease. Clin. Nutr. 2024, 43, 1952–1971. [Google Scholar] [CrossRef]
- Dabeek, W.M.; Marra, M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef]
- Premathilaka, R.; Rashidinejad, A.; Golding, M.; Singh, J. Oral Delivery of Hydrophobic Flavonoids and Their Incorporation into Functional Foods: Opportunities and Challenges. Food Hydrocoll. 2022, 128, 107567. [Google Scholar] [CrossRef]
- Chamoli, M.; Patil, R.R.; Kiran, S.; Prashar, D.; Khatoon, Y.; Ramarao, D.; Samanta, R.; Posa, M.K. Formulation and Evaluation of Kaempferol Containing Solid Dispersion for Oral Delivery. Nanotechnol. Percept 2024, 20, 1790–1799. [Google Scholar]
- Imran, M.; Saeed, F.; Hussain, G.; Imran, A.; Mehmood, Z.; Gondal, T.A.; El-Ghorab, A.; Ahmad, I.; Pezzani, R.; Arshad, M.U.; et al. Myricetin: A Comprehensive Review on Its Biological Potentials. Food Sci. Nutr. 2021, 9, 5854–5868. [Google Scholar] [CrossRef]
- Kandemir, K.; Tomas, M.; McClements, D.J.; Capanoglu, E. Recent Advances on the Improvement of Quercetin Bioavailability. Trends Food Sci. Technol. 2022, 119, 192–200. [Google Scholar] [CrossRef]
- Cui, Y.; Han, Y.; Yang, X.; Sun, Y.; Zhao, Y. Protective Effects of Quercetin and Quercetin-5′,8-Disulfonate against Carbon Tetrachloride-Caused Oxidative Liver Injury in Mice. Molecules 2013, 19, 291–305. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Knaze, V.; Rothwell, J.A.; Hémon, B.; Moskal, A.; Overvad, K.; Tjønneland, A.; Kyrø, C.; Fagherazzi, G.; Boutron-Ruault, M.-C.; et al. Dietary Polyphenol Intake in Europe: The European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Eur. J. Nutr. 2016, 55, 1359–1375. [Google Scholar] [CrossRef]
- Perez-Vizcaino, F.; Duarte, J.; Santos-Buelga, C. The Flavonoid Paradox: Conjugation and Deconjugation as Key Steps for the Biological Activity of Flavonoids. J. Sci. Food Agric. 2012, 92, 1822–1825. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Gao, W.; Zhao, Z.; Xu, X.; Bu, H.; Su, H.; Mao, G.; Chen, J. Dietary Flavonoids Intake Contributes to Delay Biological Aging Process: Analysis from NHANES Dataset. J. Transl. Med. 2023, 21, 492. [Google Scholar] [CrossRef] [PubMed]
- Menezes, R.; Rodriguez-Mateos, A.; Kaltsatou, A.; González-Sarrías, A.; Greyling, A.; Giannaki, C.; Andres-Lacueva, C.; Milenkovic, D.; Gibney, E.R.; Dumont, J.; et al. Impact of Flavonols on Cardiometabolic Biomarkers: A Meta-Analysis of Randomized Controlled Human Trials to Explore the Role of Inter-Individual Variability. Nutrients 2017, 9, 117. [Google Scholar] [CrossRef]
- Arai, Y.; Watanabe, S.; Kimira, M.; Shimoi, K.; Mochizuki, R.; Kinae, N. Dietary Intakes of Flavonols, Flavones and Isoflavones by Japanese Women and the Inverse Correlation between Quercetin Intake and Plasma LDL Cholesterol Concentration. J. Nutr. 2000, 130, 2243–2250. [Google Scholar] [CrossRef]
- Radtke, J.; Linseisen, J.; Wolfram, G. Fasting Plasma Concentrations of Selected Flavonoids as Markers of Their Ordinary Dietary Intake. Eur. J. Nutr. 2002, 41, 203–209. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Y.; Chen, W.; Zhao, X. The Relationship between Fasting Plasma Concentrations of Selected Flavonoids and Their Ordinary Dietary Intake. Br. J. Nutr. 2010, 103, 249–255. [Google Scholar] [CrossRef]
- Popiolek-Kalisz, J.; Blaszczak, P.; Fornal, E. Dietary Isorhamnetin Intake Is Associated with Lower Blood Pressure in Coronary Artery Disease Patients. Nutrients 2022, 14, 4586. [Google Scholar] [CrossRef]
- Sadeghi, S.; Montazeri, V.; Zamora-Ros, R.; Biparva, P.; Sabour, S.; Pirouzpanah, S. Food Frequency Questionnaire Is a Valid Assessment Tool of Quercetin and Kaempferol Intake in Iranian Breast Cancer Patients According to Plasma Biomarkers. Nutr. Res. 2021, 93, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Tavenier, J.; Nehlin, J.O.; Houlind, M.B.; Rasmussen, L.J.; Tchkonia, T.; Kirkland, J.L.; Andersen, O.; Rasmussen, L.J.H. Fisetin as a Senotherapeutic Agent: Evidence and Perspectives for Age-Related Diseases. Mech. Ageing Dev. 2024, 222, 111995. [Google Scholar] [CrossRef] [PubMed]
- Kubina, R.; Iriti, M.; Kabała-Dzik, A. Anticancer Potential of Selected Flavonols: Fisetin, Kaempferol, and Quercetin on Head and Neck Cancers. Nutrients 2021, 13, 845. [Google Scholar] [CrossRef]
- Park, J.-M.; Do, V.Q.; Seo, Y.-S.; Duong, M.T.H.; Ahn, H.-C.; Huh, H.J.; Lee, M.-Y. Application of Fisetin to the Quantitation of Serum Albumin. J. Clin. Med. 2020, 9, 459. [Google Scholar] [CrossRef]
- Brüll, V.; Burak, C.; Stoffel-Wagner, B.; Wolffram, S.; Nickenig, G.; Müller, C.; Langguth, P.; Alteheld, B.; Fimmers, R.; Naaf, S.; et al. Effects of a Quercetin-Rich Onion Skin Extract on 24 h Ambulatory Blood Pressure and Endothelial Function in Overweight-to-Obese Patients with (Pre-)Hypertension: A Randomised Double-Blinded Placebo-Controlled Cross-over Trial. Br. J. Nutr. 2015, 114, 1263–1277. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G.; Clifford, M.N. A Critical Examination of Human Data for the Biological Activity of Quercetin and Its Phase-2 Conjugates. Crit. Rev. Food Sci. Nutr. 2025, 65, 1669–1705. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Salehi, B.; Sharifi-Rad, J.; Aslam Gondal, T.; Saeed, F.; Imran, A.; Shahbaz, M.; Fokou, P.V.T.; Arshad, M.U.; Khan, H.; et al. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules 2019, 24, 2277. [Google Scholar] [CrossRef]
- Bestwick, C.S.; Milne, L.; Pirie, L.; Duthie, S.J. The Effect of Short-Term Kaempferol Exposure on Reactive Oxygen Levels and Integrity of Human (HL-60) Leukaemic Cells. Biochim. Biophys. Acta 2005, 1740, 340–349. [Google Scholar] [CrossRef]
- Dang, Y.; Lin, G.; Xie, Y.; Duan, J.; Ma, P.; Li, G.; Ji, G. Quantitative Determination of Myricetin in Rat Plasma by Ultra Performance Liquid Chromatography Tandem Mass Spectrometry and Its Absolute Bioavailability. Drug Res. 2014, 64, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Godse, S.; Mohan, M.; Kasture, V.; Kasture, S. Effect of Myricetin on Blood Pressure and Metabolic Alterations in Fructose Hypertensive Rats. Pharm. Biol. 2010, 48, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Rofiee, M.S.; Yusof, M.I.M.; Kek, T.L.; Salleh, M.Z. A Pharmacokinetic Study by LC-MS/MS to Quantify Isoquercetin and Astragalin in Rat Serum After Oral Administration of a Combined Extract of Moringa Oleifera and Centella Asiatica. Rev. Bras. Farmacogn. 2020, 30, 804–809. [Google Scholar] [CrossRef]
- Bowers, G.M.; Mejia, H.; Duchesne, J. Chapter 39—Designing Clinical Trials of Surgical Interventions. In Translational Surgery (Handbook for Designing and Conducting Clinical and Translational Research); Eltorai, A.E.M., Bakal, J.A., Newell, P.C., Osband, A.J., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 227–234. ISBN 978-0-323-90300-4. [Google Scholar]
- Bauler, L.D. Chapter 38—Conducting Research in an Office Endovascular Center. In Office-Based Endovascular Centers; Jain, K.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 315–324. ISBN 978-0-323-67969-5. [Google Scholar]
- Krishnakumar, I.M.; Jaja-Chimedza, A.; Joseph, A.; Balakrishnan, A.; Maliakel, B.; Swick, A. Enhanced Bioavailability and Pharmacokinetics of a Novel Hybrid-Hydrogel Formulation of Fisetin Orally Administered in Healthy Individuals: A Randomised Double-Blinded Comparative Crossover Study. J. Nutr. Sci. 2022, 11, e74. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, M.; Mizokami, T.; Ito, H.; Ikeda, Y. A Randomized, Placebo-Controlled Trial Evaluating the Safety of Excessive Administration of Kaempferol Aglycone. Food Sci. Nutr. 2023, 11, 5427–5437. [Google Scholar] [CrossRef]
- Bosco, G.; Vezzoli, A.; Brizzolari, A.; Paganini, M.; Giacon, T.A.; Savini, F.; Gussoni, M.; Montorsi, M.; Dellanoce, C.; Mrakic-Sposta, S. Consumption of Sylimarin, Pyrroloquinoline Quinone Sodium Salt and Myricetin: Effects on Alcohol Levels and Markers of Oxidative Stress-A Pilot Study. Nutrients 2024, 16, 2965. [Google Scholar] [CrossRef]
- Mehta, P.A.; Nelson, A.; Loveless, S.; Lane, A.; Fukuda, T.; Teusink-Cross, A.; Elder, D.; Lagory, D.; Miller, E.; Cancelas, J.A.; et al. Phase 1 Study of Quercetin, a Natural Antioxidant for Children and Young Adults with Fanconi Anemia. Blood Adv. 2025, 9, 1927–1939. [Google Scholar] [CrossRef] [PubMed]
- Bazyar, H.; Javid, A.Z.; Ahangarpour, A.; Zaman, F.; Hosseini, S.A.; Zohoori, V.; Aghamohammadi, V.; Yazdanfar, S.; Cheshmeh, M.G.D. The Effects of Rutin Supplement on Blood Pressure Markers, Some Serum Antioxidant Enzymes, and Quality of Life in Patients with Type 2 Diabetes Mellitus Compared with Placebo. Front. Nutr. 2023, 10, 1214420. [Google Scholar] [CrossRef]
- Farsad-Naeimi, A.; Alizadeh, M.; Esfahani, A.; Aminabad, E.D. Effect of Fisetin Supplementation on Inflammatory Factors and Matrix Metalloproteinase Enzymes in Colorectal Cancer Patients. Food Funct. 2018, 9, 2025–2031. [Google Scholar] [CrossRef]
- Wang, L.; Cao, D.; Wu, H.; Jia, H.; Yang, C.; Zhang, L. Fisetin Prolongs Therapy Window of Brain Ischemic Stroke Using Tissue Plasminogen Activator: A Double-Blind Randomized Placebo-Controlled Clinical Trial. Clin. Appl. Thromb. 2019, 25, 1076029619871359. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Wacker, D.A.; Driver, B.E.; Staugaitis, A.; Niedernhofer, L.J.; Schmidt, E.L.; Kirkland, J.L.; Tchkonia, T.; Evans, T.; Serrano, C.H.; et al. Senolytics To slOw Progression of Sepsis (STOP-Sepsis) in Elderly Patients: Study Protocol for a Multicenter, Randomized, Adaptive Allocation Clinical Trial. Trials 2024, 25, 698. [Google Scholar] [CrossRef] [PubMed]
- Okita, K.; Mizokami, T.; Yasuda, O.; Ikeda, Y. Acute Kaempferol Ingestion Lowers Oxygen Uptake during Submaximal Exercise and Improves High-Intensity Exercise Capacity in Well-Trained Male Athletes. Physiol. Rep. 2025, 13, e70369. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, N.; Peng, X.; Ma, W.; Qin, Y.; Yao, X.; Huang, C.; Zhang, X. Network Pharmacology Analysis and Clinical Verification of Jishe Qushi Capsules in Rheumatoid Arthritis Treatment. Medicine 2023, 102, e34883. [Google Scholar] [CrossRef] [PubMed]
- Kozhukhov, S.; Parkhomenko, A.; Lutay, Y.; Dovganych, N. Study Investigators Impact of Quercetin in Patients with Myocardial Infarction. A Multicenter, Randomized, and Open-Label Pilot Study. Hell. J. Cardiol. 2024, 76, 68–74. [Google Scholar] [CrossRef]
- Yamada, S.; Shirai, M.; Inaba, Y.; Takara, T. Effects of Repeated Oral Intake of a Quercetin-Containing Supplement on Allergic Reaction: A Randomized, Placebo-Controlled, Double-Blind Parallel-Group Study. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 4331–4345. [Google Scholar] [CrossRef] [PubMed]
- Mathrani, A.; Yip, W.; Sequeira-Bisson, I.R.; Barnett, D.; Stevenson, O.; Taylor, M.W.; Poppitt, S.D. Effect of a 12-Week Polyphenol Rutin Intervention on Markers of Pancreatic β-Cell Function and Gut Microbiota in Adults with Overweight without Diabetes. Nutrients 2023, 15, 3360. [Google Scholar] [CrossRef]
- Akhund, S.A. Translational Biomedical Research: Challenges and Solutions of Using Animal Models. J. Coll. Physicians Surg. Pak. 2025, 35, 661–664. [Google Scholar] [CrossRef]
- Cohrs, R.J.; Martin, T.; Ghahramani, P.; Bidaut, L.; Higgins, P.J.; Shahzad, A. Translational Medicine Definition by the European Society for Translational Medicine. New Horiz. Transl. Med. 2015, 2, 86–88. [Google Scholar] [CrossRef]
- Austin, C.P. Opportunities and Challenges in Translational Science. Clin. Transl. Sci. 2021, 14, 1629–1647. [Google Scholar] [CrossRef] [PubMed]
- Seyhan, A.A. Lost in Translation: The Valley of Death across Preclinical and Clinical Divide—Identification of Problems and Overcoming Obstacles. Transl. Med. Commun. 2019, 4, 18. [Google Scholar] [CrossRef]
- Lalu, M.M.; Montroy, J.; Begley, C.G.; Bubela, T.; Hunniford, V.; Ripsman, D.; Wesch, N.; Kimmelman, J.; Macleod, M.; Moher, D.; et al. Identifying and Understanding Factors That Affect the Translation of Therapies from the Laboratory to Patients: A Study Protocol. F1000Research 2020, 9, 485. [Google Scholar] [CrossRef]
- Rutten, L.J.F.; Ridgeway, J.L.; Griffin, J.M. Advancing Translation of Clinical Research Into Practice and Population Health Impact Through Implementation Science. Mayo Clin. Proc. 2024, 99, 665–676. [Google Scholar] [CrossRef]
- Mukherjee, P.; Roy, S.; Ghosh, D.; Nandi, S.K. Role of Animal Models in Biomedical Research: A Review. Lab. Anim. Res. 2022, 38, 18. [Google Scholar] [CrossRef]
- Ioannidis, J.P.A. Why Most Clinical Research Is Not Useful. PLoS Med. 2016, 13, e1002049. [Google Scholar] [CrossRef]
- Hryn, V.H.; Kostylenko, Y.P.; Yushchenko, Y.P.; Lavrenko, A.V.; Ryabushko, O.B. General Comparative Anatomy of Human and White Rat Digestive Systems: A Bibliographic Analysis. Wiad. Lek. 2018, 71, 1599–1602. [Google Scholar]
- Kleinert, M.; Clemmensen, C.; Hofmann, S.M.; Moore, M.C.; Renner, S.; Woods, S.C.; Huypens, P.; Beckers, J.; de Angelis, M.H.; Schürmann, A.; et al. Animal Models of Obesity and Diabetes Mellitus. Nat. Rev. Endocrinol. 2018, 14, 140–162. [Google Scholar] [CrossRef] [PubMed]
- Ussar, S.; Griffin, N.W.; Bezy, O.; Fujisaka, S.; Vienberg, S.; Softic, S.; Deng, L.; Bry, L.; Gordon, J.I.; Kahn, C.R. Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome. Cell Metab. 2015, 22, 516–530. [Google Scholar] [CrossRef] [PubMed]
- Kabała-Dzik, A.; Rzepecka-Stojko, A.; Kubina, R.; Iriti, M.; Wojtyczka, R.D.; Buszman, E.; Stojko, J. Flavonoids, Bioactive Components of Propolis, Exhibit Cytotoxic Activity and Induce Cell Cycle Arrest and Apoptosis in Human Breast Cancer Cells MDA-MB-231 and MCF-7—A Comparative Study. Cell. Mol. Biol. 2018, 64, 1–10. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, Q. The Potential Toxic Side Effects of Flavonoids. Biocell 2021, 46, 357–366. [Google Scholar] [CrossRef]
- Varela-Rodríguez, L.; Calzada, F.; Velázquez-Domínguez, J.A.; Hernández-Ramírez, V.I.; Varela-Rodríguez, H.; Bautista, E.; Herrera-Martínez, M.; Pichardo-Hernández, D.L.; Castellanos-Mijangos, R.D.; Chávez-Munguía, B.; et al. Toxicological Evaluation of Kaempferol and Linearolactone as Treatments for Amoebic Liver Abscess Development in Mesocricetus auratus. Int. J. Mol. Sci. 2024, 25, 10633. [Google Scholar] [CrossRef]
- Rahmani, S.; Naraki, K.; Roohbakhsh, A.; Hayes, A.W.; Karimi, G. The Protective Effects of Rutin on the Liver, Kidneys, and Heart by Counteracting Organ Toxicity Caused by Synthetic and Natural Compounds. Food Sci. Nutr. 2022, 11, 39–56. [Google Scholar] [CrossRef]
- Hassan, S.S.U.; Samanta, S.; Dash, R.; Karpiński, T.M.; Habibi, E.; Sadiq, A.; Ahmadi, A.; Bungau, S. The Neuroprotective Effects of Fisetin, a Natural Flavonoid in Neurodegenerative Diseases: Focus on the Role of Oxidative Stress. Front. Pharmacol. 2022, 13, 1015835. [Google Scholar] [CrossRef] [PubMed]
- Zeggini, E.; Gloyn, A.L.; Barton, A.C.; Wain, L.V. Translational Genomics and Precision Medicine: Moving from the Lab to the Clinic. Science 2019, 365, 1409–1413. [Google Scholar] [CrossRef] [PubMed]
- Seyhan, A.A.; Carini, C. Are Innovation and New Technologies in Precision Medicine Paving a New Era in Patients Centric Care? J. Transl. Med. 2019, 17, 114. [Google Scholar] [CrossRef] [PubMed]
- Langhof, H.; Chin, W.W.L.; Wieschowski, S.; Federico, C.; Kimmelman, J.; Strech, D. Preclinical Efficacy in Therapeutic Area Guidelines from the U.S. Food and Drug Administration and the European Medicines Agency: A Cross-Sectional Study. Br. J. Pharmacol. 2018, 175, 4229–4238. [Google Scholar] [CrossRef]
- Ferreira, G.S.; Veening-Griffioen, D.H.; Boon, W.P.C.; Moors, E.H.M.; van Meer, P.J.K. Levelling the Translational Gap for Animal to Human Efficacy Data. Animals 2020, 10, 1199. [Google Scholar] [CrossRef] [PubMed]
- Lopes, B.R.P.; Albertini, T.T.; Costa, M.F.; Ferreira, A.S.; Toledo, K.A.; Rocha, J.C. The Use of Artificial Intelligence in Predicting Respiratory Syncytial Virus-Inhibiting Flavonoids. Braz. J. Biol. 2023, 83, e270776. [Google Scholar] [CrossRef]
- Liu, J.; Li, C.; Ding, G.; Quan, W. Artificial Intelligence Assisted Ultrasonic Extraction of Total Flavonoids from Rosa sterilis. Molecules 2021, 26, 3835. [Google Scholar] [CrossRef]
- Tropsha, A.; Isayev, O.; Varnek, A.; Schneider, G.; Cherkasov, A. Integrating QSAR Modelling and Deep Learning in Drug Discovery: The Emergence of Deep QSAR. Nat. Rev. Drug Discov. 2024, 23, 141–155. [Google Scholar] [CrossRef]
- Chu, G.; Liang, R.; Wan, C.; Yang, J.; Li, J.; Wang, R.; Du, L.; Lin, R. Ultrasonic-Assisted Extraction of Flavonoids from Juglans mandshurica Maxim.: Artificial Intelligence-Based Optimization, Kinetics Estimation, and Antioxidant Potential. Molecules 2022, 27, 4837. [Google Scholar] [CrossRef] [PubMed]
- Guardado Yordi, E.; Koelig, R.; Matos, M.J.; Pérez Martínez, A.; Caballero, Y.; Santana, L.; Pérez Quintana, M.; Molina, E.; Uriarte, E. Artificial Intelligence Applied to Flavonoid Data in Food Matrices. Foods 2019, 8, 573. [Google Scholar] [CrossRef]
Flavonol | Administration Route | Formulation | Experimental Model | Disease | Conclusions | Ref. |
---|---|---|---|---|---|---|
Astragalin | oral | Polymeric nanocarriers | In Vitro study: − In Vivo study: Wistar albino rats | CCl4-induced liver injury | ↑ hepatoprotective effect; ↓ markers of liver damage (SGPT, SGOT); ↑ bioavailability | [49] |
Fisetin | Intraperitoneal (i.p.) oral | β-Cyclodextrin Nanosponges | In Vitro study: MDA-MB-231 In Vivo study: Female Wistar rats | Breast cancer | ↑ cytotoxicity (↓ IC50); ↑ apoptosis (lactoferrin-coated); ↓ cell migration and ↓ tumor growth; cell cycle regulation (↓ cyclin D1 and Bcl-2, ↑ Bax) | [50] |
i.v. | Nanocrystals | In Vitro study: 3LL cancer cells; EA.hy926 endothelial cells In Vivo study: − | Lung cancer | ↑ cytotoxicity; apoptosis induction; ↓ angiogenesis; change in cell morphology | [51] | |
Kaempferol | i.v. oral | Nanosuspension | In Vitro study: 4T1; U251; HepG2; SGC-7901 In Vivo study: Balb/c mice with 4T1 cells | Breast cancer | ↑ cytotoxicity; ↓ migration of tumor cells (4T1, U251); ↑ apoptosis induction (↑ ROS production); ↑ internalization and accumulation in the tumor (EPR effect) | [52] |
topical | Platelet-derived extracellular vesicles | In Vitro study: HUVEC In Vivo study: C57BL/6J mice | Corneal Neovascularization | active internalization; ↓ migration of cells; ↑ formation of vascular structures; ↓ expression of inflammatory and angiogenic markers; ↑ retention within the eye; ↑ bioavailability and ↓ toxicity | [53] | |
intranasal | Mucoadhesive nanoemulsion | In Vitro study: C6 glioma cells In Vitro study: Wistar rats | Glioma | ↑ cytotoxicity (↓ IC50); ↑ apoptosis induction; ↑ intracellular uptake; biocompatibility with nasal mucosa | [54] | |
Myricetin | inhalation route | Solid lipid nanoparticles; Phospholipid complex | In Vitro study: A549; In Vitro study: - | Lung carcinoma | ↑ cytotoxicity (↓ IC50); ↑ cellular uptake; ↑ activity in the MTT test conducted in an environment with pH = 6.6 | [55] |
Quercetin | topical | Quercetin-loaded mesoporous nano-delivery system | In Vitro study: PDLSCs RAW264.7 In Vitro study: rat alveolar bone defect model | Periodontitis | ↑ osteo- and angiogenesis (OPN, CD31) ↓ expression of pro-inflammatory cytokinosteo- and angiogenesis (IL-6, TNF-α) in PDLSCs, (↓inflammation); ↓ levels of inflammatory genes and proteins (IL-1β, IL-6, iNOS, TNF-α) in RAW264.7 ↑ bone regeneration (↑ BV/TV) | [56] |
intra-articular | Thermosensitive Hydrogel | In Vitro study: chondrocyty; In Vitro study: Sprague-Dawley rats | Post-traumatic osteoarthritis | – cytotoxicity; – effects on cytotoxicity and proliferation; ↓ joint pain; ↓ cartilage degradation; – effect on synovitis | [57] | |
Rutin | oral | Liposomes | In Vitro study: adipocyty; In Vitro study: high-fat diet (HFD)-induced obese mouse model | Obesity | ↑ cellular uptake; ↑ solubility; ↓ body weight (↓ expression of proteins associated with fat synthesis) ↑ expression of beige proteins associated with adipogenesis | [58] |
Oral | SNEDDS | In Vitro study: - In Vitro study: Sprague-Dawley rats; ICR mice | Thrombosis | ↓ thrombus formation (↑ time to occlusion); inhibition of the enzyme PDI (important in the initiation of coagulation); –organ toxicity | [59] |
Flavonol | Administration Route | Formulation | Against | Conclusions | Ref. |
---|---|---|---|---|---|
Fisetin | Intravenous Intraperitoneal | Liposomes | Lewis lung carcinoma (LLC)-bearing mice | After i.p. administration, a 47-fold increase in relative bioavailability compared to free fisetin. Improved antitumor activity. Improved tumor growth retardation with co-treatment with cyclophosphamide. | [62] |
Fisetin | Intravenous Intraperitoneal | Nanoemulsion | LLC-bearing mice | After intraperitoneal administration, a 24-fold increase in fisetin relative bioavailability, compared to free fisetin. Improvement of the antitumor activity of the fisetin nanoemulsion compared to free fisetin. | [63] |
Fisetin | Intraperitoneal | Nanocochelates | Human breast cancer MCF-7 | A 1.3-fold improvement in vitro anticancer activity towards human breast cancer MCF-7 cells was observed. A 141-fold higher relative bioavailability in mice with low tissue distribution. | [64] |
Fisetin | Intravenous | Cholephytosomes modified or not with hyaluronic acid | Human breast cancer cell line (MDA-MB-231) Ehrlich ascites carcinoma cells | About 10- and 3.5-fold inhibition in IC50 of modified vesicles compared with free fisetin and conventional fisetin-phospholipid complex, respectively. Comparable cytotoxicity that is significantly surpassing free drug cytotoxicity. TGF-β1 and its non-canonical related signaling pathway, ERK1/2, NF-κB and MMP-9, were involved in tumorigenesis suppression. | [65] |
Kaempferol | Not define delivery system to the cancer cell in central nervous system | Nanostructured lipid carriers (NLC) | Glioblastoma multiforme human brain cancer | Increased kaempferol cytotoxicity in the U-87MG cell line. Promoted cellular uptake at 75%, confirming enhanced cytotoxicity in U-87MG cells. | [66] |
Quercetin | Intravitreal | Nanoemulgel | Vascular endothelial growth factor-A (VEGF-A) inducing neovascularization from the retinal pigment endothelial cells | Inhibited migration and tube formation of human umbilical vein endothelial cells. Inhibition of VEGF-A gene expression and VEGF-A protein levels in nascent retinal pigment epithelial cells under hypoxic conditions. | [67] |
Kaempferol | Ophthalmic drops | PVP nanocomplexes | Human corneal epithelial cells In vivo inflammation eye model Alkali burn injury on the central cornea in mice. | Significant improvement in in vitro parallel artificial membrane permeability, in vitro cellular uptake, and ex vivo corneal permeation of kaempferol. Improvement in ocular absorption in vivo test. Improvement in in vitro antioxidant activity and in vivo anti-inflammatory activity. Improvement in the treatment efficacy of corneal alkali burns. | [68] |
Myricetin | Intravenous | Solution (dissolution in dimethylsulfoxide and dilution in 0.9% NaCl) | Excitability of nociceptive sensory neurons in vivo | The suppressive effects continued for about 20 min. An acute, intravenous administration reduces the SpVc nociceptive transmission, likely through the inhibition of the CaV channels and by activating the Kv channels. | [69] |
Flavonol | Formulation | Aim of Study | Conclusions | Ref. |
---|---|---|---|---|
Fisetin | Glycerosomes converted into a Carbopol® gel | Development and optimization of glycerosomes. | The prepared fisetin-loaded glycerosomes gel was suitable for dermal application. | [72] |
Fisetin | NLCs | Development of fisetin-loaded NLCs for better efficacy against metastatic melanoma. | Inhibition of melanoma-associated metastasis in the lungs and liver was improved by 5.9-fold and 10.7-fold, respectively. Fisetin-loaded NLCs as an effective tool against melanoma. | [73] |
Kaempferol | hydrogel | Development of kemferol hydrogel to improve efficacy in a mouse model of psoriasis-like lesions. | Effective inhibition of HaCaT cell proliferation without causing significant cytotoxicity. Reduced psoriasis area and severity index, improved IMQ-induced histopathology and reduced expression of pro-inflammatory cytokines in skin tissue. | [74] |
Gynura procumbens extract containing kaempferol and quercetin | Gynura procumbens crude extract mixed with Vaseline | Assessment of Gynura procumbens on wound healing in the diabetic milieu. | Accelerated wound healing and induced angiogenin expression, epidermal growth factor, fibroblast growth factor, transforming growth factor, and vascular endothelial growth factor. Promotion of vascular formation in the diabetic mice. | [75] |
Myricetin | Nanofiber system of hydroxypropyl-β-cyclodextrin or polyvinylpyrrolidone K120-loaded with myricetin | Enhance the water solubility and skin penetration of myricetin, antioxidant and photoprotective activity. | Increase in water solubility and permeability. Reduction of cytotoxicity in HaCaT cell lines. Better antioxidant and photoprotective activity | [76] |
Flavonol | Formulation | Aim of Study | Conclusions | Ref. |
---|---|---|---|---|
Fisetin | PVA and PLGA nanoparticles | Optimization of the process and characterization of nanoparticles. Dissolvability and gut permeability test. | A 3.06-fold increase in the dissolution test and a 4.9-fold increase in the permeability test. Developed system improves biopharmaceutical properties. | [78] |
Fisetin | Lipid polymer hybrid nanoparticles (LPHNP) | The activity test of fisetin against severe acute pancreatitis (SAP). | Oral LPHNPs loaded with FST protect rats from SAP and multi-organ injury, outperforming fisetin alone, blank LPHNPs, and the untreated group. | [79] |
Myricetin | Chitosan nanoparticles | Activity against type 2 diabetes mellitus. | Better glycemic control in an in vivo study. Controlled increase in weight as compared to Metformin. No toxicity or changes in the major organs section in contrast to the normal control | [80] |
Quercetin | Zein nanospheres (NS) and zein nanocapsules containing wheat germ oil (NC) | Enhance the bioavailability and efficacy of quercetin. | Similar loading efficiencies and release profiles in simulated fluids. Nanoparticles improved the oral absorption of quercetin in Wistar rats. | [81] |
Rutin | Bilosomes | Enhance the renal protective effect of rutin for oral application. | Prolonged release of rutin from bilosomes, relative to free drug. Alleviation of kidney dysfunction, oxidative stress, and inflammation. | [82] |
Querceti, fisetin, and rutin | Free form | Determine the photoprotective effects of oral administration of quercetin, fisetin, and rutin, and their accumulation in skin, assessed through mass spectrometry imaging. | Quercetin and fisetin reduced the time to tumor onset, with no observed effect for rutin. Oral administration of quercetin and fisetin to hairless mice increased UVR-induced tumor development. | [83] |
Rutin | Rutin hydrate | Iron overload in a genetic mouse model is associated with Type 3 hereditary haemochromatosis patients. | Significant reduction in hepatic ferritin protein expression and serum transferrin saturation. Trends towards decreased iron levels in the liver and serum, and increased serum unsaturated iron binding capacity. | [84] |
Flavonol | Condition | Aim of the Study | Dosing | Group Size | Age | Results | Ref. |
---|---|---|---|---|---|---|---|
Fisetin | Colorectal cancer | Assessing the effectiveness of supplementation on inflammation and matrix metalloproteinase (MMP) enzyme levels | 100 mg/day | 42 | >40 | Reduction in inflammatory markers (IL-8 and hs-CRP); reduction in MMP-7 enzyme (extracellular matrix degradation) | [139] |
Acute ischemic stroke | Lengthening the therapeutic window in the treatment of AIS with rt-PA | 100 mg/day | 192 | >50 | Lowering biomarkers of brain damage and inflammation | [140] | |
Sepsis | Evaluation of the efficacy of fisetin in preventing clinical deterioration | 20 mg/kg | 220 | >65 | - | [141] | |
Kaempferol | - | Effect of the compound on cardiopulmonary reactions and physical performance | 10 mg | 17 | 22 | Lower volume of oxygen required (VO2); decreased respiratory rate | [142] |
Rheumatoid arthritis | Explaining the molecular mechanism of RA | 5.4 g/day | 99 | 24–75 | Improvement in morning stiffness, joint pain and (VAS); reduction in inflammatory markers | [143] | |
Quercetin | Myocardial infarction | Limiting infarct size in patients with ST-segment elevation myocardial infarction (STEMI) | (500 mg of quercetin and 50 mL 0.9% NaCl)-continuous intravenous infusion | 143 | 18–85 | Adding quercetin to standard STEMI therapy reduces infarct size and prevents intramuscular hemorrhage | [144] |
Allergic rhinitis associated with pollinosis | Effect of supplement intake on allergic reactions and quality of life | 200 mg/day | 66 | 22–28 | Statistically significant reduction in allergic symptoms | [145] | |
Rutin | T2DM | Effect of supplementation on pancreatic β-cell function and gut microbiota composition | 500 mg/day | 87 | 21–64 | No significant effect of supplementation on postprandial blood markers and microbiome | [146] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przybylski, T.; Czerniel, J.; Dobrosielski, J.; Stawny, M. Flavonol Technology: From the Compounds’ Chemistry to Clinical Research. Molecules 2025, 30, 3113. https://doi.org/10.3390/molecules30153113
Przybylski T, Czerniel J, Dobrosielski J, Stawny M. Flavonol Technology: From the Compounds’ Chemistry to Clinical Research. Molecules. 2025; 30(15):3113. https://doi.org/10.3390/molecules30153113
Chicago/Turabian StylePrzybylski, Tomasz, Joanna Czerniel, Jakub Dobrosielski, and Maciej Stawny. 2025. "Flavonol Technology: From the Compounds’ Chemistry to Clinical Research" Molecules 30, no. 15: 3113. https://doi.org/10.3390/molecules30153113
APA StylePrzybylski, T., Czerniel, J., Dobrosielski, J., & Stawny, M. (2025). Flavonol Technology: From the Compounds’ Chemistry to Clinical Research. Molecules, 30(15), 3113. https://doi.org/10.3390/molecules30153113