The Role of Oxidative Stress in Skin Disorders Associated with Alcohol Dependency and Antioxidant Therapies
Abstract
1. Introduction
2. Alcohol-Induced Skin Damage Mechanisms: Oxidative Stress, Lipid Peroxidation, and Barrier Dysfunction
3. Oxidative Stress and the Skin’s Biological Antioxidants in Redox Regulation
4. The Impact of Alcohol Consumption on Oxidative Stress and Microbial Factors in Skin Diseases
5. Evidence from In Vitro and Animal Studies
6. Bioactive Food Components with Antioxidant Properties in Skin Protection Among Individuals with Alcohol Use Disorders
7. Systemic Antioxidant Supplementation in Alcohol Use Disorder: Clinical and Nutritional Considerations
8. Therapeutic Potential and Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ADH | Alcohol dehydrogenase |
ALDH | Aldehyde dehydrogenase |
AUD | Alcohol use disorder |
BCC | Basal cell carcinoma |
CAT | Catalase |
CDCs | Cutaneous dendritic cells |
CoQ10 | Coenzyme Q10 |
DETCs | Dendritic epidermal T cells |
FAEEs | Fatty acid ethyl esters |
HPV | Human papillomavirus |
GPx | Glutathione peroxidase |
GR | Glutathione reductase |
GSH | Glutathione |
GSSG | Oxidized glutathione, glutathione disulfide |
GST | Glutathione S-transferase |
HER | Hydroxyethyl radical |
HNE | 4-hydroxy-2-nonenal |
ICD-11 | International Classification of Diseases 11th Revision |
IL-1β | Interleukin-1 beta |
IL-6 | Interleukin-6 |
IL-17 | Interleukin-17 |
LPS | Lipopolysaccharide |
MAPK | Mitogen-activated protein kinase |
MDA | Malondialdehyde |
NAC | N-acetylcysteine |
MED | Minimal erythema dose |
NAD+ | Nicotinamide adenine dinucleotide |
NADH | Reduced nicotinamide adenine dinucleotide |
NADP+ | Nicotinamide adenine dinucleotide phosphate |
NADPH | Reduced nicotinamide adenine dinucleotide |
NF-κB | Nuclear factor-κB |
NLCs | Nanostructured lipid carriers |
NOS | Nitric oxide synthase |
NOX | NADPH oxidases |
RNS | Reactive nitrogen species |
ROS | Reactive oxygen species |
SCC | Squamous cell carcinoma |
SLNs | Solid lipid nanoparticles |
SOD | Superoxide dismutase |
TEWL | Transepidermal water loss |
Th2-type | T helper type 2 |
TrxR | Thioredoxin reductase |
TNF-α | Tumor necrosis factor alpha |
UV | Ultraviolet |
γδT17 cells | Dermal gamma delta T cells that produce interleukin-17 |
References
- Alcohol’s Effects on Health. Research-Based Information on Drinking and Its Impact. Available online: https://www.niaaa.nih.gov/alcohols-effects-health/alcohol-topics-a-to-z (accessed on 5 June 2025).
- Alcohol Dependence. Available online: https://www.drugsandalcohol.ie/glossary/search?search_string=dependence&search_fields=title&order_by=none (accessed on 5 June 2025).
- Dguzeh, U.; Haddad, N.C.; Smith, K.T.S.; Johnson, J.O.; Doye, A.A.; Gwathmey, J.K.; Haddad, G.E. Alcoholism: A Multi-Systemic Cellular Insult to Organs. Int. J. Environ. Res. Public Health 2018, 15, 1083. [Google Scholar] [CrossRef] [PubMed]
- Curtis, B.J.; Zahs, A.; Kovacs, E.J. Epigenetic Targets for Reversing Immune Defects Caused by Alcohol Exposure. Alcohol Res. 2013, 35, 97–113. [Google Scholar] [PubMed]
- Rehm, J. The Risks Associated with Alcohol Use and Alcoholism. Alcohol Res. Health 2011, 34, 135–143. [Google Scholar] [PubMed]
- Morris, J.; Boness, C.L.; Burton, R. (Mis)Understanding Alcohol Use Disorder: Making the Case for a Public Health First Approach. Drug Alcohol Depend. 2023, 253, 111019. [Google Scholar] [CrossRef] [PubMed]
- Arda, O.; Göksügür, N.; Tüzün, Y. Basic Histological Structure and Functions of Facial Skin. Clin. Dermatol. 2014, 32, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Čižinauskas, V.; Elie, N.; Brunelle, A.; Briedis, V. Fatty Acids Penetration into Human Skin Ex Vivo: A TOF-SIMS Analysis Approach. Biointerphases 2017, 12, 011003. [Google Scholar] [CrossRef] [PubMed]
- Kessel, K.; Jääskeläinen, I.; Hagberg, L.; Forsblom, E.; Järvinen, A. Complicated Skin and Skin Structure Infections in Alcoholics, a Retrospective Cohort Study. Infect. Dis. 2025, 57, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Parlet, C.P.; Kavanaugh, J.S.; Horswill, A.R.; Schlueter, A.J. Chronic Ethanol Feeding Increases the Severity of Staphylococcus Aureus Skin Infections by Altering Local Host Defenses. J. Leukoc. Biol. 2015, 97, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Parlet, C.P.; Waldschmidt, T.J.; Schlueter, A.J. Chronic Ethanol Feeding Induces Subset Loss and Hyporesponsiveness in Skin T Cells. Alcohol. Clin. Exp. Res. 2014, 38, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, J. Advances in Relationship Between Alcohol Consumption and Skin Diseases. Clin. Cosmet. Investig. Dermatol. 2023, 16, 3785–3791. [Google Scholar] [CrossRef] [PubMed]
- Pilz, A.C.; Durner, V.; Schielein, M.C.; Schuster, B.; Beckmann, J.; Biedermann, T.; Eyerich, K.; Zink, A. Addictions in Patients with Atopic Dermatitis: A Cross-sectional Pilot Study in Germany. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cho, E.; Drucker, A.M.; Qureshi, A.A.; Li, W.-Q. Alcohol Intake and Risk of Rosacea in US Women. J. Am. Acad. Dermatol. 2017, 76, 1061–1067.e2. [Google Scholar] [CrossRef] [PubMed]
- Spoendlin, J.; Voegel, J.J.; Jick, S.S.; Meier, C.R. A Study on the Epidemiology of Rosacea in the U.K. Br. J. Dermatol. 2012, 167, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Gisondi, P. High Prevalence of Alcohol Use Disorders in Patients with Inflammatory Skin Diseases Applies to Both Psoriasis and Eczema. Br. J. Dermatol. 2017, 177, 606–607. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Lonne-Rahm, S.-B.; Helander, A.; Stokkeland, K.; Franck, J.; Nordlind, K. Alcohol Intake Measured by Phosphatidylethanol in Blood and the Lifetime Drinking History Interview Are Correlated with the Extent of Psoriasis. Dermatology 2015, 230, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Kutlu, Ö.; Karadağ, A.S.; Wollina, U. Adult Acne versus Adolescent Acne: A Narrative Review with a Focus on Epidemiology to Treatment. An. Bras. Dermatol. 2023, 98, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Schabath, M.B.; Thompson, Z.J.; Egan, K.M.; Torres, B.N.; Nguyen, A.; Papenfuss, M.R.; Abrahamsen, M.E.; Giuliano, A.R. Alcohol Consumption and Prevalence of Human Papillomavirus (HPV) Infection among US Men in the HPV in Men (HIM) Study. Sex. Transm. Infect. 2015, 91, 61–67. [Google Scholar] [CrossRef] [PubMed]
- De Marco, F. Oxidative Stress and HPV Carcinogenesis. Viruses 2013, 5, 708–731. [Google Scholar] [CrossRef] [PubMed]
- Bickers, D.R.; Athar, M. Oxidative Stress in the Pathogenesis of Skin Disease. J. Investig. Dermatol. 2006, 126, 2565–2575. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, C.L. Oxidative Stress and Antioxidant Protection: The Science of Free Radical Biology and Disease, 1st ed.; Armstrong, D., Stratton, R.D., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Wróblewska, J.; Nuszkiewicz, J.; Wróblewski, M.; Wróblewska, W.; Woźniak, A. Selected Trace Elements and Their Impact on Redox Homeostasis in Eye Health. Biomolecules 2024, 14, 1356. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Xu, M.; Chen, X.; Luo, Y. Spotlight on Porphyrins: Classifications, Mechanisms and Medical Applications. Biomed. Pharmacother. 2023, 164, 114933. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.P.; Shao, K.; Stewart, C.; Grant-Kels, J.M. The Effects of Alcohol and Illicit Drug Use on the Skin. Clin. Dermatol. 2021, 39, 772–783. [Google Scholar] [CrossRef] [PubMed]
- Nuszkiewicz, J.; Sutkowy, P.; Wróblewski, M.; Pawłowska, M.; Wesołowski, R.; Wróblewska, J.; Woźniak, A. Links between Vitamin K, Ferroptosis and SARS-CoV-2 Infection. Antioxidants 2023, 12, 733. [Google Scholar] [CrossRef] [PubMed]
- Brand, R.M.; Jendrzejewski, J.L. Chronic Ethanol Ingestion Alters Xenobiotic Absorption through the Skin: Potential Role of Oxidative Stress. Food Chem. Toxicol. 2008, 46, 1940–1948. [Google Scholar] [CrossRef] [PubMed]
- Knight, R.G.; Longmore, B.E. Adverse Effects of Alcohol Consumption. In Clinical Neuropsychology of Alcoholism; Psychology Press: London, UK, 2013; pp. 27–80. [Google Scholar]
- Kong, E.Q.Z.; Subramaniyan, V.; Lubau, N.S.A. Uncovering the Impact of Alcohol on Internal Organs and Reproductive Health: Exploring TLR4/NF-kB and CYP2E1/ROS/Nrf2 Pathways. Anim. Model. Exp. Med. 2024, 7, 444–459. [Google Scholar] [CrossRef] [PubMed]
- Świderska-Kołacz, G.; Kumański, K.; Parka, B. Alkohol a Stres Oksydacyjny. Kosm. Probl. Nauk. Biol. 2012, 61, 93–103. [Google Scholar]
- Cheung, C.; Smith, C.K.; Hoog, J.-O.; Hotchkiss, S.A.M. Expression and Localization of Human Alcohol and Aldehyde Dehydrogenase Enzymes in Skin. Biochem. Biophys. Res. Commun. 1999, 261, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Ruiter-Lopez, L.; Khan, M.A.S.; Wang, X.; Song, B.-J. Roles of Oxidative Stress and Autophagy in Alcohol-Mediated Brain Damage. Antioxidants 2025, 14, 302. [Google Scholar] [CrossRef] [PubMed]
- Darvin, M.E.; Sterry, W.; Lademann, J.; Patzelt, A. Alcohol Consumption Decreases the Protection Efficiency of the Antioxidant Network and Increases the Risk of Sunburn in Human Skin. Ski. Pharmacol. Physiol. 2013, 26, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Albano, E. Alcohol, Oxidative Stress and Free Radical Damage. Proc. Nutr. Soc. 2006, 65, 278–290. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Vasudevan, D.M. Alcohol-Induced Oxidative Stress. Life Sci. 2007, 81, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, K.; Stoyanovsky, D.A.; Fujimoto, Y.; Cederbaum, A.I. Mitochondrial Permeability Transition Induced by 1-Hydroxyethyl Radical. Free. Radic. Biol. Med. 2000, 28, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Clot, P.; Bellomo, G.; Tabone, M.; Aricò, S.; Albano, E. Detection of Antibodies against Proteins Modified by Hydroxyethyl Free Radicals in Patients with Alcoholic Cirrhosis. Gastroenterology 1995, 108, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Wagener, F.; Carels, C.; Lundvig, D. Targeting the Redox Balance in Inflammatory Skin Conditions. Int. J. Mol. Sci. 2013, 14, 9126–9167. [Google Scholar] [CrossRef] [PubMed]
- Trevejo-Nunez, G.; Kolls, J.K.; de Wit, M. Alcohol as Risk Factor for Infection and Healing. Alcohol Res. Curr. Rev. 2015, 37, 177–184. [Google Scholar]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.K.; Trost, A.; Richter, K. Oxidative Stress in Aging Human Skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef] [PubMed]
- Mottaran, E.; Stewart, S.F.; Rolla, R.; Vay, D.; Cipriani, V.; Moretti, M.; Vidali, M.; Sartori, M.; Rigamonti, C.; Day, C.P.; et al. Lipid Peroxidation Contributes to Immune Reactions Associated with Alcoholic Liver Disease. Free. Radic. Biol. Med. 2002, 32, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Shoeb, M.; Ansari, N.; Srivastava, S.; Ramana, K. 4-Hydroxynonenal in the Pathogenesis and Progression of Human Diseases. Curr. Med. Chem. 2013, 21, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, P.; Milkovic, L.; Zarkovic, N.; Waeg, G.; Rattan, S.I.S. Lipid Peroxidation-Derived 4-Hydroxynonenal-Modified Proteins Accumulate in Human Facial Skin Fibroblasts during Ageing in Vitro. Biogerontology 2014, 15, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Rego, L.; Martins, M.S.; Ferreira, M.S.; Cruz, M.T.; Sousa, E.; Almeida, I.F. How to Promote Skin Repair? In-Depth Look at Pharmaceutical and Cosmetic Strategies. Pharmaceuticals 2023, 16, 573. [Google Scholar] [CrossRef] [PubMed]
- Farkas, Á.; Kemény, L. Alcohol, Liver, Systemic Inflammation and Skin: A Focus on Patients with Psoriasis. Ski. Pharmacol. Physiol. 2013, 26, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.; Brief, E.; Langlais, D.; Kitson, N.; Lafleur, M.; Thewalt, J. Ethanol Perturbs Lipid Organization in Models of Stratum Corneum Membranes: An Investigation Combining Differential Scanning Calorimetry, Infrared and 2H NMR Spectroscopy. Biochim. Biophys. Acta-Biomembr. 2012, 1818, 1410–1419. [Google Scholar] [CrossRef] [PubMed]
- Telorack, M.; Meyer, M.; Ingold, I.; Conrad, M.; Bloch, W.; Werner, S. A Glutathione-Nrf2-Thioredoxin Cross-Talk Ensures Keratinocyte Survival and Efficient Wound Repair. PLoS Genet. 2016, 12, e1005800. [Google Scholar] [CrossRef] [PubMed]
- Akbaş, A.; Kılınç, F. Can Thiol-disulfide Balance Be an Indicator of Oxidative Stress for Hyperhidrosis? J. Cosmet. Dermatol. 2022, 21, 3031–3037. [Google Scholar] [CrossRef] [PubMed]
- Wróblewska, J.; Wróblewski, M.; Hołyńska-Iwan, I.; Modrzejewska, M.; Nuszkiewicz, J.; Wróblewska, W.; Woźniak, A. The Role of Glutathione in Selected Viral Diseases. Antioxidants 2023, 12, 1325. [Google Scholar] [CrossRef] [PubMed]
- Bilski, R.; Kupczyk, D.; Woźniak, A. Oxidative Imbalance in Psoriasis with an Emphasis on Psoriatic Arthritis: Therapeutic Antioxidant Targets. Molecules 2024, 29, 5460. [Google Scholar] [CrossRef] [PubMed]
- Lange, E.L.; Włodarek, D.; Wilczak, J.; Gromadzka-Ostrowska, J. Żywienie Jako Niezbędny Czynnik Życia—Podstawy Fizjologii. In Żywienie w Chorobach Nowotworowych; Wydawnictwo Lekarskie PZWL: Warszawa, Poland, 2020; ISBN 978-83-200-6075-1. [Google Scholar]
- Schiborn, C.; Weber, D.; Grune, T.; Biemann, R.; Jäger, S.; Neu, N.; Müller von Blumencron, M.; Fritsche, A.; Weikert, C.; Schulze, M.B.; et al. Retinol and Retinol Binding Protein 4 Levels and Cardiometabolic Disease Risk. Circ. Res. 2022, 131, 637–649. [Google Scholar] [CrossRef] [PubMed]
- Suarez, E.C.; Schramm-Sapyta, N.L. Race Differences in the Relation of Vitamins A, C, E, and β-Carotene to Metabolic and Inflammatory Biomarkers. Nutr. Res. 2014, 34, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Palace, V.P.; Khaper, N.; Qin, Q.; Singal, P.K. Antioxidant Potentials of Vitamin A and Carotenoids and Their Relevance to Heart Disease. Free. Radic. Biol. Med. 1999, 26, 746–761. [Google Scholar] [CrossRef] [PubMed]
- Terao, J. Revisiting Carotenoids as Dietary Antioxidants for Human Health and Disease Prevention. Food Funct. 2023, 14, 7799–7824. [Google Scholar] [CrossRef] [PubMed]
- Młynarska, E.; Biskup, L.; Możdżan, M.; Grygorcewicz, O.; Możdżan, Z.; Semeradt, J.; Uramowski, M.; Rysz, J.; Franczyk, B. The Role of Oxidative Stress in Hypertension: The Insight into Antihypertensive Properties of Vitamins A, C and E. Antioxidants 2024, 13, 848. [Google Scholar] [CrossRef] [PubMed]
- Ellulu, M.S. Obesity, Cardiovascular Disease, and Role of Vitamin C on Inflammation: A Review of Facts and Underlying Mechanisms. Inflammopharmacology 2017, 25, 313–328. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, S.N.A.; Anastasiou, E.A.; Adamantidi, T.; Ofrydopoulou, A.; Letsiou, S.; Tsoupras, A. A Comprehensive Review on the Beneficial Roles of Vitamin D in Skin Health as a Bio-Functional Ingredient in Nutricosmetic, Cosmeceutical, and Cosmetic Applications. Appl. Sci. 2025, 15, 796. [Google Scholar] [CrossRef]
- Vo, H.V.T.; Nguyen, Y.T.; Kim, N.; Lee, H.J. Vitamin A, D, E, and K as Matrix Metalloproteinase-2/9 Regulators That Affect Expression and Enzymatic Activity. Int. J. Mol. Sci. 2023, 24, 17038. [Google Scholar] [CrossRef] [PubMed]
- Blaner, W.S.; Shmarakov, I.O.; Traber, M.G. Vitamin A and Vitamin E: Will the Real Antioxidant Please Stand Up? Annu. Rev. Nutr. 2021, 41, 105–131. [Google Scholar] [CrossRef] [PubMed]
- Olfat, N.; Ashoori, M.; Saedisomeolia, A. Riboflavin Is an Antioxidant: A Review Update. Br. J. Nutr. 2022, 128, 1887–1895. [Google Scholar] [CrossRef] [PubMed]
- Ashoori, M.; Saedisomeolia, A. Riboflavin (Vitamin B2) and Oxidative Stress: A Review. Br. J. Nutr. 2014, 111, 1985–1991. [Google Scholar] [CrossRef] [PubMed]
- Boo, Y.C. Mechanistic Basis and Clinical Evidence for the Applications of Nicotinamide (Niacinamide) to Control Skin Aging and Pigmentation. Antioxidants 2021, 10, 1315. [Google Scholar] [CrossRef] [PubMed]
- Parat, M.-O.; Richard, M.-J.; Béani, J.-C.; Favier, A. Involvement of Zinc in Intracellular Oxidant/Antioxidant Balance. Biol. Trace Elem. Res. 1997, 60, 187–204. [Google Scholar] [CrossRef] [PubMed]
- Richard, M.-J.; Guiraud, P.; Leccia, M.-T.; Beani, J.-C.; Favier, A. Effect of Zinc Supplementation on Resistance of Cultured Human Skin Fibroblasts toward Oxidant Stress. Biol. Trace Elem. Res. 1993, 37, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Marreiro, D.; Cruz, K.; Morais, J.; Beserra, J.; Severo, J.; De Oliveira, A. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants 2017, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Marcheggiani, F.; Cirilli, I.; Orlando, P.; Silvestri, S.; Vogelsang, A.; Knott, A.; Blatt, T.; Weise, J.M.; Tiano, L. Modulation of Coenzyme Q10 Content and Oxidative Status in Human Dermal Fibroblasts Using HMG-CoA Reductase Inhibitor over a Broad Range of Concentrations. From Mitohormesis to Mitochondrial Dysfunction and Accelerated Aging. Aging 2019, 11, 2565–2582. [Google Scholar] [CrossRef] [PubMed]
- Schniertshauer, D.; Müller, S.; Mayr, T.; Sonntag, T.; Gebhard, D.; Bergemann, J. Accelerated Regeneration of ATP Level after Irradiation in Human Skin Fibroblasts by Coenzyme Q10. Photochem. Photobiol. 2016, 92, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Okselni, T.; Septama, A.W.; Juliadmi, D.; Dewi, R.T.; Angelina, M.; Yuliani, T.; Saragih, G.S.; Saputri, A. Quercetin as a Therapeutic Agent for Skin Problems: A Systematic Review and Meta-Analysis on Antioxidant Effects, Oxidative Stress, Inflammation, Wound Healing, Hyperpigmentation, Aging, and Skin Cancer. Naunyn-Schmiedeberg Arch. Pharmacol. 2025, 398, 5011–5055. [Google Scholar] [CrossRef] [PubMed]
- Galiniak, S.; Aebisher, D.; Bartusik-Aebisher, D. Health Benefits of Resveratrol Administration. Acta Biochim. Pol. 2019, 66, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Gęgotek, A.; Ambrożewicz, E.; Jastrząb, A.; Jarocka-Karpowicz, I.; Skrzydlewska, E. Rutin and Ascorbic Acid Cooperation in Antioxidant and Antiapoptotic Effect on Human Skin Keratinocytes and Fibroblasts Exposed to UVA and UVB Radiation. Arch. Dermatol. Res. 2019, 311, 203–219. [Google Scholar] [CrossRef] [PubMed]
- Gęgotek, A.; Domingues, P.; Skrzydlewska, E. Proteins Involved in the Antioxidant and Inflammatory Response in Rutin-Treated Human Skin Fibroblasts Exposed to UVA or UVB Irradiation. J. Dermatol. Sci. 2018, 90, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Pullar, J.; Carr, A.; Vissers, M. The Roles of Vitamin C in Skin Health. Nutrients 2017, 9, 866. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.K. Vitamin E and Oxidative Stress. Free. Radic. Biol. Med. 1991, 11, 215–232. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.Y.; Han, S.N. The Role of Vitamin E in Immunity. Nutrients 2018, 10, 1614. [Google Scholar] [CrossRef] [PubMed]
- Valk; Hornstra, G. Relationship Between Vitamin E Requirement and Polyunsaturated Fatty Acid Intake in Man: A Review. Int. J. Vitam. Nutr. Res. 2000, 70, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Brigelius-Flohé, R.; Traber, M.G. Vitamin E: Function and Metabolism. FASEB J. 1999, 13, 1145–1155. [Google Scholar] [CrossRef] [PubMed]
- Metro, D.; Corallo, F.; Fedele, F.; Buda, M.; Manasseri, L.; Buono, V.L.; Quartarone, A.; Bonanno, L. Effects of Alcohol Consumption on Oxidative Stress in a Sample of Patients Recruited in a Dietary Center in a Southern University Hospital: A Retrospective Study. Medicina 2022, 58, 1670. [Google Scholar] [CrossRef] [PubMed]
- Pizzorno, J. Glutathione! Integr. Med. 2014, 13, 8–12. [Google Scholar]
- Wu, G.; Lupton, J.R.; Turner, N.D.; Fang, Y.-Z.; Yang, S. Glutathione Metabolism and Its Implications for Health. J. Nutr. 2004, 134, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, U.; Bergemann, J.; Diembeck, W.; Ennen, J.; Gohla, S.; Harris, I.; Jacob, J.; Kielholz, J.; Mei, W.; Pollet, D.; et al. Coenzyme Q10, a Cutaneous Antioxidant and Energizer. BioFactors 1999, 9, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The Therapeutic Potential of Resveratrol: A Review of Clinical Trials. npj Precis. Oncol. 2017, 1, 35. [Google Scholar] [CrossRef] [PubMed]
- Salazar, J.; Ortega, Á.; Pérez, J.L.; Garrido, B.; Santeliz, R.; Galbán, N.; Díaz, M.P.; Cano, R.; Cano, G.; Contreras-Velasquez, J.C.; et al. Role of Polyphenols in Dermatological Diseases: Exploring Pharmacotherapeutic Mechanisms and Clinical Implications. Pharmaceuticals 2025, 18, 247. [Google Scholar] [CrossRef] [PubMed]
- Marko, M.; Pawliczak, R. Resveratrol and Its Derivatives in Inflammatory Skin Disorders—Atopic Dermatitis and Psoriasis: A Review. Antioxidants 2023, 12, 1954. [Google Scholar] [CrossRef] [PubMed]
- Baj, J.; Flieger, W.; Teresiński, G.; Buszewicz, G.; Sitarz, R.; Forma, A.; Karakuła, K.; Maciejewski, R. Magnesium, Calcium, Potassium, Sodium, Phosphorus, Selenium, Zinc, and Chromium Levels in Alcohol Use Disorder: A Review. J. Clin. Med. 2020, 9, 1901. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M. Selenium–Fascinating Microelement, Properties and Sources in Food. Molecules 2019, 24, 1298. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. The Influence of Selenium on Human Health. Lancet 2000, 356, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Bohn, T. Carotenoids and Markers of Oxidative Stress in Human Observational Studies and Intervention Trials: Implications for Chronic Diseases. Antioxidants 2019, 8, 179. [Google Scholar] [CrossRef] [PubMed]
- Stahl, W.; Sies, H. β-Carotene and Other Carotenoids in Protection from Sunlight. Am. J. Clin. Nutr. 2012, 96, 1179S–1184S. [Google Scholar] [CrossRef] [PubMed]
- Boelsma, E.; Hendriks, H.F.J.; Roza, L. Nutritional Skin Care: Health Effects of Micronutrients and Fatty Acids. Am. J. Clin. Nutr. 2001, 73, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Li, X.-K. Oxidative Stress in Atopic Dermatitis. Oxidative Med. Cell. Longev. 2016, 2016, 2721469. [Google Scholar] [CrossRef] [PubMed]
- Minzaghi, D.; Pavel, P.; Kremslehner, C.; Gruber, F.; Oberreiter, S.; Hagenbuchner, J.; Del Frari, B.; Blunder, S.; Gruber, R.; Dubrac, S. Excessive Production of Hydrogen Peroxide in Mitochondria Contributes to Atopic Dermatitis. J. Investig. Dermatol. 2023, 143, 1906–1918.e8. [Google Scholar] [CrossRef] [PubMed]
- Sener, S.; Akbas, A.; Kilinc, F.; Baran, P.; Erel, O.; Aktas, A. Thiol/Disulfide Homeostasis as a Marker of Oxidative Stress in Rosacea: A Controlled Spectrophotometric Study. Cutan. Ocul. Toxicol. 2019, 38, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Takci, Z.; Bilgili, S.G.; Karadag, A.S.; Kucukoglu, M.E.; Selek, S.; Aslan, M. Decreased Serum Paraoxonase and Arylesterase Activities in Patients with Rosacea. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Khvoryk, D.; Yarmolik, A. Lipid Peroxidation and Antioxidant Protection in Patients with Papulo- Pustular Rosacea. Prog. Health Sci. 2015, 5, 54–60. [Google Scholar]
- Weinstock, L.B.; Steinhoff, M. Rosacea and Small Intestinal Bacterial Overgrowth: Prevalence and Response to Rifaximin. J. Am. Acad. Dermatol. 2013, 68, 875–876. [Google Scholar] [CrossRef] [PubMed]
- Gabbard, S.; Lacy, B.; Crowell, M. Moderate Alcohol Consumption is Associated with Small Intestinal Bacterial Overgrowth. Am. J. Gastroenterol. 2011, 106, S82. [Google Scholar] [CrossRef]
- Neuman, M.; Maor, Y.; Nanau, R.; Melzer, E.; Mell, H.; Opris, M.; Cohen, L.; Malnick, S. Alcoholic Liver Disease: Role of Cytokines. Biomolecules 2015, 5, 2023–2034. [Google Scholar] [CrossRef] [PubMed]
- Di Vincenzo, F.; Del Gaudio, A.; Petito, V.; Lopetuso, L.R.; Scaldaferri, F. Gut Microbiota, Intestinal Permeability, and Systemic Inflammation: A Narrative Review. Intern. Emerg. Med. 2024, 19, 275–293. [Google Scholar] [CrossRef] [PubMed]
- Sarici, G.; Cinar, S.; Armutcu, F.; Altınyazar, C.; Koca, R.; Tekin, N. Oxidative Stress in Acne Vulgaris. J. Eur. Acad. Dermatol. Venereol. 2010, 24, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Abdel Fattah, N.S.A.; Shaheen, M.A.; Ebrahim, A.A.; El Okda, E.S. Tissue and Blood Superoxide Dismutase Activities and Malondialdehyde Levels in Different Clinical Severities of Acne Vulgaris. Br. J. Dermatol. 2008, 159, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Huang, J.; Li, Y.; Ma, L.; Niu, Y.; Jiang, W.; Yuan, C.; Bai, T.; Yang, S. Antioxidant Activities of the Cell-Free Supernatant of a Potential Probiotic Cutibacterium acnes Strain CCSM0331, Isolated From a Healthy Skin. J. Cosmet. Dermatol. 2025, 24, e70105. [Google Scholar] [CrossRef] [PubMed]
- Akçınar, U.G.; Ünal, E.; Al, F.D. Demodex Spp. as a Possible Aetiopathogenic Factor of Acne and Relation with Acne Severity and Type. Adv. Dermatol. Allergol. 2018, 35, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-L.; Lu, C.-T.; Karmakar, R.; Nampalley, K.; Mukundan, A.; Hsiao, Y.-P.; Hsieh, S.-C.; Wang, H.-C. Assessing the Efficacy of the Spectrum-Aided Vision Enhancer (SAVE) to Detect Acral Lentiginous Melanoma, Melanoma in Situ, Nodular Melanoma, and Superficial Spreading Melanoma. Diagnostics 2024, 14, 1672. [Google Scholar] [CrossRef] [PubMed]
- Elder, D.E.; Bastian, B.C.; Cree, I.A.; Massi, D.; Scolyer, R.A. The 2018 World Health Organization Classification of Cutaneous, Mucosal, and Uveal Melanoma: Detailed Analysis of 9 Distinct Subtypes Defined by Their Evolutionary Pathway. Arch. Pathol. Lab. Med. 2020, 144, 500–522. [Google Scholar] [CrossRef] [PubMed]
- Mahamat-Saleh, Y.; Al-Rahmoun, M.; Severi, G.; Ghiasvand, R.; Veierod, M.B.; Caini, S.; Palli, D.; Botteri, E.; Sacerdote, C.; Ricceri, F.; et al. Baseline and Lifetime Alcohol Consumption and Risk of Skin Cancer in the European Prospective Investigation into Cancer and Nutrition Cohort (EPIC). Int. J. Cancer 2023, 152, 348–362. [Google Scholar] [CrossRef] [PubMed]
- Arslanbaeva, L.R.; Santoro, M.M. Adaptive Redox Homeostasis in Cutaneous Melanoma. Redox Biol. 2020, 37, 101753. [Google Scholar] [CrossRef] [PubMed]
- Obrador, E.; Liu-Smith, F.; Dellinger, R.W.; Salvador, R.; Meyskens, F.L.; Estrela, J.M. Oxidative Stress and Antioxidants in the Pathophysiology of Malignant Melanoma. Biol. Chem. 2019, 400, 589–612. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, P.; Owczarek, W.; Nejc, D.; Jeziorski, A.; Wysocki, W.; Słowińska, M.; Dudzisz-Śledź, M.; Wiśniewski, P.; Koseła-Paterczyk, H.; Kiprian, D.; et al. Skin Carcinomas. Oncol. Clin. Pract. 2020, 4, 143–162. [Google Scholar] [CrossRef]
- Drvar, D.L.; Lipozenčić, J.; Sabol, I.; Mokos, Z.B.; Ilic, I.; Grce, M. Human Papillomavirus Status in Extragenital Nonmelanoma Skin Cancers. Clin. Dermatol. 2014, 32, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Narendhirakannan, R.T.; Hannah, M.A.C. Oxidative Stress and Skin Cancer: An Overview. Indian J. Clin. Biochem. 2013, 28, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Karampinis, E.; Nechalioti, P.-M.; Georgopoulou, K.E.; Goniotakis, G.; Roussaki Schulze, A.V.; Zafiriou, E.; Kouretas, D. Systemic Oxidative Stress Parameters in Skin Cancer Patients and Patients with Benign Lesions. Stresses 2023, 3, 785–812. [Google Scholar] [CrossRef]
- Chen, X.; Yang, C.; Jiang, G. Research Progress on Skin Photoaging and Oxidative Stress. Adv. Dermatol. Allergol. 2021, 38, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.E.; Howell, M.D.; Guttman, E.; Gilleaudeau, P.M.; Cardinale, I.R.; Boguniewicz, M.; Krueger, J.G.; Leung, D.Y.M. TNF-α Downregulates Filaggrin and Loricrin through c-Jun N-Terminal Kinase: Role for TNF-α Antagonists to Improve Skin Barrier. J. Investig. Dermatol. 2011, 131, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Kleemann, J.; Cinatl, J.; Hoffmann, S.; Zöller, N.; Özistanbullu, D.; Zouboulis, C.C.; Kaufmann, R.; Kippenberger, S. Alcohol Promotes Lipogenesis in Sebocytes—Implications for Acne. Cells 2024, 13, 328. [Google Scholar] [CrossRef] [PubMed]
- Ranzer, M.J.; Chen, L.; DiPietro, L.A. Fibroblast Function and Wound Breaking Strength Is Impaired by Acute Ethanol Intoxication. Alcohol. Clin. Exp. Res. 2011, 35, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Vasseur, P.; Pohin, M.; Gisclard, C.; Jégou, J.; Morel, F.; Silvain, C.; Lecron, J. Chronic Alcohol Consumption Exacerbates the Severity of Psoriasiform Dermatitis in Mice. Alcohol. Clin. Exp. Res. 2020, 44, 1728–1733. [Google Scholar] [CrossRef] [PubMed]
- Almeida, V.D.; Monteiro, M.G.; Oliveira, M.G.M.; Pomarico, A.C.; Bueno, O.F.A.; da Silva-Fernandes, M.E. Long-lasting Effects of Chronic Ethanol Administration on the Activity of Antioxidant Enzymes. J. Biochem. Toxicol. 1994, 9, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Parlet, C.P.; Schlueter, A.J. Mechanisms by Which Chronic Ethanol Feeding Impairs the Migratory Capacity of Cutaneous Dendritic Cells. Alcohol. Clin. Exp. Res. 2013, 37, 2098–2107. [Google Scholar] [CrossRef] [PubMed]
- Radek, K.A.; Matthies, A.M.; Burns, A.L.; Heinrich, S.A.; Kovacs, E.J.; DiPietro, L.A. Acute Ethanol Exposure Impairs Angiogenesis and the Proliferative Phase of Wound Healing. Am. J. Physiol. Circ. Physiol. 2005, 289, H1084–H1090. [Google Scholar] [CrossRef] [PubMed]
- Lieber, C.S. Relationships between Nutrition, Alcohol Use, and Liver Disease. Alcohol Res. Health 2003, 27, 220–231. [Google Scholar] [PubMed]
- Tadokoro, T.; Morishita, A.; Himoto, T.; Masaki, T. Nutritional Support for Alcoholic Liver Disease. Nutrients 2023, 15, 1360. [Google Scholar] [CrossRef] [PubMed]
- Rachdaoui, N.; Sarkar, D.K. Effects of Alcohol on the Endocrine System. Endocrinol. Metab. Clin. N. Am. 2013, 42, 593–615. [Google Scholar] [CrossRef] [PubMed]
- Butts, M.; Sundaram, V.L.; Murughiyan, U.; Borthakur, A.; Singh, S. The Influence of Alcohol Consumption on Intestinal Nutrient Absorption: A Comprehensive Review. Nutrients 2023, 15, 1571. [Google Scholar] [CrossRef] [PubMed]
- Tranchida, N.; Molinari, F.; Franco, G.A.; Cordaro, M.; Di Paola, R. Potential Role of Dietary Antioxidants During Skin Aging. Food Sci. Nutr. 2025, 13, e70231. [Google Scholar] [CrossRef] [PubMed]
- Farhan, M. The Promising Role of Polyphenols in Skin Disorders. Molecules 2024, 29, 865. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, M.; Elfeky, O.; Ertugrul, H.; Chela, H.K.; Daglilar, E. Scurvy: Rediscovering a Forgotten Disease. Diseases 2023, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G.; Atkinson, J. Vitamin E, Antioxidant and Nothing More. Free. Radic. Biol. Med. 2007, 43, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.-H.; Sermersheim, M.; Li, H.; Lee, P.H.U.; Steinberg, S.M.; Ma, J. Zinc in Wound Healing Modulation. Nutrients 2017, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Zou, P.; Du, Y.; Yang, C.; Cao, Y. Trace Element Zinc and Skin Disorders. Front. Med. 2023, 9, 1093868. [Google Scholar] [CrossRef] [PubMed]
- Noulas, C.; Tziouvalekas, M.; Karyotis, T. Zinc in Soils, Water and Food Crops. J. Trace Elem. Med. Biol. 2018, 49, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Saidi, A.; Hambaba, L.; Bensaad, M.S.; Melakhessou, M.A.; Bensouici, C.; Ferhat, N.; Kahoul, M.A.; Helal, M.; Sami, R.; Alharthy, S.A.; et al. Phenolic Characterization Using CLC-DAD Analysis and Evaluation of in Vitro and in Vivo Pharmacological Activities of Ruta Tuberculata Forssk. Antioxidants 2022, 11, 1351. [Google Scholar] [CrossRef] [PubMed]
- Stoia, M.; Oancea, S. Low-Molecular-Weight Synthetic Antioxidants: Classification, Pharmacological Profile, Effectiveness and Trends. Antioxidants 2022, 11, 638. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, D.; Neudecker, B.; DiNardo, J.; Lewis, J.; Maibach, H. Clinical Efficacy Assessment in Photodamaged Skin of 0.5% and 1.0% Idebenone. J. Cosmet. Dermatol. 2005, 4, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Petrella, C.; Carito, V.; Carere, C.; Ferraguti, G.; Ciafrè, S.; Natella, F.; Bello, C.; Greco, A.; Ralli, M.; Mancinelli, R.; et al. Oxidative Stress Inhibition by Resveratrol in Alcohol-Dependent Mice. Nutrition 2020, 79–80, 110783. [Google Scholar] [CrossRef] [PubMed]
- Gueguen, S.; Pirollet, P.; Leroy, P.; Guilland, J.-C.; Arnaud, J.; Paille, F.; Siest, G.; Visvikis, S.; Hercberg, S.; Herbeth, B. Changes in Serum Retinol, α-Tocopherol, Vitamin C, Carotenoids, Zinc and Selenium after Micronutrient Supplementation during Alcohol Rehabilitation. J. Am. Coll. Nutr. 2003, 22, 303–310. [Google Scholar] [CrossRef] [PubMed]
- McLean, C.; Tapsell, L.; Grafenauer, S.; McMahon, A. Systematic Review of Nutritional Interventions for People Admitted to Hospital for Alcohol Withdrawal. Nutr. Diet. 2020, 77, 76–89. [Google Scholar] [CrossRef] [PubMed]
- Dumont, U.; Sanchez, S.; Olivier, B.; Chateil, J.-F.; Deffieux, D.; Quideau, S.; Pellerin, L.; Beauvieux, M.-C.; Bouzier-Sore, A.-K.; Roumes, H. Maternal Alcoholism and Neonatal Hypoxia-Ischemia: Neuroprotection by Stilbenoid Polyphenols. Brain Res. 2020, 1738, 146798. [Google Scholar] [CrossRef] [PubMed]
- Lux-Battistelli, C.; Battistelli, D. Latent Scurvy with Tiredness and Leg Pain in Alcoholics. Medicine 2017, 96, e8861. [Google Scholar] [CrossRef] [PubMed]
- Nosewicz, J.; Spaccarelli, N.; Roberts, K.M.; Hart, P.A.; Kaffenberger, J.A.; Trinidad, J.C.; Kaffenberger, B.H. The Epidemiology, Impact, and Diagnosis of Micronutrient Nutritional Dermatoses Part 1: Zinc, Selenium, Copper, Vitamin A, and Vitamin C. J. Am. Acad. Dermatol. 2022, 86, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Camacho, J.D.; Bernier, M.; López-Lluch, G.; Navas, P. Coenzyme Q10 Supplementation in Aging and Disease. Front. Physiol. 2018, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.; Hadjab, F.; Porcello, A.; Lourenço, K.; Scaletta, C.; Abdel-Sayed, P.; Hirt-Burri, N.; Applegate, L.A.; Laurent, A. Mechanistic Insights into the Multiple Functions of Niacinamide: Therapeutic Implications and Cosmeceutical Applications in Functional Skincare Products. Antioxidants 2024, 13, 425. [Google Scholar] [CrossRef] [PubMed]
- Szulc-Musioł, B.; Sarecka-Hujar, B. The Use of Micro- and Nanocarriers for Resveratrol Delivery into and across the Skin in Different Skin Diseases—A Literature Review. Pharmaceutics 2021, 13, 451. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Kinoshita, M.; Shimada, S.; Kawamura, T. Zinc and Skin Disorders. Nutrients 2018, 10, 199. [Google Scholar] [CrossRef] [PubMed]
- Pincemail, J.; Meziane, S. On the Potential Role of the Antioxidant Couple Vitamin E/Selenium Taken by the Oral Route in Skin and Hair Health. Antioxidants 2022, 11, 2270. [Google Scholar] [CrossRef] [PubMed]
- Peres, D.A.; de Oliveira, C.A.; da Costa, M.S.; Tokunaga, V.K.; Mota, J.P.; Rosado, C.; Consiglieri, V.O.; Kaneko, T.M.; Velasco, M.V.R.; Baby, A.R. Rutin Increases Critical Wavelength of Systems Containing a Single UV Filter and with Good Skin Compatibility. Ski. Res. Technol. 2016, 22, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Raszewska-Famielec, M.; Flieger, J. Nanoparticles for Topical Application in the Treatment of Skin Dysfunctions—An Overview of Dermo-Cosmetic and Dermatological Products. Int. J. Mol. Sci. 2022, 23, 15980. [Google Scholar] [CrossRef] [PubMed]
- Vinardell, M.P.; Mitjans, M. Nanocarriers for Delivery of Antioxidants on the Skin. Cosmetics 2015, 2, 342–354. [Google Scholar] [CrossRef]
- Choi, H.Y.; Lee, Y.J.; Kim, C.M.; Lee, Y.-M. Revolutionizing Cosmetic Ingredients: Harnessing the Power of Antioxidants, Probiotics, Plant Extracts, and Peptides in Personal and Skin Care Products. Cosmetics 2024, 11, 157. [Google Scholar] [CrossRef]
- Zazuli, Z.; Hartati, R.; Rowa, C.R.; Asyarie, S.; Satrialdi. The Potential Application of Nanocarriers in Delivering Topical Antioxidants. Pharmaceuticals 2025, 18, 56. [Google Scholar] [CrossRef] [PubMed]
- Lademann, J.; Vergou, T.; Darvin, M.E.; Patzelt, A.; Meinke, M.C.; Voit, C.; Papakostas, D.; Zastrow, L.; Sterry, W.; Doucet, O. Influence of Topical, Systemic and Combined Application of Antioxidants on the Barrier Properties of the Human Skin. Ski. Pharmacol. Physiol. 2016, 29, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhou, X.; Tan, X.; Huang, X.; Yuan, L.; Zhang, Z.; Yang, Y.; Xu, M.; Wan, Y.; Li, Z. The Status of Oxidative Stress in Patients with Alcohol Dependence: A Meta-Analysis. Antioxidants 2022, 11, 1919. [Google Scholar] [CrossRef] [PubMed]
- Cordiano, R.; Di Gioacchino, M.; Mangifesta, R.; Panzera, C.; Gangemi, S.; Minciullo, P.L. Malondialdehyde as a Potential Oxidative Stress Marker for Allergy-Oriented Diseases: An Update. Molecules 2023, 28, 5979. [Google Scholar] [CrossRef] [PubMed]
- Tomas, M.; Günal-Köroğlu, D.; Kamiloglu, S.; Ozdal, T.; Capanoglu, E. The State of the Art in Anti-Aging: Plant-Based Phytochemicals for Skin Care. Immun. Ageing 2025, 22, 5. [Google Scholar] [CrossRef] [PubMed]
- Djawad, K.; Anggraini, D. The Effectiveness of Oral Superoxide Dismutase (SOD) on Total Antioxidant Status, Trans Epidermal Water Loss (TEWL) and Sebum Concentration in Photo Aging Skin. Med. Sci. of Ukr. 2021, 17, 47–56. [Google Scholar] [CrossRef]
- Christman, L.; De Benedetto, A.; Johnson, E.; Khoo, C.; Gu, L. Polyphenol-Rich Cranberry Beverage Positively Affected Skin Health, Skin Lipids, Skin Microbiome, Inflammation, and Oxidative Stress in Women in a Randomized Controlled Trial. Nutrients 2024, 16, 3126. [Google Scholar] [CrossRef] [PubMed]
Antioxidant | Main Action | Dietary Sources | Clinical Evidence | Interactions and Notes | Refs. |
---|---|---|---|---|---|
Vitamin C | Collagen synthesis, neutralizes ROS, regenerates vitamin E | Citrus fruits, bell pepper, parsley | Improves skin elasticity, supports wound healing | High doses may increase oxidative stress in smokers | [51,56,57,73,74] |
Vitamin E | Synergizes with vitamin C. Acts as the first line of defense against lipid peroxidation in cellular membranes | Nuts, seeds, vegetable oils | Reduces oxidative damage in alcoholics | May potentiate anticoagulant effects | [51,59,60,75,76,77,78,79] |
GSH | Neutralizes ROS and RNS, cofactor for GPx and GST, supports glutathionylation, maintains redox homeostasis. The most crucial thiol-based redox buffer in the cell; regenerates vitamins C and E | Meat, cruciferous vegetables, avocado | Deficient in alcoholics, a key oxidative stress marker | GSH levels depend on cysteine intake; NAC enhances synthesis | [47,49,50,76,80,81,82] |
CoQ10 | Protects mitochondria, reduces lipid peroxidation, limits mitochondrial ROS production, supports electron transport | Fish, meat | Improves skin appearance, anti-aging effects | May affect blood pressure-lowering medications | [67,68,83] |
Polyphenols (e.g., resveratrol) | Anti-inflammatory and antioxidant properties | Red wine, grapes, onions, tea | Reduces signs of photoaging and inflammation | Resveratrol may interact with anticoagulants | [84,85,86] |
Selenium | Cofactor for GPx and TrxR, protects DNA, lipids, and proteins from oxidative damage | Fish, Brazil nuts, cereals | Low levels found in alcoholics, affects GPx activity | Excess intake may be toxic | [23,51,87,88,89] |
β-carotene | Neutralizes singlet oxygen and peroxyl radicals, acts as provitamin A, may inhibit lipid peroxidation | Carrots, pumpkin, sweet potatoes | Decreases in skin after alcohol intake, reduces MED | High doses may increase lung cancer risk in smokers | [51,53,54,55,90,91,92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróblewska, J.; Długosz, A.; Czarnecki, D.; Tomaszewicz, W.; Błaszak, B.; Szulc, J.; Wróblewska, W. The Role of Oxidative Stress in Skin Disorders Associated with Alcohol Dependency and Antioxidant Therapies. Molecules 2025, 30, 3111. https://doi.org/10.3390/molecules30153111
Wróblewska J, Długosz A, Czarnecki D, Tomaszewicz W, Błaszak B, Szulc J, Wróblewska W. The Role of Oxidative Stress in Skin Disorders Associated with Alcohol Dependency and Antioxidant Therapies. Molecules. 2025; 30(15):3111. https://doi.org/10.3390/molecules30153111
Chicago/Turabian StyleWróblewska, Joanna, Anna Długosz, Damian Czarnecki, Wioletta Tomaszewicz, Błażej Błaszak, Joanna Szulc, and Weronika Wróblewska. 2025. "The Role of Oxidative Stress in Skin Disorders Associated with Alcohol Dependency and Antioxidant Therapies" Molecules 30, no. 15: 3111. https://doi.org/10.3390/molecules30153111
APA StyleWróblewska, J., Długosz, A., Czarnecki, D., Tomaszewicz, W., Błaszak, B., Szulc, J., & Wróblewska, W. (2025). The Role of Oxidative Stress in Skin Disorders Associated with Alcohol Dependency and Antioxidant Therapies. Molecules, 30(15), 3111. https://doi.org/10.3390/molecules30153111