Simultaneous Determination of 16 Phenolic Compounds in Edible Fruits from Spontaneous Species Using HPLC-DAD
Abstract
1. Introduction
2. Results and Discussion
2.1. HPLC-DAD Method Optimization
2.2. Identification of the Phenolic Compounds
2.3. Method Validation
2.3.1. Specificity
2.3.2. Linearity
2.3.3. Precision
2.3.4. Accuracy
2.3.5. Robustness
2.4. Application of the Method to Real Samples
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Berries Samples
3.3. Samples Preparation
3.4. Preparation of Standard Solutions
3.5. Chromatographic Conditions
3.6. Validation Methodology
3.7. Statistical Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonçalves, J.; Ramos, R.; Rosado, T.; Gallardo, E.; Duarte, A.P. Development and Validation of a HPLC–DAD Method for Quantification of Phenolic Compounds in Different Sweet Cherry Cultivars. SN Appl. Sci. 2019, 1, 954. [Google Scholar] [CrossRef]
- de la Rosa, L.A.; Moreno-Escamilla, J.O.; Rodrigo-García, J.; Alvarez-Parrilla, E. Phenolic Compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 253–271. ISBN 9780128132784. [Google Scholar] [CrossRef]
- Cheynier, V. Phenolic Compounds: From Plants to Foods. Phytochem. Rev. 2012, 11, 153–177. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic Compounds in Plants and Agri-Industrial by-Products: Antioxidant Activity, Occurrence, and Potential Uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Ignat, I.; Volf, I.; Popa, V.I. A Critical Review of Methods for Characterisation of Polyphenolic Compounds in Fruits and Vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef] [PubMed]
- Khoddami, A.; Wilkes, M.; Roberts, T. Techniques for Analysis of Plant Phenolic Compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Pälijärvi, M.; Karonen, M.; Salminen, J.-P. Distribution of Enzymatic and Alkaline Oxidative Activities of Phenolic Compounds in Plants. Phytochemistry 2020, 179, 112501. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Shahrajabian, M.H. Therapeutic Potential of Phenolic Compounds in Medicinal Plants—Natural Health Products for Human Health. Molecules 2023, 28, 1845. [Google Scholar] [CrossRef] [PubMed]
- Levaj, B.; Dragović-Uzelac, V.; Delonga, K.; Ganić, K.K.; Banović, M.; Kovačević, D.B. Polyphenols and Volatiles in Fruits of Two Sour Cherry Cultivars, Some Berry Fruits and Their Jams. Food Technol. Biotechnol. 2010, 48, 538–547. [Google Scholar]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic Compounds: Current Industrial Applications, Limitations and Future Challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Nour, V.; Trandafir, I.; Cosmulescu, S. HPLC Determination of Phenolic Acids, Flavonoids and Juglone in Walnut Leaves. J. Chromatogr. Sci. 2013, 51, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Zorenc, Z.; Veberic, R.; Stampar, F.; Koron, D.; Mikulic-Petkovsek, M. White versus Blue: Does the Wild “albino” Bilberry (Vaccinium myrtillus L.) Differ in Fruit Quality Compared to the Blue One? Food Chem. 2016, 211, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A. Concept, Mechanism, and Applications of Phenolic Antioxidants in Foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. A Comparison of Fruit Quality Parameters of Wild Bilberry (Vaccinium myrtillus L.) Growing at Different Locations. J. Sci. Food Agric. 2015, 95, 776–785. [Google Scholar] [CrossRef] [PubMed]
- PRISM Sustainability Directory. Spontaneous Flora. 2024. Available online: https://prism.sustainability-directory.com/area/spontaneous-flora/resource/1/ (accessed on 7 July 2025).
- Alirezalu, A.; Ahmadi, N.; Salehi, P.; Sonboli, A.; Alirezalu, K.; Khaneghah, A.M.; Barba, F.J.; Munekata, P.E.S.; Lorenzo, J.M. Physicochemical Characterization, Antioxidant Activity, and Phenolic Compounds of Hawthorn (Crataegus spp.) Fruits Species for Potential Use in Food Applications. Foods 2020, 9, 436. [Google Scholar] [CrossRef] [PubMed]
- Bayram, H.M.; Arda Ozturkcan, S. Bioactive Components and Biological Properties of Cornelian Cherry (Cornus mas L.): A Comprehensive Review. J. Funct. Foods 2020, 75, 104252. [Google Scholar] [CrossRef]
- Solcan, M.B.; Fizeșan, I.; Vlase, L.; Vlase, A.M.; Rusu, M.E.; Mateș, L.; Petru, A.E.; Creștin, I.V.; Tomuțǎ, I.; Popa, D.S. Phytochemical Profile and Biological Activities of Extracts Obtained from Young Shoots of Blackcurrant (Ribes nigrum L.), European Blueberry (Vaccinium myrtillus L.), and Mountain Cranberry (Vaccinium vitis-idaea L.). Horticulturae 2023, 9, 1163. [Google Scholar] [CrossRef]
- Stoenescu, A.-M.; Trandafir, I.; Cosmulescu, S. Determination of Phenolic Compounds Using HPLC-UV Method in Wild Fruit Species. Horticulturae 2022, 8, 84. [Google Scholar] [CrossRef]
- Spinardi, A.; Cola, G.; Gardana, C.S.; Mignani, I. Variation of Anthocyanin Content and Profile Throughout Fruit Development and Ripening of Highbush Blueberry Cultivars Grown at Two Different Altitudes. Front. Plant Sci. 2019, 10, 1045. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yang, Y.; Zhou, M.; Luo, L.; Pan, H.; Zhang, Q.; Yu, C. Widely Targeted Metabolic Profiling Reveals Differences in Polyphenolic Metabolites during Rosa xanthina f. spontanea Fruit Development and Ripening. Metabolites 2022, 12, 438. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A. A Reversed Phase HPLC-DAD Method for the Determination of Phenolic Compounds in Plant Leaves. Anal. Methods 2015, 7, 7753–7757. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Caleja, C.; Santos-Buelga, C.; Barros, L.; Ferreira, I.C.F.R. Vaccinium myrtillus L. Fruits as a Novel Source of Phenolic Compounds with Health Benefits and Industrial Applications—A Review. Curr. Pharm. Des. 2020, 26, 1917–1928. [Google Scholar] [CrossRef] [PubMed]
- Kerasioti, E.; Apostolou, A.; Kafantaris, I.; Chronis, K.; Kokka, E.; Dimitriadou, C.; Tzanetou, E.N.; Priftis, A.; Koulocheri, S.D.; Haroutounian, S.A.; et al. Polyphenolic Composition of Rosa canina, Rosa sempervivens and Pyrocantha coccinea Extracts and Assessment of Their Antioxidant Activity in Human Endothelial Cells. Antioxidants 2019, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Eyduran, S.P.; Yılmaz, B.; Top, M. Determination of Phytochemical Properties and Antioxidant Capacity of Naturally Growing Rosa canina L. in Tuzluca Province. Appl. Fruit Sci. 2025, 67, 139. [Google Scholar] [CrossRef]
- Frumuzachi, O.; Nicolescu, A.; Babotă, M.; Mocan, A.; Sisea, C.-R.; Hera, O.; Sturzeanu, M.; Rohn, S.; Lucini, L.; Crișan, G.; et al. D-Optimal Design-Based Ultrasound-Assisted Extraction Optimization and Extensive Bio-Structural Analysis of Phenolic Compounds from Romanian Cornelian Cherry (Cornus mas L.) Genotypes. Food Bioproc. Technol. 2025, 67, 139. [Google Scholar] [CrossRef]
- Jurikova, T.; Skowronkova, N.; Zvonkova, M.; Orsavova, J.; Ercisli, S.; Dokoupil, L.; Fatrcova-Sramkova, K.; Adamkova, A.; Mlcek, J. Polyphenolic spectrum of cornelian cherry fruits and their health-promoting effect. Open Life Sci. 2025, 20, 20251117. [Google Scholar] [CrossRef] [PubMed]
- Przybylska-Balcerek, A.; Stuper-Szablewska, K. Selected Metabolites of Biofunctional Importance from Edible Fruits of Forest Shrubs. Molecules 2025, 30, 73. [Google Scholar] [CrossRef] [PubMed]
- Stankovic, S.; Mutavdzin Krneta, S.; Djuric, D.; Milosevic, V.; Milenkovic, D. Plant Polyphenols as Heart’s Best Friends: From Health Properties, to Cellular Effects, to Molecular Mechanisms of Action. Int. J. Mol. Sci. 2025, 26, 915. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, B.S.; Ijaz, M.; Buabeid, M.; Kharaba, Z.J.; Yaseen, H.S.; Murtaza, G. Therapeutic Effects and Safe Uses of Plant-Derived Polyphenolic Compounds in Cardiovascular Diseases: A Review. Drug Des. Devel. Ther. 2021, 15, 4713–4732. [Google Scholar] [CrossRef] [PubMed]
- Ghinea, I.O.; Ionica Mihaila, M.D.; Blaga (Costea), G.-V.; Avramescu, S.M.; Cudalbeanu, M.; Isticioaia, S.-F.; Dinica, R.M.; Furdui, B. HPLC-DAD Polyphenolic Profiling and Antioxidant Activities of Sorghum Bicolor during Germination. Agronomy 2021, 11, 417. [Google Scholar] [CrossRef]
- Yunita, E.; Yulianto, D.; Fatimah, S.; Firanita, T. Validation of UV-Vis Spectrophotometric Method of Quercetin in Ethanol Extract of Tamarind Leaf. J. Fundam. Appl. Pharm. Sci. 2020, 1, 11–18. [Google Scholar] [CrossRef]
- Restek. More Than You Ever Wanted to Know About Calibrations—Part 4: Calibration Acceptance. Restek Chromablography. 2020. Available online: https://www.restek.com/global/en/chromablography/more-than-you-ever-wanted-to-know-about-calibrations-part-4--calibration-acceptance (accessed on 14 July 2025).
- World Health Organization. Section 1.14.1 Chromatography. In The International Pharmacopoeia, 12th ed.; World Health Organization: Geneva, Switzerland, 2025; Available online: https://digicollections.net/phint/pdf/b/7.1.14.1.14.1-Chromatography.pdf (accessed on 11 July 2025).
- González-González, R.M.; Barragán-Mendoza, L.; Peraza-Campos, A.L.; Muñiz-Valencia, R.; Ceballos-Magaña, S.G.; Parra-Delgado, H. Validation of an HPLC-DAD method for the determination of plant phenolics. Rev. Bras. Farmacogn. 2019, 29, 689–693. [Google Scholar] [CrossRef]
- Flandez, L.E.L.; Castillo-Israel, K.A.T.; Rivadeneira, J.P.; Tuaño, A.P.P.; Hizon-Fradejas, A.B. Development and Validation of an HPLC-DAD Method for the Simultaneous Analysis of Phenolic Compounds. Malays. J. Fundam. Appl. Sci. 2023, 19, 855–864. [Google Scholar] [CrossRef]
- Paun, I.; Pascu, L.F.; Iancu, V.I.; Pirvu, F.; Galaon, T.; Chiriac, F.L. Simultaneous Determination of 17 Phenolic Compounds in Surface Water and Wastewater Matrices Using an HPLC-DAD Method. Environments 2024, 11, 117. [Google Scholar] [CrossRef]
- Neue, U.D. HPLC Solutions #122: How to Measure Noise—Part 1. Separation Science. 2012. Available online: https://www.sepscience.com/hplc-solutions-122-how-to-measure-noise-part-1-6955 (accessed on 14 July 2025).
- International Council for Harmonisation (ICH). ICH Q2(R2) Guideline on Validation of Analytical Procedures—Scientific Guideline; European Medicines Agency: Amsterdam, The Netherlands, 2024; Available online: https://www.ema.europa.eu/en/ich-q2r2-validation-analytical-procedures-scientific-guideline (accessed on 12 September 2024).
- Dong, M.W.; Huynh-Ba, K.; Wong, A.W. Validation of Stability-Indicating HPLC Methods for Pharmaceuticals: Overview, Methodologies, and Case Studies. LCGC N. Am. 2020, 38, 606–618. Available online: https://www.chromatographyonline.com/view/validation-of-stability-indicating-hplc-methods-for-pharmaceuticals-overview-methodologies-and-case-studies (accessed on 14 July 2025).
- Steiner, D.; Krska, R.; Malachová, A.; Taschl, I.; Sulyok, M. Evaluation of Matrix Effects and Extraction Efficiencies of LC–MS/MS Methods as the Essential Part for Proper Validation of Multiclass Contaminants in Complex Feed. J. Agric. Food Chem. 2020, 68, 3868–3880. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Liu, P. Composition and Health Effects of Phenolic Compounds in Hawthorn (Crataegus spp.) of Different Origins. J. Sci. Food Agric. 2012, 92, 1578–1590. [Google Scholar] [CrossRef] [PubMed]
- Nowak, R. Comparative Study of Phenolic Acids in Pseudofruits of Some Species of Roses. Acta Pol. Pharm. 2006, 63, 281–288. [Google Scholar] [PubMed]
- Butkevičiūtė, A.; Urbštaitė, R.; Liaudanskas, M.; Obelevičius, K.; Janulis, V. Phenolic Content and Antioxidant Activity in Fruit of the Genus Rosa, L. Antioxidants 2022, 11, 912. [Google Scholar] [CrossRef] [PubMed]
- Liaudanskas, M.; Noreikienė, I.; Zymonė, K.; Juodytė, R.; Žvikas, V.; Janulis, V. Composition and Antioxidant Activity of Phenolic Compounds in Fruit of the Genus Rosa L. Antioxidants 2021, 10, 545. [Google Scholar] [CrossRef] [PubMed]
- Demir, N.; Yildiz, O.; Alpaslan, M.; Hayaloglu, A.A. Evaluation of Volatiles, Phenolic Compounds and Antioxidant Activities of Rose Hip (Rosa L.) Fruits in Turkey. LWT-Food Sci. Technol. 2014, 57, 126–133. [Google Scholar] [CrossRef]
- Elmastaş, M.; Demir, A.; Genç, N.; Dölek, Ü.; Güneş, M. Changes in Flavonoid and Phenolic Acid Contents in Some Rosa Species during Ripening. Food Chem. 2017, 235, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Stănilă, A.; Diaconeasa, Z.; Roman, I.; Sima, N.; Măniuţiu, D.; Roman, A.; Sima, R. Extraction and Characterization of Phenolic Compounds from Rose Hip (Rosa Canina L.) Using Liquid Chromatography Coupled with Electrospray Ionization-Mass Spectrometry. Not. Bot. Horti Agrobot. Cluj. Napoca 2015, 43, 349–354. [Google Scholar] [CrossRef]
- Shameh, S.; Alirezalu, A.; Hosseini, B.; Maleki, R. Fruit Phytochemical Composition and Color Parameters of 21 Accessions of Five Rosa Species Grown in North West Iran. J. Sci. Food Agric. 2019, 99, 5740–5751. [Google Scholar] [CrossRef] [PubMed]
- Ozrenk, K.; Tas, A.; Gundogdu, M.; Keskin, N.; Ercisli, S. Physicochemical Substances and Bioactive Components of Wild Cornelian Cherry (Cornus mas L.) Fruits in Erzincan Province of Eastern Turkey. Genetika 2023, 55, 95–110. [Google Scholar] [CrossRef]
- Szczepaniak, O.M.; Kobus-Cisowska, J.; Kusek, W.; Przeor, M. Functional Properties of Cornelian Cherry (Cornus mas L.): A Comprehensive Review. Eur. Food Res. Technol. 2019, 245, 2071–2087. [Google Scholar] [CrossRef]
- De Biaggi, M.; Donno, D.; Mellano, M.G.; Riondato, I.; Rakotoniaina, E.N.; Beccaro, G.L. Cornus mas (L.) Fruit as a Potential Source of Natural Health-Promoting Compounds: Physico-Chemical Characterisation of Bioactive Components. Plant Foods Hum. Nutr. 2018, 73, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Tenuta, M.C.; Deguin, B.; Loizzo, M.R.; Cuyamendous, C.; Bonesi, M.; Sicari, V.; Trabalzini, L.; Mitaine-Offer, A.C.; Xiao, J.; Tundis, R. An Overview of Traditional Uses, Phytochemical Compositions and Biological Activities of Edible Fruits of European and Asian Cornus Species. Foods 2022, 11, 1240. [Google Scholar] [CrossRef] [PubMed]
- Deǧirmencioǧlu, N.; Gürbüz, O.; Karatepe, G.E.; Irkin, R. Influence of Hot Air Drying on Phenolic Compounds and Antioxidant Capacity of Blueberry (Vaccinium myrtillus) Fruit and Leaf. J. Appl. Bot. Food Qual. 2017, 90, 115–125. [Google Scholar] [CrossRef]
Time (min) | Flow Rate (mL/min) | Mobile Phase A (% v/v) | Mobile Phase B (% v/v) |
---|---|---|---|
0–4 | 0.7 | 100 | 0 |
5–20 | 0.7 | 98 | 2 |
27–30 | 0.7 | 96 | 4 |
32–35 | 0.7 | 90 | 10 |
40 | 0.7 | 80 | 20 |
42–45 | 0.7 | 0 | 100 |
50 | 0.7 | 100 | 0 |
55 | 0.7 | 100 | 0 |
No. | Phenolic Compound | RRT | Integration Interval (min) | Peak Symmetry | Rs | Linear Range(µg/mL) | Regression Equation | R2 | Sy/x (Relative %) | LOD (ng/mL) |
---|---|---|---|---|---|---|---|---|---|---|
1 | Gallic acid | 0.23 | 2.10–2.80 | 1.23 | 4.48 | 0.1–50 | y = 80,163x + 436.49 | 0.9994 | 3.04 | 2.40 |
2 | Protocatechuic acid | 0.58 | 5.50–6.50 | 1.11 | 4.03 | 0.1–50 | y = 45,537x + 5907.7 | 0.9992 | 3.67 | 4.24 |
3 | p-Hydroxybenzoic acid | 1.0 | 9.70–10.70 | 1.10 | 4.78 | 0.1–50 | y = 39,603x + 2826 | 0.9994 | 3.25 | 4.79 |
4 | Vanillic acid | 1.73 | 16.60–18.30 | 1.15 | 1.15 | 0.1–50 | y = 45,940x + 4383.4 | 0.9992 | 3.64 | 4.23 |
5 | Caffeic acid | 1.91 | 18.80–20.70 | 1.18 | 0.93 | 0.1–50 | y = 98,846x + 6245.2 | 0.9993 | 3.47 | 3.55 |
6 | Catechin | 2.07 | 20.7–22.10 | 1.02 | 2.85 | 0.1–50 | y = 20,500x + 2626.2 | 0.9984 | 5.04 | 9.37 |
7 | Chlorogenic acid | 2.45 | 24.60–25.80 | 1.14 | 0.89 | 0.1–50 | y = 29,652x + 802.37 | 0.9999 | 1.07 | 2.69 |
8 | Vanillin | 2.58 | 25.80–27.2 | 1.13 | 0.76 | 0.1–50 | y = 115,086x + 3665 | 0.9995 | 2.81 | 2.59 |
9 | Syringic acid | 2.68 | 27.20–28.5 | 0.90 | 2.45 | 0.1–50 | y = 67,534x − 2633.5 | 0.9999 | 1.38 | 4.42 |
10 | Coumaric acid | 3.16 | 31.20–33.20 | 1.11 | 1.60 | 0.1–50 | y = 140,187x + 1580.4 | 0.999 | 4.01 | 2.90 |
11 | Epicatechin | 3.36 | 34.3–34.90 | 1.14 | 2.40 | 0.1–50 | y = 19,505x + 775.66 | 0.9997 | 2.35 | 4.62 |
12 | Ferulic acid | 3.56 | 36.10–37.20 | 1.20 | 1.83 | 0.1–50 | y = 86,056x + 5954.9 | 0.9993 | 3.43 | 3.13 |
13 | Sinapic acid | 3.72 | 37.90–38.50 | 1.27 | 0.68 | 0.1–40 | y = 28,325x − 28.573 | 0.9994 | 4.59 | 5.69 |
14 | Salicylic acid | 3.77 | 38.50–39.50 | 1.01 | 5.81 | 0.5–50 | y = 15,111x + 1571.6 | 0.995 | 4.50 | 13,33 |
15 | Resveratrol | 4.11 | 42.20–42.40 | 1.30 | 1.53 | 0.1–50 | y = 106,007x + 10,128 | 0.9992 | 3.53 | 2.57 |
16 | Quercetin | 4.14 | 42.40–42.70 | 1.32 | - | 0.1–40 | y = 39,414x − 59,093 | 0.9818 | 4.35 | 7.80 |
No. | Phenolic Compound | Repeatability (% RSD) | Intermediate Precision (% RSD) | |||
---|---|---|---|---|---|---|
10 µg/mL (n = 6) | Sample (n = 3) | 1 µg/mL (n = 3) | 10 µg/mL (n = 3) | Sample (n = 3) | ||
1 | Gallic acid | 1.11 | nd | 0.89 | 1.63 | nd |
2 | Protocatechuic acid | 1.13 | 1.40 | 0.50 | 0.15 | 1.54 |
3 | p-Hydroxybenzoic acid | 1.12 | 1.95 | 0.87 | 0.58 | 0.85 |
4 | Vanillic acid | 0.78 | nd | 0.72 | 0.85 | nd |
5 | Caffeic acid | 1.59 | nd | 0.28 | 0.79 | nd |
6 | Catechin | 1.54 | nd | 1.31 | 1.48 | nd |
7 | Chlorogenic acid | 1.47 | 0.49 | 1.65 | 1.50 | 1.38 |
8 | Vanillin | 1.41 | nd | 0.37 | 0.36 | nd |
9 | Syringic acid | 1.26 | nd | 1.20 | 0.77 | nd |
10 | Coumaric acid | 1.09 | 0.45 | 0.43 | 0.36 | 3.15 |
11 | Epicatechin | 2.27 | 0.96 | 1.22 | 1.30 | 1.50 |
12 | Ferulic acid | 0.99 | nd | 0.69 | 0.43 | nd |
13 | Sinapic acid | 0.95 | 1.54 | 0.51 | 0.87 | 1.88 |
14 | Salicylic acid | 1.63 | 0.81 | 0.54 | 0.49 | 1.96 |
15 | Resveratrol | 1.38 | 1.49 | 0.23 | 0.91 | 2.33 |
16 | Quercetin | 2.26 | 0.82 | 1.10 | 2.51 | 2.83 |
No. | Phenolic Compound | Recovery (%) | ||
---|---|---|---|---|
5 µg/mL | 15 µg/mL | Mean Value | ||
1 | Gallic acid | 103 ± 1.8 | 99.3 ± 2.2 | 101.0 ± 2.4 |
2 | Protocatechuic acid | 94.9 ± 5.1 | 97.3 ± 2.0 | 96.1 ± 1.7 |
3 | p-Hydroxybenzoic acid | 100.0 ± 1.7 | 95.0 ± 6.4 | 97.7 ± 3.8 |
4 | Vanillic acid | 96.7 ± 1.9 | 100.7 ± 2.0 | 98.7 ± 2.8 |
5 | Caffeic acid | 98.1 ± 1.7 | 98.4 ± 0.58 | 98.25 ± 0.18 |
6 | Catechin | 75.6 ± 6.3 | 76.8 ± 4.56 | 76.2 ± 0.88 |
7 | Chlorogenic acid | 88.04 ± 22.17 | 92.4 ± 1.7 | 90.2 ± 3.1 |
8 | Vanillin | 99.8 ± 0.34 | 99.4 ± 3.1 | 99.61 ± 0.30 |
9 | Syringic acid | 98.1 ± 4.9 | 108.8 ± 1.6 | 103.5 ± 7.6 |
10 | Coumaric acid | 90.7 ± 0.88 | 96.1 ± 5.5 | 93.4 ± 3.8 |
11 | Epicatechin | 94.4 ± 9.0 | 91.2 ± 7.6 | 92.8 ± 2.3 |
12 | Ferulic acid | 77.9 ± 1.1 | 96.6 ± 1.5 | 87.2 ± 13 |
13 | Sinapic acid | 90.1 ± 18.7 | 105.8 ± 5.7 | 97.9 ± 11 |
14 | Salicylic acid | 87.7 ± 21 | 77.4 ± 7.4 | 82.5 ± 7.3 |
15 | Resveratrol | 99.5 ± 3.3 | 101.3 ± 0.14 | 100.4 ± 1.3 |
16 | Quercetin | 62.0 ± 29 | 73.3 ± 3.9 | 67.7 ± 8.0 |
No. | Phenolic Compound | Column Temperature Variation | Injection Volume Variation | |||||||
---|---|---|---|---|---|---|---|---|---|---|
RT Nominal | RT Shift at 28 °C (%) | %RSD Area at 28 °C | RT Shift at 32 °C (%) | %RSD Area at 32 °C | %RSD Area at 18 µL | Area Ratio (18/20) | %RSD Area at 22 µL | Area Ratio (22/20) | ||
1 | Gallic acid | 2.360 | 4.12 | 0.35 | −8.45 | 0.26 | 0.86 | 1.01 | 1.36 | 0.98 |
2 | Protocatechuic acid | 5.950 | 6.61 | 0.15 | −7.34 | 0.28 | 1.64 | 0.99 | 0.30 | 0.99 |
3 | p-Hydroxybenzoic acid | 10.279 | 5.07 | 0.09 | −5.71 | 0.29 | 0.72 | 1.00 | 0.13 | 1.00 |
4 | Vanillic acid | 17.761 | 7.55 | 0.24 | −5.91 | 0.90 | 0.32 | 1.00 | 0.16 | 1.00 |
5 | Caffeic acid | 19.629 | 7.50 | 0.37 | −7.19 | 0.40 | 0.51 | 1.00 | 0.45 | 1.00 |
6 | Catechin | 21.317 | 9.50 | 1.01 | −8.98 | 1.61 | 0.71 | 1.01 | 2.29 | 1.01 |
7 | Chlorogenic acid | 25.353 | 5.04 | 0.69 | −5.58 | 0.37 | 0.25 | 1.00 | 0.50 | 0.99 |
8 | Vanillin | 26.485 | 4.24 | 0.56 | −4.45 | 0.57 | 0.41 | 1.00 | 0.31 | 1.00 |
9 | Syringic acid | 27.570 | 3.79 | 0.41 | −3.81 | 0.84 | 0.44 | 1.01 | 0.36 | 0.97 |
10 | Coumaric acid | 32.443 | 3.45 | 0.09 | −4.81 | 1.04 | 0.31 | 1.01 | 0.25 | 1.00 |
11 | Epicatechin | 34.516 | 0.89 | 0.52 | −0.91 | 0.48 | 0.14 | 1.01 | 0.27 | 0.99 |
12 | Ferulic acid | 36.613 | 1.32 | 0.25 | −1.37 | 0.22 | 0.24 | 1.00 | 0.09 | 1.00 |
13 | Sinapic acid | 38.224 | 0.66 | 0.89 | −0.96 | 0.60 | 0.93 | 0.98 | 0.16 | 0.99 |
14 | Salicylic acid | 38.798 | 1.81 | 1.21 | 0.13 | 0.83 | 0.91 | 1.02 | 0.20 | 1.02 |
15 | Resveratrol | 42.297 | 0.10 | 0.16 | −0.17 | 0.96 | 0.51 | 0.99 | 0.31 | 0.98 |
16 | Quercetin | 42.540 | 0.02 | 0.72 | −0.05 | 0.41 | 0.82 | 0.92 | 0.66 | 0.91 |
No. | Phenolic Compound | Fruit Sample (µg/g fw) | |||
---|---|---|---|---|---|
Crataegus monogyna | Cornus mas | Rosa canina | Vaccinium myrtillus | ||
1 | Gallic acid | nd | 15.25 ± 0.29 | nd | 0.56 ± 0.02 |
2 | Protocatechuic acid | 3.44 ± 0.05 | nd | 1.73 ± 0.03 | 0.19 ± 0.01 |
3 | p-Hydroxybenzoic acid | 0.33 ± 0.01 | 5.73 ± 0.11 | nd | nd |
4 | Vanillic acid | nd | 1.20 ± 0.05 | 76.1 ± 1.6 | nd |
5 | Caffeic acid | nd | nd | nd | nd |
6 | Catechin | nd | 5.95 ± 0.14 | 177.24 ± 0.43 | nd |
7 | Chlorogenic acid | 20.82 ± 0.10 | 58.97 ± 0.67 | nd | 438.0 ± 6.7 |
8 | Vanillin | nd | nd | 26.64 ± 0.87 | nd |
9 | Syringic acid | nd | 51.7 ± 0.73 | nd | nd |
10 | Coumaric acid | 3.55 ± 0.02 | nd | nd | 1.55 ± 0.03 |
11 | Epicatechin | 37.55 ± 0.36 | 186.0 ± 2.2 | nd | 1228 ± 16 |
12 | Ferulic acid | nd | 64.3 ± 0.82 | nd | 303.3 ± 5.5 |
13 | Sinapic acid | 20.00 ± 0.31 | nd | nd | 194.1 ± 3.7 |
14 | Salicylic acid | 9.53 ± 0.08 | 28.7 ± 0.47 | 30.4 ± 0.48 | 722 ± 11 |
15 | Resveratrol | 1.74 ± 0.03 | 3.73 ± 0.06 | 4.69 ± 0.09 | 5.55 ± 0.13 |
16 | Quercetin | 7.96 ± 0.07 | nd | 10.50 ± 0.26 | 6.39 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciurlă, L.; Enache, I.-M.; Patraș, A. Simultaneous Determination of 16 Phenolic Compounds in Edible Fruits from Spontaneous Species Using HPLC-DAD. Molecules 2025, 30, 3071. https://doi.org/10.3390/molecules30153071
Ciurlă L, Enache I-M, Patraș A. Simultaneous Determination of 16 Phenolic Compounds in Edible Fruits from Spontaneous Species Using HPLC-DAD. Molecules. 2025; 30(15):3071. https://doi.org/10.3390/molecules30153071
Chicago/Turabian StyleCiurlă, Liliana, Iuliana-Maria Enache, and Antoanela Patraș. 2025. "Simultaneous Determination of 16 Phenolic Compounds in Edible Fruits from Spontaneous Species Using HPLC-DAD" Molecules 30, no. 15: 3071. https://doi.org/10.3390/molecules30153071
APA StyleCiurlă, L., Enache, I.-M., & Patraș, A. (2025). Simultaneous Determination of 16 Phenolic Compounds in Edible Fruits from Spontaneous Species Using HPLC-DAD. Molecules, 30(15), 3071. https://doi.org/10.3390/molecules30153071