Electronic Structure of the Ground and Low-Lying States of MoLi
Abstract
1. Introduction
2. Results and Discussion
2.1. SA-CASSCF
2.2. MRCISD(+Q) Methods
2.2.1.
2.2.2.
2.2.3. and
2.2.4.
2.2.5.
2.2.6.
2.2.7. and (2)
2.2.8. and
2.2.9. Trends and Electronic Spectra
2.2.10. Comparison of MoLi with CrLi and MoB Diatomic Molecules
2.2.11. Mo-Li Bonds in Complexes and Solid State
3. Computational Details and Methodology
4. Conclusions and Final Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stiefel, E.I. Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons Inc: Hoboken, NJ, USA, 2001; pp. 871–895. [Google Scholar]
- Pan, F.; Huang, D.; Li, Y.; Yuan, X.; Cao, Y. Crystal structure and magnetic properties of Li,Cr-containing molybdates Li3Cr(MoO4)3, LiCr(MoO4)2 and Li1.8Cr1.2(MoO4)3. J. Solid State Chem. 2009, 182, 2634–2641. [Google Scholar]
- Liu, Y.; Lin, Z.; Bettels, F.; Li, Z.; Xu, J.; Zhang, Y.; Li, X.; Ding, F.; Liu, S.; Zhang, L. Molybdenum-Based Catalytic Materials for Li–S Batteries: Strategies, Mechanisms, and Prospects. Adv. Energy Sustain. Res. 2023, 4, 2200145. [Google Scholar] [CrossRef]
- Shon, J.K.; Lee, H.S.; Park, G.O.; Yoon, J.; Park, E.; Park, G.S.; Kong, S.S.; Jin, M.; Choi, J.-M.; Chang, H.; et al. Discovery of abnormal lithium-storage sites in molybdenum dioxide electrodes. Nat. Commun. 2016, 7, 11049. [Google Scholar] [CrossRef]
- Su, Q.; Wang, S.; Feng, M.; Du, G.; Xu, B. Direct Studies on the Lithium-Storage Mechanism of Molybdenum Disulfide. Sci. Rep. 2017, 7, 7275. [Google Scholar] [CrossRef]
- Huang, Y.; Field, R.; Chen, Q.; Peng, Y.; Walczak, M.S.; Zhao, H.; Zhu, G.; Liu, Z.; Li, L. Laser induced molybdenum sulphide loading on doped graphene cathode for highly stable lithium sulphur battery. Commun. Chem. 2019, 2, 138. [Google Scholar] [CrossRef]
- Wan, J.; Hao, Y.; Shi, Y.; Song, Y.-X.; Yan, H.-J.; Zheng, J.; Wen, R.; Wan, L.-J. Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries. Nat. Commun. 2019, 10, 3265. [Google Scholar] [CrossRef]
- Gao, D.; Deng, S.; Chen, X.; Zhang, Y.; Lv, T.; He, Y.; Zhou, F.; Zhang, W.; Chu, P.K.; Huo, K. Mixed Ion/Electron Conductive Li3N–Mo Interphase Enabling Stable and Ultrahigh-Rate Lithium Metal Anodes. ACS Appl. Mater. Interfaces 2023, 15, 21066–21074. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Roszell, J.; Scoullos, E.V.; Riplinger, C.; Koel, B.E.; Carter, E.A. Effect of Temperature on the Desorption of Lithium from Molybdenum(110) Surfaces: Implications for Fusion Reactor First Wall Materials. J. Phys. Chem. B 2016, 120, 6110–6119. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Zhang, L.; Wu, L.; Liu, Y.; Wang, Z.; Zhang, Y.; Zhao, Y.; Ren, Y.; Chen, Y.; et al. Molybdenum Host and Interphase Induced Decentralized Lithium Deposition for Dendrite-Free Lithium Metal Anodes. Energy Storage Mater. 2021, 39, 85–93. [Google Scholar] [CrossRef]
- Ma, C.; Wang, Z.; Wang, H.; Chen, J.; Zhang, Q.; Shen, J.; Han, W.; Yang, W. Strong and Stable Metal–Organic Framework Membrane with Engineered Macro–Micro Hierarchically Structured Channels for Hydrogen Purification. ACS Nano 2021, 15, 15047–15056. [Google Scholar]
- Jiang, H.; Gu, S.; Guo, J.; Dai, Y.; Zheng, W.; Jiang, X.; Wu, X.; Xiao, W.; He, G.; Li, X. Position Difference between Mo Clusters and N Sites Induced Highly Synergistic Electrocatalysis in Integrated Electrode-Separator Membranes with Crosslinked Hierarchically Porous Interface. Energy Storage Mater. 2022, 45, 370–379. [Google Scholar] [CrossRef]
- Li, Z.; Sami, I.; Yang, J.; Li, J.; Kumar, R.V.; Chhowalla, M. Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries. Nat. Energy 2023, 8, 84–93. [Google Scholar] [CrossRef]
- Harrison, J.F. Electronic structure of diatomic molecules composed of a first-row transition metal and main-group element (h-f). Chem. Rev. 2000, 100, 679–716. [Google Scholar] [CrossRef] [PubMed]
- Mermigki, M.A.; Karapetsas, I.; Tzeli, D. Electronic structure of low-lying states of triatomic MoS2 molecule. The building block of 2D MoS2. Chem. Phys. Chem. 2023, 24, e202300365. [Google Scholar] [CrossRef] [PubMed]
- Tzeli, D.; Karapetsas, I.; Merriles, D.M.; Ewigleben, J.C.; Morse, M.D. The molybdenum-sulfur bond: Electronic structure of low-lying states of MoS. J. Phys. Chem. A 2022, 126, 1168–1181. [Google Scholar] [CrossRef]
- Hoffman, B.M.; Lukoyanov, D.; Yang, Z.-Y.; Dean, D.R.; Seefeldt, L.C. Mechanism of nitrogen fixation by nitrogenase: The next stage. Chem. Rev. 2014, 114, 4041–4062. [Google Scholar] [CrossRef]
- White, M.V.; Claveau, E.E.; Miliordos, E.; Vogiatzis, K.D. Electronic Structure and Ligand Effects on the Activation and Cleavage of N2 on a Molybdenum Center. J. Phys. Chem. A 2024, 128, 2038–2048. [Google Scholar] [CrossRef]
- Sorensen, J.J.; Tieu, E.; Sevy, A.; Merriles, D.M.; Nielson, C.; Ewigleben, J.C.; Morse, M.D. Bond dissociation energies of transition metal oxides: CrO, MoO, RuO, and RhO. J. Chem. Phys. 2020, 153, 074303. [Google Scholar] [CrossRef]
- Zhang, L.; Zou, W.; Yu, Y.; Zhao, D.; Maa, X.; Yang, J. Spin-orbit splittings in the low-lying states of MoO molecule. J. Quant. Spectrosc. Radiat. Transf. 2021, 269, 107690. [Google Scholar] [CrossRef]
- Depastas, T.; Androutsopoulos, A.; Tzeli, D. Analysis of chemical bonding of the ground and low-lying states of Mo2 and of Mo2Clx complexes, x = 2-10. J. Chem. Phys. 2022, 157, 054302. [Google Scholar] [CrossRef]
- Demetriou, C.; Tzeliou, C.E.; Androutsopoulos, A.; Tzeli, D. Electronic Structure and Chemical Bonding of the First-, Second-, and Third-Row-Transition-Metal Monoborides: The Formation of Quadruple Bonds in RhB, RuB, and TcB. Molecules 2023, 28, 8016. [Google Scholar] [CrossRef]
- Androutsopoulos, A.; Tzeli, D.; Tomchak, K.H.; Morse, M.D. Quadruple bonds in MoC: Accurate calculations and precise measurement of the dissociation energy of low-lying states of MoC. J. Chem. Phys. 2024, 160, 234304. [Google Scholar] [CrossRef]
- Tzeli, D.; Papakondylis, A.; Mavridis, A. On the Electronic Structure of the Ground (X3Σ-) and Some Low-Lying States (A3Π, a1Δ, b1Σ+, B3Σ-) of the Isovalent Species P-Li and P-Na. Mol. Struct. (THEOCHEM) 1997, 417, 277–287. [Google Scholar] [CrossRef]
- Tzeli, D.; Papakondylis, A.; Mavridis, A. On the Electronic Structure of NLi2 and PLi2. Ground and Low-Lying Excited States. J. Phys. Chem. A 1998, 102, 2223–2230. [Google Scholar] [CrossRef]
- Sanli, A.; Pan, X.; Beecher, D.S.; Magnier, S.; Lyyra, A.M.; Ahmed, E.H. Electronic transition dipole moment and radiative lifetime calculations of lithium dimer ion-pair states. J. Mol. Spectr. 2019, 355, 1–7. [Google Scholar] [CrossRef]
- Androutsopoulos, A.; Tzeli, D. Electronic structure and chemical bonding of MoX molecules, where X = Li, Be, B, C, N, O, and F. ACS Omega 2025, submitted. [Google Scholar]
- Sugar, J.; Musgrove, A. Energy Levels of Molybdenum, Mo I through Mo XLII. J. Phys. Chem. Ref. Data 1988, 17, 155–239. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y.; Reader, J.; Olsen, K.; Ibacache, R. NIST Standard Reference Database 78, Version 5.12. Available online: https://www.nist.gov/pml/atomic-spectra-database (accessed on 10 June 2025). [CrossRef]
- Finelli, S.; Ciamei, A.; Restivo, B.; Schemmer, M.; Cosco, A.; Inguscio, M.; Trenkwalder, A.; Zaremba-Kopczyk, K.; Gronowski, M.; Tomza, M.; et al. Ultracold LiCr: A New Pathway to Quantum Gases of Paramagnetic Polar Molecules. PRX Quantum 2024, 5, 020358. [Google Scholar] [CrossRef]
- Lawson, D.B.; Harrison, J.F. Electronic Structures of ScLi, TiLi, VLi, CrLi, and CuLi and Their Positive Ions. J. Phys. Chem. A 1996, 100, 6755–6764. [Google Scholar] [CrossRef]
- Borin, A.C.; Gobbo, J.P. Electronic Structure of the Ground and Low-Lying Electronic States of MoB and MoB⁺. Int. J. Quantum Chem. 2011, 111, 412–418. [Google Scholar] [CrossRef]
- Pérez-Jiménez, M.; Campos, J.; Jover, J.; Álvarez, S.; Carmona, E. Supported σ-Complexes of Li−C Bonds from Coordination of Monomeric Molecules of LiCH3, LiCH2CH3 and LiC6H5 to Mo≣Mo Bonds. Angew. Chem. Int. Ed. 2015, 54, 535–539. [Google Scholar]
- Perez-Jimenez, M.; Curado, N.; Maya, C.; Campos, J.; Jover, J.; Alvarez, S.; Carmona, E. Coordination of LiH Molecules to Mo≣Mo Bonds: Experimental and Computational Studies on Mo2LiH2, Mo2Li2H4, and Mo6Li9H18 Clusters. J. Am. Chem. Soc. 2021, 143, 5222–5230. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-C.; Ke, W.-L.; Yu, J.-S.K.; Kuo, T.-S.; Tsa, Y.-C. An Electron-Rich Molybdenum–Molybdenum Quintuple Bond Spanned by One Lithium Atom. Angew. Chem. Int. Ed. 2012, 51, 6394–6397. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Z.; Fu, Y.Q. Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide. Sci. Rep. 2015, 5, 18712. [Google Scholar] [CrossRef] [PubMed]
- Ersan, F.; Gökoğlu, G.; Aktürk, E. Adsorption and Diffusion of Lithium on Monolayer Transition Metal Dichalcogenides (MoS2(1–x)Se2x) Alloys. J. Phys. Chem. C 2015, 119, 28648–28653. [Google Scholar] [CrossRef]
- Vincent, R.C.; Cheetham, A.K.; Seshadri, R. Structure and lithium insertion in oxides of molybdenum. APL Mater. 2023, 11, 010902. [Google Scholar] [CrossRef]
- Wenhao, L.; Shaozhen, H.; Yu, Z.; Kecheng, L.; Piao, Q.; Yaqin, W.; Shengli, A.; Zhibin, W.; Libao, C. Molybdenum dialkyphosphorodithioate-derived artificial solid-electrolyte interface enabling stable lithium metal anodes. Energy Storage Mater. 2024, 65, 103185. [Google Scholar]
- Zhou, Y.G.; Zu, X.T.; Nie, J.L.; Xiao, H.Y. Adsorption of Li on Mo(110) Surface: A First-Principles Study. Surf. Rev. Lett. 2009, 16, 1061–1067. [Google Scholar] [CrossRef]
- Tsendin, D.V.; Dufek, T.; Yu, J.H.; Maroudas, D. Characterization of the Liquid Li–Solid Mo (110) Interface from Classical Molecular Dynamics for Plasma-Facing Applications. J. Nucl. Mater. 2020, 538, 152247. [Google Scholar]
- Peterson, K.A.; Figgen, D.; Dolg, M.; Stoll, H. Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the elements Y–Pd. J. Chem. Phys. 2007, 126, 124101. [Google Scholar] [CrossRef]
- Prascher, B.P.; Woon, D.E.; Peterson, K.A.; Dunning, T.H., Jr.; Wilson, A.K. Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg. Theor. Chem. Acc. 2011, 128, 69–82. [Google Scholar] [CrossRef]
- Shim, I.; Gingerich, K.A. Electronic states and nature of bonding in the molecule MoC by all electron ab initio calculations. J. Chem. Phys. 1997, 106, 8093–8100. [Google Scholar] [CrossRef]
- Werner, H.-J.; Reinsch, E.A. The self-consistent electron pairs method for multiconfiguration reference state functions. J. Chem. Phys. 1982, 76, 3144–3156. [Google Scholar] [CrossRef]
- Werner, H.-J. The Complete Active Space Self-Consistent Field Method and its Applications in Electronic Structure Calculations. Adv. Chem. Phys. 1987, 69, 1. [Google Scholar]
- Knowles, P.J.; Werner, H.-J. An efficient method for the evaluation of coupling coefficients in configuration interaction calculations. Chem. Phys. Lett. 1988, 145, 514–522. [Google Scholar] [CrossRef]
- Werner, H.-J.; Knowles, P.J. An efficient internally contracted multiconfiguration-reference configuration interaction method. J. Chem. Phys. 1988, 89, 5803–5814. [Google Scholar] [CrossRef]
- Langhoff, S.R.; Davidson, E.R. Configuration interaction calculations on the nitrogen molecule. Int. J. Quantum Chem. 1974, 8, 61–72. [Google Scholar] [CrossRef]
- Blomberg, M.R.A.; Siegbahn, P.E.M. Singlet and triplet energy surfaces of NiH2. J. Chem. Phys. 1983, 78, 5682–5692. [Google Scholar] [CrossRef]
- Dunham, J.L. The Wentzel-Brillouin-Kramers Method of Solving the Wave Equation. Phys. Rev. 1932, 41, 713. [Google Scholar] [CrossRef]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView, version 6.1.1; Semichem Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
- Ishikawa, S.; Madjarova, G.; Yamabe, T. First-Principles Study of the Lithium Interaction with Polycyclic Aromatic Hydrocarbons. J. Phys. Chem. B 2001, 105, 11986–11993. [Google Scholar] [CrossRef]
- Tzeli, D.; Petsalakis, I.; Theodorakopoulos, G. Computational Insight into the Electronic Structure and Absorption Spectra of Lithium Complexes of N-confused Tetraphenylporphyrin. J. Phys. Chem. A 2011, 115, 11749–11760. [Google Scholar] [CrossRef] [PubMed]
- Werner, H.-J.; Knowles, P.J.; Manby, F.R.; Black, J.A.; Doll, K.; Heßelmann, A.; Kats, D.; Köhn, A.; Korona, T.; Kreplin, D.A.; et al. MOLPRO version 2022. Chem. Phys. 2020, 152, 144107. [Google Scholar]
STATE | Re | Te (eV) | Te (kcal/mol) |
---|---|---|---|
X 6Σ+(1) | 2.802 | 0.000 | 00.00 |
8Σ+(1) | (repulsive) | ||
8Π(1) | 2.674 | 1.395 | 32.2 |
6Σ+(2) | 2.882 | 1.577 | 36.4 |
6Σ+(3) | 3.004 | 1.806 | 41.6 |
4Π(1) | 2.620 | 1.812 | 41.8 |
6Π(1) | 2.982 | 1.887 | 43.5 |
4Σ+ | 2.731 | 1.918 | 44.2 |
4Δ(1) | 2.711 | 1.977 | 45.6 |
4Φ | 2.656 | 1.988 | 45.9 |
8Σ+(2) | 2.869 | 2.019 | 46.6 |
6Δ(1) | 3.044 | 2.036 | 46.9 |
4Δ(2) | 2.756 | 2.115 | 48.8 |
4Π(2) | 2.726 | 2.142 | 49.4 |
6Π(2) | 2.873 | 2.149 | 49.5 |
4Γ | 2.762 | 2.207 | 50.9 |
4Σ− | 2.702 | 2.434 | 56.1 |
4Π(3) | 2.801 | 2.455 | 56.6 |
6Φ | 2.712 | 2.674 | 61.7 |
6Π(3) | 2.892 | 2.756 | 63.5 |
6Δ(2) | 2.816 | 2.800 | 64.6 |
6Σ− | 2.809 | 3.003 | 69.6 |
6Γ | (repulsive) | ||
2Σ+(1) | 2.663 | 3.080 | 71.0 |
2Π(1) | 2.634 | 3.094 | 71.4 |
2Δ(1) | 2.627 | 3.100 | 71.5 |
2Σ+(2) | 2.654 | 3.119 | 71.9 |
2Φ | 2.657 | 3.148 | 72.6 |
2Γ | 2.683 | 3.170 | 73.1 |
2Π(2) | 2.668 | 3.177 | 73.3 |
8Φ | 3.098 | 3.183 | 73.4 |
8Π(2) | 3.106 | 3.220 | 74.2 |
2Ι | 2.705 | 3.220 | 74.2 |
2H | 2.693 | 3.220 | 74.3 |
8Δ(1) | 3.225 | 3.243 | 74.8 |
2Δ(2) | 2.614 | 3.247 | 74.9 |
8Π(3) | 3.100 | 3.328 | 76.7 |
8Σ− | 3.181 | 3.412 | 78.7 |
8Σ+(3) | (repulsive) | ||
8Δ(2) | 2.650 | 3.981 | 91.8 |
8Δ(3) | 2.660 | 4.028 | 92.9 |
States | Methodology | |||||||
---|---|---|---|---|---|---|---|---|
CASSCF | 2.817 | 09.66 | 273.3 | 2.29 | 1.87 | 1.87 | 00.00 | |
MRCISD | 2.717 | 22.67 | 312.1 | 2.12 | 3.46 | 2.69 | 00.00 | |
MRCISD+Q | 2.708 | 24.06 | 316.8 | 2.11 | 3.63 | 00.00 | ||
CASSCF | (repulsive) | |||||||
MRCISD | 3.436 | 01.60 | 086.7 | 4.44 | 1.30 | 0.64 | 21.08 | |
MRCISD+Q | 3.354 | 02.26 | 101.1 | 4.06 | 1.54 | 21.80 | ||
CASSCF | 3.134 | 14.84 | 181.2 | −1.42 | 0.50 | 0.50 | 40.22 | |
MRCISD | 3.046 | 17.86 | 184.3 | −0.04 | 1.24 | 0.09 | 36.41 | |
MRCISD+Q | 3.027 | 19.04 | 198.8 | −2.79 | 1.42 | 34.88 | ||
b | CASSCF | 2.688 | 25.80 | 309.6 | 1.61 | 2.30 | 2.30 | 32.23 |
MRCISD | 2.653 | 29.43 | 321.9 | 1.68 | 2.97 | 2.80 | 36.20 | |
MRCISD+Q | 2.654 | 30.22 | 321.1 | 1.72 | 3.03 | -- | 36.48 | |
CASSCF | 2.628 | 1.74(15.8) b | 338.1 | 1.72 | 2.18 | 2.18 | 49.82 | |
MRCISD | 2.575 | 18.28(32.3) b | 352.7 | 1.85 | 3.14 | 2.96 | 40.90 | |
MRCISD+Q | 2.570 | 20.68(34.7) b | 354.6 | 1.85s | 3.32 | 39.35 | ||
CASSCF | 2.729 | 00.42 | 325.3 | 2.13 | 2.30 | 53.06 | ||
MRCISD | 2.678 | 10.10 | 338.1 | 0.70 | 3.27 | 43.45 | ||
MRCISD+Q | 2.674 | 11.89 | 339.5 | 0.43 | 41.72 | |||
CASSCF | 2.766 | 3.44(9.90) c | 248.3 | 1.94 | 1.01 | 1.01 | 48.12 | |
MRCISD | 2.528 | 15.38(21.83) c | 301.5 | 1.46 | 0.89 | 0.42 | 43.80 | |
MRCISD+Q | 2.513 | 17.98(24.66) c | 311.7 | 1.67 | 1.19 | 42.05 | ||
CASSCF | 2.949 | 09.38 | 319.3 | 11.74 | 1.04 | 1.04 | 50.64 | |
MRCISD | 2.997 | 13.01 | 253.2 | 04.96 | 0.42 | 49.21 | ||
MRCISD+Q | 3.029 | 13.24 | 237.2 | 02.27 | 47.71 | |||
(2) | CASSCF | 3.027 | 8.11(1.65) d | 267.0 | 2.83 | 2.12 | 2.12 | 46.43 |
MRCISD | 2.988 | 14.11(7.66) d | 237.8 | 4.51 | 2.86 | 51.52 | ||
MRCISD+Q | 2.981 | 15.64(8.96) d | 230.4 | 5.11 | 51.06 | |||
(2) | MRCISD | 3.064 | 19.5(5.50) e | 193 | 8.0 | 1.70 | 53.68 | |
MRCISD+Q | 2.954 | 21.9(7.86) e | 217 | 15.1 | 52.17 | |||
CASSCF | 2.682 | 14.46 | 340.2 | 2.05 | 2.29 | 2.29 | 78.63 | |
MRCISD | 2.639 | 29.42 | 353.8 | 1.87 | 3.56 | 3.22 | 62.59 | |
MRCISD+Q | 2.635 | 31.45 | 355.7 | 1.90 | 3.72 | 60.31 | ||
CASSCF | 2.636 | 10.09 | 339.2 | 2.22 | 2.64 | 2.64 | 80.46 | |
MRCISD | 2.594 | 25.02 | 365.9 | 1.35 | 3.53 | 3.35 | 66.73 | |
MRCISD+Q | 2.589 | 27.03 | 370.1 | 1.23 | 3.70 | 64.63 |
- a
- μFF: Dipole moment via finite field; : dipole moment calculated as an expectation value.
- b
- Adiabatic De with respect to Mo(a) + Li(); diabatic De with respect to Mo(a) + Li( in parenthesis.
- c
- Adiabatic De with respect to Mo(a) + Li(); diabatic De with respect to Mo(a) + Li() in parenthesis.
- d
- Adiabatic De with respect to Mo(a) + Li(); diabatic De with respect to Mo(a) + Li() in parenthesis.
- e
- Adiabatic De with respect to Mo(a) + Li(; diabatic De with respect to Mo(a) + Li() in parenthesis.
State | MOs | LCAOs |
---|---|---|
1 | 0.79 + 0.34 + 0.69 − 0.33 | |
2 | 0.97 | |
1 | 1.00 | |
1 | 0.99 | |
1 | 0.99 | |
1 | 1.00 | |
1 | 0.12 + 0.47 + 0.98 | |
2 | 0.98 − 0.11 − 0.11 − 0.18 | |
3 | 0.98 | |
1 | 1.00 | |
1 | 0.99 | |
1 | 0.99 | |
1 | 1.00 | |
1 | 0.84 + 0.24 + 0.55 − 0.30 | |
2 | 0.95 − 0.19 + 0.14 + 0.23 − 0.11 | |
−0.24 − 0.41 + 0.40 + 0.73 + 0.31 | ||
1 | 1.00 | |
1 | 0.99 | |
1 | 0.99 | |
1 | 1.00 | |
1 | −0.18 + 0.89 + 0.40 + 0.55 − 0.36 | |
2 | 0.96 + 0.12 + 0.27 + 0.40 − 0.40 | |
1 | 1.00 | |
1 | 0.98 + 0.17 | |
2 | −0.14 + 0.40 + 0.59 | |
1 | 0.98 + 0.17 | |
2 | −0.14 + 0.40 + 0.59 | |
1 | 1.00 | |
C | 1 | 0.26 + 0.85 + 0.30 + 0.66 − 0.40 |
1 | 1.00 | |
1 | 0.96 + 0.27 | |
1 | 0.96 + 0.27 | |
1 | 1.00 | |
d | 1 | 0.26 + 0.80 + 0.34 + 0.69 − 0.40 |
2 | 0.87 − 0.30 + 0.18 + 0.14 − 0.21 | |
1 | 1.00 | |
1 | 0.98 + 0.23 | |
1 | 0.98 + 0.23 | |
1 | 1.00 | |
1 | 0.72 + 0.64 + 0.41 + 0.65 − 0.53 | |
2 | 0.67 − 0.66 − 0.12 − 0.24 | |
1 | 1.00 | |
1 | 0.91 + 0.40 | |
1 | 0.91 + 0.40 | |
1 | 1.00 | |
C | 1 | 0.80 + 0.30 + 0.29 + 0.57 − 0.30 |
2 | −0.34 + 0.48 − 0.44 + 0.66 | |
1 | 1.00 | |
1 | 0.99 | |
1 | 0.99 | |
1 | 1.00 | |
1 | 0.38 + 0.78 + 0.36 + 0.70 − 0.44 | |
2 | 0.89 − 0.44 + 0.13 | |
1 | 1.00 | |
1 | 0.95 + 0.17 + 0.28 | |
1 | 0.95 + 0.17 + 0.28 | |
1 | 1.00 | |
1 | 0.24 + 0.85 + 0.30 + 0.66 − 0.41 | |
1 | 1.00 | |
1 | 0.96 + 0.27 | |
1 | 0.96 + 0.27 | |
1 | 1.00 |
State | Equilibrium Products | Asymptotic Products |
---|---|---|
X , | Mo (a ) + Li ( ) | Mo ( ) + Li ( ) |
Mo ( ) + Li ( ) | Mo ( ) + Li ( ) | |
B | Mo ( ) + Li ( ) | Mo ( ) + Li ( ) |
Mo ( ) + Li ( ) | Mo (a ) + Li ( ) | |
Mo ( ) + Li ( ) | Mo ( ) + Li ( ) | |
Mo ( ) + Li ( ) | Mo ( ) + Li ( ) | |
(2) | Mo ( ) + Li ( ) | Mo ( ) + Li ( ) |
(2) | Mo ( ) + Li ( ) | Mo ( ) + Li ( ) |
D | Mo ( ) + Li ( ) | Mo ( ) + Li ( ) |
, | Mo ( ) + Li ( ) | Mo (a ) + Li ( ) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demetriou, C.; Tzeli, D. Electronic Structure of the Ground and Low-Lying States of MoLi. Molecules 2025, 30, 2874. https://doi.org/10.3390/molecules30132874
Demetriou C, Tzeli D. Electronic Structure of the Ground and Low-Lying States of MoLi. Molecules. 2025; 30(13):2874. https://doi.org/10.3390/molecules30132874
Chicago/Turabian StyleDemetriou, Constantinos, and Demeter Tzeli. 2025. "Electronic Structure of the Ground and Low-Lying States of MoLi" Molecules 30, no. 13: 2874. https://doi.org/10.3390/molecules30132874
APA StyleDemetriou, C., & Tzeli, D. (2025). Electronic Structure of the Ground and Low-Lying States of MoLi. Molecules, 30(13), 2874. https://doi.org/10.3390/molecules30132874