Exploring the Potential of a New Nickel(II):Phenanthroline Complex with L-isoleucine as an Antitumor Agent: Design, Crystal Structure, Spectroscopic Characterization, and Theoretical Insights
Abstract
1. Introduction
2. Results and Discussion
2.1. Crystallization and Determined Structure by Single-Crystal XRD
2.2. Analysis of Intermolecular Interactions by Hirshfeld Surfaces and Their Analogs
2.3. Computational Studies
2.4. Spectroscopic Analysis Combined with DFT Calculations
2.5. Solution Stability Study Using UV–Vis–NIR Spectroscopy
2.6. Antitumor Activity and Pharmacokinetic Predictions
3. Experimental and Theoretical Procedures
3.1. Synthesis Process
3.2. Single-Crystal XRD and Structural Solving
3.3. Spectroscopic Characterizations
3.4. DFT Calculations
3.5. Hirshfeld Surfaces, Crystal Void Studies, and ADME
3.6. In Vitro Cytotoxicity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Atom | Atom | Length (Å) | Atom | Atom | Length (Å) |
---|---|---|---|---|---|
Ni01 | O1′ | 2.054(2) | C10 | C9 | 1.395(1) |
Ni01 | O1 | 2.054(2) | C6 | C7 | 1.394(1) |
Ni01 | N3 | 2.082(1) | C6 | C5 | 1.430(1) |
Ni01 | N3′ | 2.082(1) | C8 | C9 | 1.364(1) |
Ni01 | N2 | 2.132(8) | C8 | C7 | 1.402(1) |
Ni01 | N1 | 2.080(1) | C7 | C11 | 1.399(1) |
O1 | C13 | 1.258(3) | C11 | C12 | 1.460(4) |
N3 | C14 | 1.479(3) | N1 | C1 | 1.330(1) |
O2 | C13 | 1.236(3) | N1 | C5 | 1.353(1) |
C13 | C14 | 1.534(3) | C1 | C2 | 1.378(1) |
C14 | C15 | 1.532(3) | C2 | C3 | 1.360(2) |
C17 | C18 | 1.521(4) | C3 | C4 | 1.405(1) |
C17 | C15 | 1.518(5) | C4 | C5 | 1.402(9) |
N2 | C10 | 1.336(9) | C4 | C12 | 1.380(2) |
N2 | C6 | 1.345(1) | C15 | C16 | 1.529(4) |
Atom | Atom | Atom | Angle (˚) | Atom | Atom | Atom | Angle (˚) |
---|---|---|---|---|---|---|---|
O1′ | Ni01 | O1 | 95.74(14) | N2 | C10 | C9 | 122.20(8) |
O1 | Ni01 | N3 | 80.36(8) | N2 | C6 | C7 | 123.30(8) |
O1 | Ni01 | N3′ | 93.21(8) | N2 | C6 | C5 | 116.80(7) |
O1′ | Ni01 | N3 | 93.21(8) | C7 | C6 | C5 | 119.90(8) |
O1′ | Ni01 | N3′ | 80.36(8) | C9 | C8 | C7 | 121.30(8) |
O1′ | Ni01 | N2 | 176.20(3) | C8 | C9 | C10 | 118.20(8) |
O1 | Ni01 | N2 | 86.20(2) | C6 | C7 | C8 | 116.20(9) |
O1′ | Ni01 | N1 | 100.10(3) | C6 | C7 | C11 | 120.10(11) |
O1 | Ni01 | N1 | 163.60(3) | C11 | C7 | C8 | 123.70(12) |
N3 | Ni01 | N3′ | 170.47(14) | C7 | C11 | C12 | 119.80(10) |
N3 | Ni01 | N2 | 90.40(3) | C1 | N1 | Ni01 | 126.80(8) |
N3′ | Ni01 | N2 | 96.20(3) | C1 | N1 | C5 | 118.90(9) |
N1 | Ni01 | N3 | 94.40(3) | C5 | N1 | Ni01 | 114.20(6) |
N1 | Ni01 | N3′ | 93.70(3) | N1 | C1 | C2 | 122.70(12) |
N1 | Ni01 | N2 | 78.30(4) | C3 | C2 | C1 | 118.90(13) |
C13 | O1 | Ni01 | 116.85(16) | C2 | C3 | C4 | 120.60(9) |
C14 | N3 | Ni01 | 110.56(14) | C5 | C4 | C3 | 116.70(9) |
O1 | C13 | C14 | 117.80(2) | C12 | C4 | C3 | 122.80(1) |
O2 | C13 | O1 | 123.50(2) | C12 | C4 | C5 | 120.50(15) |
O2 | C13 | C14 | 118.50(2) | N1 | C5 | C6 | 117.40(6) |
N3 | C14 | C13 | 109.47(18) | N1 | C5 | C4 | 122.30(8) |
N3 | C14 | C15 | 113.76(19) | C4 | C5 | C6 | 120.30(7) |
C15 | C14 | C13 | 113.98(19) | C4 | C12 | C11 | 119.40(1) |
C15 | C17 | C18 | 114.30(4) | C17 | C15 | C14 | 112.50(2) |
C10 | N2 | Ni01 | 128.00(6) | C17 | C15 | C16 | 112.60(3) |
C10 | N2 | C6 | 118.80(7) | C16 | C15 | C14 | 110.00(2) |
C6 | N2 | Ni01 | 113.10(5) |
Contacts | Distance [Å] | Angle [°] |
---|---|---|
O1∙∙∙H–O * | 2.035 | 160.14 |
O2∙∙∙H–O * | 1.954 | 171.50 |
H–O∙∙∙H+ | 1.838 | 121.92 |
H∙∙∙O–H+ | 2.024 | 129.39 |
Bond lengths [Å] | |||||||
Atoms | Vacuum | Water | Methanol | Exp. | |||
Calc. | RMSD | Calc. | RMSD | Calc. | RMSD | ||
Ni01–O1′ | 2.01 | 0.0296 | 2.05 | 0.0021 | 2.05 | 0.0035 | 2.05 |
Ni01–O1 | 2.01 | 0.0296 | 2.05 | 0.0021 | 2.05 | 0.0035 | 2.05 |
Ni01–N3 | 2.10 | 0.0134 | 2.10 | 0.0098 | 2.10 | 0.0106 | 2.08 |
Ni01–N3′ | 2.10 | 0.0141 | 2.10 | 0.0106 | 2.10 | 0.0106 | 2.08 |
Ni01–N2 | 2.15 | 0.0113 | 2.13 | 0 | 2.12 | 0.0070 | 2.13 |
Ni01–N1 | 2.15 | 0.0480 | 2.12 | 0.0296 | 2.12 | 0.0296 | 2.08 |
O1–C13 | 1.28 | 0.0183 | 1.27 | 0.0106 | 1.27 | 0.0106 | 1.26 |
N3–C14 | 1.48 | 0.0014 | 1.47 | 0.0035 | 1.47 | 0.0035 | 1.48 |
O2–C13 | 1.22 | 0.0098 | 1.24 | 0 | 1.24 | 0 | 1.24 |
C13–C14 | 1.55 | 0.0113 | 1.55 | 0.0077 | 1.55 | 0.0077 | 1.53 |
C14–C15 | 1.53 | 0.0014 | 1.54 | 0.0021 | 1.53 | 0.0014 | 1.53 |
C17–C18 | 1.52 | 0.0014 | 1.52 | 0.0021 | 1.52 | 0.0021 | 1.52 |
C17–C15 | 1.53 | 0.0098 | 1.53 | 0.0098 | 1.53 | 0.0098 | 1.52 |
N2–C10 | 1.32 | 0.0113 | 1.32 | 0.0106 | 1.32 | 0.0106 | 1.34 |
N2–C6 | 1.35 | 0.0014 | 1.35 | 0.0028 | 1.35 | 0.0028 | 1.35 |
C10–C9 | 1.40 | 0.0070 | 1.40 | 0.0049 | 1.40 | 0.0049 | 1.40 |
C6–C7 | 1.41 | 0.0091 | 1.41 | 0.0091 | 1.41 | 0.0091 | 1.39 |
C6–C5 | 1.44 | 0.0049 | 1.44 | 0.0035 | 1.44 | 0.0035 | 1.43 |
C8–C9 | 1.38 | 0.0077 | 1.38 | 0.0077 | 1.38 | 0.0077 | 1.36 |
C8–C7 | 1.41 | 0.0042 | 1.41 | 0.0035 | 1.41 | 0.0035 | 1.40 |
C7–C11 | 1.43 | 0.0226 | 1.43 | 0.0226 | 1.43 | 0.0226 | 1.40 |
C11–C12 | 1.36 | 0.0721 | 1.36 | 0.0721 | 1.36 | 0.0721 | 1.46 |
N1–C1 | 1.32 | 0.0070 | 1.32 | 0.0063 | 1.32 | 0.0063 | 1.33 |
N1–C5 | 1.35 | 0.0042 | 1.35 | 0.0028 | 1.35 | 0.0028 | 1.35 |
C1–C2 | 1.40 | 0.0183 | 1.40 | 0.0183 | 1.40 | 0.0169 | 1.38 |
C2–C3 | 1.38 | 0.0106 | 1.38 | 0.0106 | 1.38 | 0.0106 | 1.36 |
C3–C4 | 1.41 | 0.0021 | 1.41 | 0.0014 | 1.41 | 0.0014 | 1.41 |
C4–C5 | 1.41 | 0.0035 | 1.41 | 0.0035 | 1.41 | 0.0035 | 1.40 |
C4–C12 | 1.43 | 0.0360 | 1.43 | 0.0360 | 1.43 | 0.0360 | 1.38 |
C15–C16 | 1.53 | 0.0021 | 1.53 | 0.0021 | 1.53 | 0.0021 | 1.53 |
Bond angles [°] | |||||||
Atoms | Vacuum | Water | Methanol | Exp. | |||
Calc. | RMSD | Calc. | RMSD | Calc. | RMSD | ||
O1′–Ni01–O1 | 106.20 | 7.3963 | 96.14 | 0.2828 | 96.54 | 0.5657 | 95.74 |
O1–Ni01–N3 | 81.22 | 0.6081 | 79.69 | 0.4738 | 79.69 | 0.4738 | 80.36 |
O1–Ni01–N3′ | 86.92 | 4.4477 | 91.18 | 1.4354 | 90.91 | 1.6263 | 93.21 |
O1′–Ni01–N3 | 86.88 | 4.4760 | 91.18 | 1.4354 | 90.92 | 1.6193 | 93.21 |
O1′–Ni01–N3′ | 81.21 | 0.6010 | 79.68 | 0.4808 | 79.68 | 0.4808 | 80.36 |
O1′–Ni01–N2 | 165.00 | 7.9196 | 169.90 | 4.4548 | 169.77 | 4.5467 | 176.20 |
O1–Ni01–N2 | 88.60 | 1.6971 | 92.02 | 4.1154 | 92.84 | 4.6952 | 86.20 |
O1′–Ni01–N1 | 88.58 | 8.1459 | 93.02 | 5.0063 | 93.83 | 4.4336 | 100.10 |
O1–Ni01–N1 | 165.03 | 1.0112 | 169.90 | 4.4548 | 169.77 | 4.3628 | 163.60 |
N3–Ni01–N3’ | 160.18 | 7.2761 | 166.39 | 2.8850 | 165.93 | 3.2103 | 170.47 |
N3–Ni01–N2 | 97.60 | 5.0912 | 95.94 | 3.9174 | 96.14 | 4.0588 | 90.40 |
N3′–Ni01–N2 | 97.88 | 1.1879 | 94.60 | 1.1314 | 94.76 | 1.0182 | 96.20 |
N1–Ni01–N3 | 97.90 | 2.4749 | 94.61 | 0.1485 | 94.77 | 0.2616 | 94.40 |
N1–Ni01–N3′ | 97.61 | 2.7648 | 95.94 | 1.5839 | 95.94 | 1.5839 | 93.70 |
N1–Ni01–N2 | 76.73 | 1.1102 | 78.17 | 0.0919 | 78.12 | 0.1273 | 78.30 |
C13–O1–Ni01 | 117.01 | 0.1131 | 116.37 | 0.3394 | 116.34 | 0.3606 | 116.85 |
C14–N3–Ni01 | 105.13 | 3.8396 | 107.95 | 1.8455 | 107.64 | 2.0648 | 110.56 |
O1–C13–C14 | 114.31 | 2.4678 | 116.37 | 1.0112 | 116.25 | 1.0960 | 117.80 |
O2–C13–O1 | 126.22 | 1.9233 | 125.13 | 1.1526 | 125.17 | 1.1809 | 123.50 |
O2–C13–C14 | 119.42 | 0.6505 | 118.43 | 0.0495 | 118.52 | 0.0141 | 118.50 |
N3–C14–C13 | 109.67 | 0.1414 | 110.13 | 0.4667 | 110.13 | 0.4667 | 109.47 |
N3–C14–C15 | 114.59 | 0.5869 | 114.58 | 0.5798 | 114.62 | 0.6081 | 113.76 |
C15–C14–C13 | 113.51 | 0.3323 | 113.24 | 0.5233 | 113.31 | 0.4738 | 113.98 |
C15–C17–C18 | 113.85 | 0.3182 | 113.86 | 0.3111 | 113.87 | 0.3041 | 114.30 |
C10–N2–Ni01 | 126.39 | 1.1384 | 127.60 | 0.2828 | 127.57 | 0.3041 | 128.00 |
C10–N2–C6 | 119.11 | 0.2192 | 118.82 | 0.0141 | 118.83 | 0.0212 | 118.80 |
C6–N2–Ni01 | 114.48 | 0.9758 | 113.56 | 0.3253 | 113.59 | 0.3465 | 113.10 |
C7–C6–C5 | 119.80 | 0.0707 | 119.72 | 0.1273 | 119.73 | 0.1202 | 119.90 |
C9–C8–C7 | 119.53 | 1.2516 | 119.46 | 1.3011 | 119.46 | 1.3011 | 121.30 |
C8–C9–C10 | 119.32 | 0.7920 | 119.16 | 0.6788 | 119.17 | 0.6859 | 118.20 |
C6–C7–C8 | 116.85 | 0.4596 | 117.08 | 0.6223 | 117.07 | 0.6152 | 116.20 |
C6–C7–C11 | 119.11 | 0.7000 | 119.28 | 0.5798 | 119.27 | 0.5869 | 120.10 |
C11–C7–C8 | 124.03 | 0.2333 | 123.63 | 0.0495 | 123.64 | 0.0424 | 123.70 |
C7–C11–C12 | 121.08 | 0.9051 | 120.98 | 0.8344 | 120.99 | 0.8415 | 119.80 |
C1–N1–Ni01 | 126.39 | 0.2899 | 127.60 | 0.5657 | 127.56 | 0.5374 | 126.80 |
C1–N1–C5 | 119.10 | 0.1414 | 118.82 | 0.0566 | 118.83 | 0.0495 | 118.90 |
C5–N1–Ni01 | 114.49 | 0.2051 | 113.56 | 0.4525 | 113.59 | 0.4313 | 114.20 |
N1–C1–C2 | 122.11 | 0.4172 | 122.50 | 0.1414 | 122.52 | 0.1273 | 122.70 |
C3–C2–C1 | 119.32 | 0.2970 | 119.16 | 0.1838 | 119.17 | 0.1909 | 118.90 |
C2–C3–C4 | 119.53 | 0.7566 | 119.46 | 0.8061 | 119.46 | 0.8061 | 120.60 |
C5–C4–C3 | 116.85 | 0.1061 | 117.08 | 0.2687 | 117.07 | 0.2616 | 116.70 |
C12–C4–C3 | 124.03 | 0.8697 | 123.63 | 0.5869 | 123.64 | 0.5940 | 122.80 |
C12–C4–C5 | 119.11 | 0.9829 | 119.28 | 0.8627 | 119.27 | 0.8697 | 120.50 |
N1–C5–C6 | 117.14 | 0.1838 | 117.35 | 0.0354 | 117.34 | 0.0424 | 117.40 |
N1–C5–C4 | 123.06 | 0.5374 | 122.92 | 0.4384 | 122.92 | 0.4384 | 122.30 |
C4–C5–C6 | 119.79 | 0.3606 | 119.72 | 0.4101 | 119.73 | 0.4031 | 120.30 |
C4–C12–C11 | 121.08 | 1.1879 | 120.98 | 1.1172 | 120.99 | 1.1243 | 119.40 |
C17–C15–C14 | 112.15 | 0.2475 | 112.08 | 0.2970 | 112.09 | 0.2899 | 112.50 |
C17–C15–C16 | 112.37 | 0.1626 | 112.32 | 0.1980 | 112.31 | 0.2051 | 112.60 |
C16–C15–C14 | 111.27 | 0.8980 | 111.04 | 0.7354 | 111.05 | 0.7425 | 110.00 |
ωIR [cm−1] | ωRaman [cm−1] | ωcalcvac [cm−1] | ωcalcwat [cm−1] | ωcalmet [cm−1] | Assignmentsvac | Assignmentswat | Assignmentsmet |
---|---|---|---|---|---|---|---|
3479 | - | 3459 | 3458 | 3457 | νa(H1N1H2)(77) | νa(H1N1H2)(88) | νa(H1N1H2)(92) |
3361 | - | 3380 | 3385 | 3384 | νs(H1N1H2)(42) + νs(H21N4H22)(48) | νs(H1N1H2)(46) + νs(H21N4H22)(48) | νs(H1N1H2)(45) + νs(H21N4H22)(48) |
- | 3110 | 3098 | 3101 | 3101 | ν(H11C11)(28) + ν(H8C7)(25) | ν(H11C11)(23) + ν(H8C7)(23) | ν(H11C11)(15) + ν(H8C7)(24) |
3058 | 3067 | 3058 | 3075 | 3075 | ν(H10C10)(27) + ν(H6C4)(25) | ν(H10C10)(17) + ν(H6C4)(18) + ν(H7C6)(15) + ν(H12C12)(15) | ν(H10C10)(19) + ν(H6C4)(18) + ν(H7C6)(16) + ν(H12C12)(17) |
2964 | 3012 | 2991 | 2980 | 2988 | ν(H26C22)(16)+ ν(H14C16)(13)+ ν(H27C22)(11) | νa(H14C16H16)(32)+ νa(H26C22H28)(25) | νa(H26C22H28)(53) |
- | 2943 | 2947 | 2949 | 2949 | ν(H17C17)(21)+ ν(H29C23)(10) | ν(H29C23)(19)+ ν(H24C21)(16) | ν(H17C17)(17)+ ν(H4C3)(14) |
- | 2935 | 2940 | 2937 | 2937 | ν(H23C20)(33)+ ν(H3C2)(10)+ ν(H29C23)(11) | ν(H23C20)(15)+ ν(H24C21)(13)+ ν(H29C23)(10) | ν(H23C20)(15)+ ν(H3C2)(12)+ ν(H29C23)(12) |
2914 | 2917 | 2922 | 2919 | 2919 | νs(H27C22H28)(43)+ νs(H15C16H16)(39) | νs(H27C22H28)(36)+ νs(H15C16H16)(32) | νs(H27C22H28)(29)+ νs(H15C16H16)(39) |
2881 | 2880 | 2906 | 2913 | 2913 | νs(H18C18H20)(55) | νs(H30C24H32)(46) | νs(H30C24H32)(44) |
2848 | 2875 | 2875 | 2896 | 2895 | νs(H24C21H25)(43) | νs(H24C21H25)(60) | νs(H24C21H25)(64) |
1660 | 1630 | 1690 | 1614 | 1615 | ν(C19O4)(36)+ ν(C1O2)(35)+ ν(C19O3)(10)+ ν(C1O1)(10) | ν(C9C15)(14) | ν(C9C15)(14)+ ν(C19O4)(9)+ ν(C1O2)(9) |
1581 | 1610 | 1679 | 1592 | 1594 | ν(C1O2)(35)+ ν(C19O4)(35)+ ν(C19O3)(10)+ ν(C1O1)(10) | ν(C19O4)(25)+ ν(C1O2)(25) | ν(C19O4)(24)+ ν(C1O2)(24) |
1517 | 1521 | 1507 | 1510 | 1510 | δ(phenring)(55) | δ(phenring)(55) | δ(phenring)(54) |
1456 | 1457 | 1481 | 1481 | 1480 | γ(H11C11C12)(22) + γ(C10C11C12)(10) | γ(H11C11C12)(20) + γ(C10C11C12)(9) | γ(H11C11C12)(23) + γ(C10C11C12)(9) |
1405 | 1429 | 1406 | 1404 | 1404 | δ(phenring)(35) | δ(phenring)(21) | δ(phenring)(22) |
1348 | 1349 | 1357 | 1370 | 1370 | ν(C50O45)(9)+ ν(C19O3)(9) | ν(C1O1)(12)+ ν(C19O3)(11) | ν(C1O1)(12)+ ν(C19O3)(11) |
1286 | 1309 | 1320 | 1325 | 1325 | ν(C1O1)(12) | γ(O1C1O2)(11) | γ(O1C1O2)(11) |
1259 | 1262 | 1253 | 1253 | 1253 | γ(H5C3C16)(9) + γ(H25C21C22)(9) | γ(H25C21C22)(9)+ γ(H5C3C16)(9) | γ(H25C21C22)(9)+ γ(H5C3C16)(9) |
1218 | 1204 | 1228 | 1220 | 1223 | γ(H17C17C18)(9) + γ(H29C23C24)(9) | γ(H3C2C17)(9) | γ(H23C20C19)(9) |
1172 | 1158 | 1157 | 1157 | 1157 | δ(C3C17C18)(9) | δ(C3C17C18)(9) | δ(C3C17C18)(9) |
1147 | 1147 | 1143 | 1144 | 1145 | γ(N1C2C17)(9) | γ(N1C2C17)(9) | γ(N1C2C17)(9) |
1114 | 1115 | 1117 | 1117 | 1117 | ν(C23C24)(9) | ν(C23C24)(9) | ν(C23C24)(9) |
1072 | 1057 | 1083 | 1083 | 1083 | δ(C16C3C17)(9) | δ(C16C3C17)(9) | δ(C16C3C17)(9) |
1012 | 1016 | 1033 | 1034 | 1034 | ν(C4C7)(11) + ν(C10C11)(10) | ν(C3C16)(11) | ν(C4C7)(11) |
987 | 998 | 1018 | 1025 | 1025 | ν(C3C16)(9) | ν(C3C16)(9) | ν(C3C16)(9) |
960 | 963 | 957 | 961 | 961 | ν(C23C24)(9) | ν(C23C24)(9) | ν(C23C24)(9) |
891 | 874 | 921 | 925 | 925 | ν(C1C2)(9)+ ν(O1C1)(9) | ν(C1C2)(9)+ ν(O1C1)(9) | ν(C1C2)(9)+ ν(O1C1)(9) |
848 | 830 | 829 | 829 | 829 | δ(Fenring)(63) | δ(Fenring)(61) | δ(Fenring)(64) |
806 | 813 | 779 | 774 | 774 | δ(Ilering)(25) | δ(Ilering)(24) | δ(Ilering)(30) |
725 | 733 | 715 | 713 | 713 | δ(Fenring)(55) | δ(Fenring)(69) | δ(Fenring)(73) |
667 | 652 | 639 | 644 | 644 | δ(Ilering)(28) | δ(Ilering)(9) | δ(Ilering)(9) |
- | 614 | 620 | 622 | 622 | δ(Fenring)(69) | ω(N3C7C8)(9) | ω(N3C7C8)(9) |
595 | 596 | 574 | 585 | 586 | τ(N4Ni1N1C2)(9) + τ(N1Ni1N4C20)(9) | ρ(N4C20C19)(9) | ρ(N4C20C19)(9) |
567 | 564 | 550 | 566 | 566 | ω(O4C19C20)(9) + ω(O1C1C2)(9) | τ(N4C20C19O3)(9) | ν(C3C17)(9) |
513 | 514 | 504 | 495 | 499 | δ(Fenring)(52) | δ(Fenring)(56) | δ(Fenring)(65) |
486 | 489 | 484 | 484 | 484 | ρ(Ni1O1C1)(9) τ(Ni1O3C19)(9) | τ(Ni1N2C5C8)(9) | ρ(O1C1C2)(9) |
453 | 451 | 438 | 424 | 428 | τ(Fenring)(35) | ν(Ni1N1)(9) | ν(Ni1N1)(9) |
420 | 429 | 415 | 410 | 412 | br(Fenring)(21) | br(Fenring)(21) | br(Fenring)(31) |
- | 384 | 393 | 385 | 385 | τ(O1Ni1O3)(9) | τ(O1Ni1O3)(9) | τ(O1Ni1O3)(9) |
- | 372 | 373 | 368 | 368 | ν(Ni1N1)(9) | ν(Ni1N1)(9) | ν(Ni1N1)(9) |
- | 298 | 308 | 302 | 303 | δ(Fenring)(38) | δ(Fenring)(38) | δ(Fenring)(38) |
- | 272 | 287 | 280 | 281 | τ(C14N3Ni1)(9) | τ(C14N3Ni1)(9) | τ(C14N3Ni1)(9) |
- | 246 | 261 | 263 | 263 | δ(Ilering)(19) | δ(Ilering)(19) | δ(Ilering)(19) |
- | 224 | 237 | 238 | 238 | ν(Ni1N1)(9) | ν(Ni1N1)(9) | ν(Ni1N1)(9) |
- | 206 | 201 | 207 | 206 | δ(Ilering)(9) | δ(Ilering)(9) | δ(Ilering)(9) |
185 | Lattice mode | ||||||
172 | |||||||
165 | |||||||
138 | |||||||
108 | |||||||
92 | |||||||
85 | |||||||
67 |
References
- Odisitse, S.; Matshwele, J.T.P.; Mazimba, O.; Demissie, T.B.; Moseki, M.; Julius, L.G.; Jongman, M.; Nareetsile, F. Nickel mixed ligand complexes against drug resistant bacteria: Synthesis, characterization, antibacterial activities and molecular docking studies. Results Chem. 2023, 6, 101098. [Google Scholar] [CrossRef]
- Accorsi, G.; Listorti, A.; Yoosaf, K.; Armaroli, N. 1, 10-Phenanthrolines: Versatile building blocks for luminescent molecules, materials and metal complexes. Chem. Soc. Rev. 2009, 38, 1690–1700. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-C.; Yu, Y.Z.; Wu, C.-H.; Lee, P.-Y.; Chen, H.-M.; Husain, S.; Kongvarhodom, C.; Hsiao, Y.-C.; Lin, L.-Y. Metal ratio and bimetal nanoarchitectonics of ammonia-based fluoride complex induced nickel hydroxide and manganese oxide composites as active materials of an energy storage device. J. Energy Storage 2024, 80, 110316. [Google Scholar] [CrossRef]
- Bekmukhamedov, G.E.; Sukhov, A.V.; Kuchkaev, A.M.; Kuchkaev, A.M.; Khayarov, K.R.; Dobrynin, A.B.; Babaev, V.M.; Yakhvarov, D.G. Catalytic performance of nickel(II) complexes bearing 1,10-phenanthroline based ligands in homogeneous ethylene oligomerization. Polyhedron 2022, 223, 115978. [Google Scholar] [CrossRef]
- Dey, P.; Hossain, A.; Seth, S.K. On the importance of unconventional Cu⋯π interaction in tetrachloro-bis(1,10-phenanthroline)-dicopper(II) complex: Insights from experiment and theory. J. Mol. Struct. 2024, 1295, 136642. [Google Scholar] [CrossRef]
- de Souza Junior, M.V.; de Oliveira Neto, J.G.; Viana, J.R.; Dutra, R.P.; Lage, M.R.; dos Santos, A.O.; de Sousa, F.F. Structural and spectroscopic properties, solvation effects, intermolecular interactions, and biological assays of a Mn(II)-complex with 1,10-phenanthroline and chloro ligands. Vib. Spectrosc. 2024, 133, 103710. [Google Scholar] [CrossRef]
- de Oliveira Neto, J.G.; Viana, J.R.; Butarelli, A.L.A.; dos Santos, A.P.A.; Lage, M.R.; dos Santos, A.O. Synthesis, physicochemical properties, and antitumor cytotoxic activity of the Mg(II) coordination complex containing 1,10-phenanthroline and sulfate ligands. Inorganica Chim. Acta 2023, 556, 121658. [Google Scholar] [CrossRef]
- Nath, H.; Sharma, P.; Gomila, R.M.; Frontera, A.; Barceló-Oliver, M.; Verma, A.K.; Dutta, K.; Bhattacharyya, M.K. Unconventional enclathration of guest adipic acid and energetically significant antiparallel π-stacked ternary assemblies involving unusual regium-π(chelate) contacts in phenanthroline-based Ni(II) and Cu(II) compounds—Antiproliferative evaluation and theoretical studies. J. Mol. Struct. 2021, 1245, 131038. [Google Scholar] [CrossRef]
- Souza Junior, M.V.; Oliveira Neto, J.G.; Pereira, W.O.; Rodrigues, J.A.O.; Viana, J.R.; Reis, A.S.; Lage, M.R.; Carvalho, G.G.C.; Pessoa, C.O.; Santos, A.O.d.; et al. Comprehensive analysis of the electronic, thermodynamic, and spectroscopic properties of a Cu(II)-based complex with 1,10-phenanthroline and L-glutamine. Heliyon 2024, 10, e37505. [Google Scholar] [CrossRef]
- de Oliveira Neto, J.G.; Filho, J.G.S.; Bittar, E.M.; Silva, L.M.; de Sousa, F.F.; Domingos, H.V.; Costa-Lotufo, L.V.; Reis, A.S.; dos Santos, A.O. Structural, thermal, electronic, vibrational, magnetic, and cytotoxic properties of chloro(glycinato-N,O)(1,10-phenanthroline-N,N′)-copper(II) trihydrate coordination complex. J. Inorg. Biochem. 2022, 226, 111658. [Google Scholar] [CrossRef]
- Ramos, M.C.; de Oliveira Neto, J.G.; Nogueira, C.E.S.; Reis, A.S.; de Sousa, F.F.; da Silva, L.M.; dos Santos, A.O. Structural, Vibrational, Thermal, and Cytotoxic Characterization of Aqua(1,10-Phenanthroline)(L-Serinato)Copper(II) Nitrate Complex Combined with DFT Calculations. Cryst. Res. Technol. 2023, 58, 2300240. [Google Scholar] [CrossRef]
- Pereira, W.O.; Oliveira Neto, J.G.; Viana, J.R.; Carvalho, G.G.C.; Pessoa, C.; Lage, M.R.; Reis, A.S.; de Sousa, F.F.; dos Santos, A.O. Synthesis, electronic and vibrational properties, solvation effects, ADME and cytotoxic assay of aqua-(1,10-phenanthroline)-tyrosinato-copper(II) nitrate dihydrate complex: Experimental and theoretical studies. J. Mater. Sci. 2024, 59, 9502–9518. [Google Scholar] [CrossRef]
- Wei, Q.; Dong, J.; Zhao, P.; Li, M.; Cheng, F.; Kong, J.; Li, L. DNA binding, BSA interaction and SOD activity of two new nickel(II) complexes with glutamine Schiff base ligands. J. Photochem. Photobiol. B Biol. 2016, 161, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Imsong, C.; Ziekhrü, M.; Thakro, Z.; Sanchu, J.; Devi, M.I. Theoretical study of the heterometal complexation of Pr(III) with L-isoleucine in the presence/absence of Mg(II) in solution: 4f-4f transition spectra as probe. Chem. Phys. Impact 2022, 5, 100108. [Google Scholar] [CrossRef]
- Hasan, M.M.; Shahriar, I.; Ali, M.A.; Halim, M.A.; Ehsan, M.Q. Experimental and computational studies on transition metals interaction with Leucine and Isoleucine. J. Mol. Struct. 2022, 1270, 133862. [Google Scholar] [CrossRef]
- Meng, Z.; Wang, T.; Malik, A.U.; Wang, Q. Exogenous isoleucine can confer browning resistance on fresh-cut potato by suppressing polyphenol oxidase activity and improving the antioxidant capacity. Postharvest Biol. Technol. 2022, 184, 111772. [Google Scholar] [CrossRef]
- Rao, R.; Patra, A.K.; Chetana, P.R. Synthesis, structure, DNA binding and oxidative cleavage activity of ternary (l-leucine/isoleucine) copper(II) complexes of heterocyclic bases. Polyhedron 2008, 27, 1343–1352. [Google Scholar] [CrossRef]
- Farhangian, H.; Nemati Kharat, A. Biological activity of two water-soluble amino acid-Pt complexes: Synthesis, characterization, cytotoxicity, DNA interaction, and theoretical studies. Inorg. Chem. Commun. 2023, 158, 111477. [Google Scholar] [CrossRef]
- Marković, M.; Judaš, N.; Sabolović, J. Combined Experimental and Computational Study of cis-trans Isomerism in Bis (l-valinato) copper (II). Inorg. Chem. 2011, 50, 3632–3644. [Google Scholar] [CrossRef]
- Jiménez-Cruz, J.C.; Guzmán-Mejía, R.; Navarro-Santos, P.; García-Zavala, S.; Herrera-Bucio, R.; García-Gutiérrez, H.A.; Aviña-Verduzco, J.A. Synthesis, crystal structure, and intrinsic reactivity descriptors of coordination complexes of [(cis-PdCl2·L-proline) L-proline] and [trans-PdCl2·(glycine-OMe)2]. J. Mol. Struct. 2023, 1294, 136354. [Google Scholar] [CrossRef]
- Neto, J.G.O.; da Silva Filho, J.G.; Cruz, N.S.; De Sousa, F.F.; Facanha Filho, P.F.; Santos, A.O. Growth, structural, vibrational, DFT and thermal studies of bis (β-alanine) nickel (II) dihydrate crystals. J. Phys. Chem. Solids 2020, 141, 109435. [Google Scholar] [CrossRef]
- Patel, R.N.; Singh, Y.P.; Singh, Y.; Butcher, R.J.; Zeller, M.; Singh, R.K.B.; U-wang, O. Syntheses, crystal structures, spectral and DFT studies of copper (II) and nickel (II) complexes with N′-(pyridine-2-ylmethylene) acetohydrazide. J. Mol. Struct. 2017, 1136, 157–172. [Google Scholar] [CrossRef]
- Maia, J.R.; Lima, J.A., Jr.; Freire, P.T.C.; Mendes Filho, J.; Nogueira, C.E.S.; Teixeira, A.M.R.; De Menezes, A.S.; Remédios, C.M.R.; Cardoso, L.P. FT-IR and Raman spectra and DFT calculations on bis (L-histidinato) nickel (II) monohydrate. J. Mol. Struct. 2013, 1054, 143–149. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 7, 3814–3816. [Google Scholar] [CrossRef] [PubMed]
- Oliveira Neto, J.G.d.; Marques, J.V.; Santos, J.C.d.; Santos, A.O.d.; Lang, R. Exploring the Diversity and Dehydration Performance of New Mixed Tutton Salts (K2V1−xM’x(SO4)2(H2O)6, Where M’ = Co, Ni, Cu, and Zn) as Thermochemical Heat Storage Materials. Physchem 2024, 4, 319–333. [Google Scholar] [CrossRef]
- de Oliveira Neto, J.G.; Viana, J.R.; Ayala, A.P.; Nogueira, C.E.S.; de Oliveira, M.M.; dos Santos, A.O.; de Sousa, F.F. Crystallographic, intermolecular interactions, vibrational, and computational studies of a new cocrystal of decanoic acid and nicotinamide. J. Mol. Struct. 2024, 1315, 138835. [Google Scholar] [CrossRef]
- de Oliveira Neto, J.G.; Viana, J.R.; Abreu, K.R.; da Silva, L.F.L.; Lage, M.R.; Stoyanov, S.R.; de Sousa, F.F.; Lang, R.; dos Santos, A.O. Tutton salt (NH4)2Zn(SO4)2(H2O)6: Thermostructural, spectroscopic, Hirshfeld surface, and DFT investigations. J. Mol. Model. 2024, 30, 339. [Google Scholar] [CrossRef]
- de Souza Junior, M.V.; de Oliveira Neto, J.G.; da Silva, L.F.L.; Ayala, A.P.; Pereira, M.M.; Dutra, R.P.; Souto, E.B.; dos Santos, A.O.; de Sousa, F.F. Different phases of Cu(II)-based complexes with 1,10-phenanthroline impact intermolecular interactions, DNA binding affinities, and spectroscopic, electronic, microbiological and pharmacokinetic properties. J. Mol. Liq. 2025, 431, 127690. [Google Scholar] [CrossRef]
- Sreelaja, P.V.; Ravikumar, C. Structural and vibrational spectral contributions to the nonlinear optical properties of 2-Amino-3-nitropyridinium 4-hydroxybenzenesulfonate: A DFT study. J. Mol. Struct. 2021, 1223, 129184. [Google Scholar] [CrossRef]
- Nakai, H. Advanced Quantum Chemical Methods for Open-Shell Systems. In Comprehensive Computational Chemistry, 1st ed.; Yáñez, M., Boyd, R.J., Eds.; Elsevier: Oxford, UK, 2024; pp. 162–176. [Google Scholar] [CrossRef]
- Aljahdali, M.; El-Sherif, A.A. Synthesis, characterization, molecular modeling and biological activity of mixed ligand complexes of Cu(II), Ni(II) and Co(II) based on 1,10-phenanthroline and novel thiosemicarbazone. Inorganica Chim. Acta 2013, 407, 58–68. [Google Scholar] [CrossRef]
- de Oliveira Neto, J.G.; Rodrigues, J.A.O.; Viana, J.R.; Barros, J.D.S.; Lage, M.R.; de Sousa, F.F.; Dutra, R.P.; Souto, E.B.; dos Santos, A.O. Antibacterial [Zn(nicotinamide)2Cl2] complex for the treatment of skin conditions: An experimental-theoretical study of physicochemical, microbiological and in silico pharmacokinetic properties. J. Mol. Liq. 2024, 403, 124846. [Google Scholar] [CrossRef]
- de Oliveira Neto, J.G.; Bezerra, R.D.S.; Domingos, F.N.B.; Lima, A.D.S.G.; Souto, E.B.; Lage, M.R.; da Silva, L.M.; dos Santos, A.O. A new coamorphous ethionamide with enhanced solubility: Preparation, characterization, in silico pharmacokinetics, and controlled release by encapsulation. Int. J. Pharm. 2025, 670, 125159. [Google Scholar] [CrossRef]
- Gratal Viñuales, P.B.; Arias Pérez, M.S.; Gude Rodríguez, L. 1H-imidazo [4, 5-f][1, 10] phenanthroline carbohydrate conjugates: Synthesis, DNA interactions and cytotoxic activity. Bioorganic Chem. 2022, 125, 105851. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, Z.; Chen, Y.; Gao, D.; Wang, P.; Lin, Y.; Wang, Y.; Wang, F.; Han, Y.; Yuan, H. Co-delivery of Docetaxel and Resveratrol by liposomes synergistically boosts antitumor efficiency against prostate cancer. Eur. J. Pharm. Sci. 2022, 174, 106199. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.A.O.; da Silva, C.R.; Lima, A.D.S.G.; de Oliveira Neto, J.G.; Bordallo, H.N.; Antonino, R.S.C.M.Q.; Lage, M.R.; dos Santos, A.O.; de Sousa, F.F. Molecular spectroscopy, solvent effect, and DFT studies of azithromycin solvate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 325, 125057. [Google Scholar] [CrossRef] [PubMed]
- Merrick, J.P.; Moran, D.; Radom, L. An Evaluation of Harmonic Vibrational Frequency Scale Factors. J. Phys. Chem. A 2007, 111, 11683–11700. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, F.; Cordeiro, M.N.D. Improving vibrational mode interpretation using bayesian regression. J. Chem. Theory Comput. 2018, 15, 456–470. [Google Scholar] [CrossRef]
- de Oliveira Neto, J.G.; Viana, J.R.; Abreu, K.R.; Butarelli, A.L.A.; dos Santos, A.P.A.; Lage, M.R.; de Sousa, F.F.; Souto, E.B.; dos Santos, A.O. Antitumor neodymium(III) complex with 1,10-phenanthroline and nitrate ligands: A comprehensive experimental-theoretical study, in silico pharmacokinetic and cytotoxic properties. J. Mol. Struct. 2025, 1321, 139757. [Google Scholar] [CrossRef]
- Rodrigues, J.A.O.; Torres, A.U.; de Sousa, N.A.B.; de Sousa, T.J.D.; Neto, J.G.O.; Reis, A.S.; Lage, M.R.; dos Santos, A.O.; dos Santos, C.C.; de Menezes, A.S.; et al. Synthesis, characterization, DFT study, and antibacterial activity of a coordination complex of Cu(II) with 1,10-phenanthroline and L-methionine ligands. J. Mol. Struct. 2023, 1293, 136197. [Google Scholar] [CrossRef]
- Moorthi, P.P.; Gunasekaran, S.; Ramkumaar, G.R. Vibrational spectroscopic studies of Isoleucine by quantum chemical calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 124, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Peng, H.; Yuan, X.; Zhang, X.; Zhang, Y.; Fan, D.; Liu, X.; Xiong, D. Down-regulation of c-fos by shRNA sensitizes adriamycin-resistant MCF-7/ADR cells to chemotherapeutic agents via P-glycoprotein inhibition and apoptosis augmentation. J. Cell Biochem. 2013, 114, 1890–1900. [Google Scholar] [CrossRef] [PubMed]
- Naletova, I.; Satriano, C.; Curci, A.; Margiotta, N.; Natile, G.; Arena, G.; La Mendola, D.; Nicoletti, V.G.; Rizzarelli, E. Cytotoxic phenanthroline derivatives alter metallostasis and redox homeostasis in neuroblastoma cells. Oncotarget 2018, 9, 36289. [Google Scholar] [CrossRef]
- Abd El-Halim, H.F.; Mohamed, G.G.; Khalil, E.A.M. Synthesis, spectral, thermal and biological studies of mixed ligand complexes with newly prepared Schiff base and 1,10-phenanthroline ligands. J. Mol. Struct. 2017, 1146, 153–163. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Sadeek, S.A.; Camele, I.; Awad, H.M.; Mohamed, A.A. Biological and Spectroscopic Investigations of New Tenoxicam and 1.10-Phenthroline Metal Complexes. Molecules 2020, 25, 1027. [Google Scholar] [CrossRef] [PubMed]
- Sousa, L.M.; Souza, W.A.; Paixaõ, D.A.; Fazzi, R.B.; Tezuka, D.Y.; Lopes, C.D.; Carneiro, Z.A.; Moreira, M.B.; Pivatto, M.; Netto, A.V.G.; et al. DNA binding, cleavage, apoptosis and cytotoxicity studies of three heteroleptic nickel complexes bearing β-diketones. Inorganica Chim. Acta 2020, 511, 119824. [Google Scholar] [CrossRef]
- Mandal, S.; Sarkar, M.; Denrah, S.; Bagchi, A.; Biswas, A.; Cordes, D.B.; Slawin, A.M.Z.; Saha, N.C. Catalytic and anticancer activity of two new Ni(II) complexes with a pyrazole based heterocyclic Schiff-base ligand: Synthesis, spectroscopy and X-ray crystallography. J. Mol. Struct. 2023, 1287, 135648. [Google Scholar] [CrossRef]
- Miao, T.; Deng, Q.; Gao, H.; Fu, X.; Li, S. Theoretical Studies on DNA-Cleavage Mechanism of Copper(II) Complexes: Probing Generation of Reactive Oxygen Species. J. Chem. Inf. Model. 2018, 58, 859–866. [Google Scholar] [CrossRef]
- Cao, Y.; Yi, C.; Liu, H.; Li, H.; Li, Q.; Yuan, Z.; Wei, G. Syntheses, crystal structures and in vitro anticancer activities of oxovanadium(IV) complexes of amino acid Schiff base and 1,10-phenanthroline ligands. Transit. Met. Chem. 2016, 41, 531–538. [Google Scholar] [CrossRef]
- Chundawat, N.S.; Jadoun, S.; Zarrintaj, P.; Chauhan, N.P.S. Lanthanide complexes as anticancer agents: A review. Polyhedron 2021, 207, 115387. [Google Scholar] [CrossRef]
- Gao, J.; Jiang, S.; Zhang, X.; Fu, Y.; Liu, Z. Preparation, characterization and in vitro activity of a docetaxel–albumin conjugate. Bioorganic Chem. 2019, 83, 154–160. [Google Scholar] [CrossRef] [PubMed]
- González-Larraza, P.G.; López-Goerne, T.M.; Padilla-Godínez, F.J.; González-López, M.A.; Hamdan-Partida, A.; Gómez, E. IC50 Evaluation of Platinum Nanocatalysts for Cancer Treatment in Fibroblast, HeLa, and DU-145 Cell Lines. ACS Omega 2020, 5, 25381–25389. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016.
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Dolg, M. Valence correlation energies from pseudopotential calculations. Chem. Phys. Lett. 1996, 250, 75–79. [Google Scholar] [CrossRef]
- Abdelmoulahi, H.; Trabelsi, S.; Nasr, S.; Bellissent-Funel, M.-C. Hydrogen-bond network in liquid Formamide Methanol mixture as studied by neutron scattering and density functional theory. J. Mol. Liq. 2018, 271, 8–15. [Google Scholar] [CrossRef]
- Caricato, M.; Ingrosso, F.; Mennucci, B.; Tomasi, J. A time-dependent polarizable continuum model: Theory and application. J. Chem. Phys. 2005, 122, 154501. [Google Scholar] [CrossRef]
- Zhurko, G.A.; Zhurko, D.A. Chemcraft-Graphical Program for Visualization of Quantum Chemistry Computations, version 1.8. 2005. Available online: http://www.chemcraftprog.com (accessed on 20 April 2025).
- Teixeira, F.; Cordeiro, M. VibAnalysis-Tools for Performing Vibrational Analysis on Molecular Systems, version 1.2.2. 2017. Available online: https://github.com/teixeirafilipe/vibAnalysis (accessed on 26 May 2025).
- Cazals, F.; Tetley, R. Characterizing molecular flexibility by combining least root mean square deviation measures. Proteins Struct. Funct. Bioinform. 2019, 87, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Hirshfeld, F.L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 1977, 44, 129–138. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Spackman, M.A.; Mitchell, A.S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2004, 60, 627–668. [Google Scholar] [CrossRef] [PubMed]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378–392. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer 17; University of Western Australia: Perth, Australia, 2017. [Google Scholar]
- Supino, R. MTT Assays. In In Vitro Toxicity Testing Protocols; O’Hare, S., Atterwill, C.K., Eds.; Humana Press: Totowa, NJ, USA, 1995; pp. 137–149. [Google Scholar] [CrossRef]
- Adhikari, S.; Hussain, O.; Phillips, R.M.; Kaminsky, W.; Kollipara, M.R. Neutral and cationic half-sandwich arene d6 metal complexes containing pyridyl and pyrimidyl thiourea ligands with interesting bonding modes: Synthesis, structural and anti-cancer studies. Appl. Organomet. Chem. 2018, 32, e4476. [Google Scholar] [CrossRef]
Empirical formula | C24H44N4NiO10 |
Formula weight [g.mol−1 ] | 607.34 |
Temperature [K] | 300 |
Crystal system | monoclinic |
Space group | C2 |
a [Å] | 18.0810(1) |
b [Å] | 10.1111(1) |
c [Å] | 10.0475(1) |
α [°] | 90 |
β [°] | 122.137(2) |
γ [°] | 90 |
Volume [Å3] | 1555.4(3) |
Z | 2 |
ρcalc [g/cm3] | 1.297 |
μ [mm−1] | 1.373 |
F (000) | 648.0 |
Crystal size [mm3] | 0.697 × 0.512 × 0.318 |
Radiation | CuKα (λ = 1.54178) |
2Θ range for data collection [°] | 17.66 to 144.42 |
Index ranges | −22 ≤ h ≤ 22, −12 ≤ k ≤ 12, −12 ≤ l ≤ 12 |
Reflections collected | 15,759 |
Independent reflections | 2940 [Rint = 0.0340, Rsigma = 0.0300] |
Data/restraints/parameters | 2940/93/253 |
Goodness-of-fit on F2 | 1.043 |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.0274, wR2 = 0.0709 |
Final R indexes [all data] | R1 = 0.0277, wR2 = 0.0713 |
Largest diff. peak/hole/e Å−3 | 0.17/−0.15 |
Flack parameter | 0.16 (3) |
Descriptors | EHOMO [eV] | ELUMO [eV] | Gap [eV] | IP [eV] | EA [eV] | η [eV] | ς [eV−1] | μ [eV] | χ [eV] | ϖ [eV] |
---|---|---|---|---|---|---|---|---|---|---|
Vacuum | −5.94 | −2.74 | 3.20 | 5.94 | 2.74 | 1.60 | 0.80 | −4.34 | 4.34 | 5.88 |
Water | −6.53 | −2.27 | 4.26 | 6.53 | 2.27 | 2.13 | 1.06 | −4.40 | 4.40 | 4.54 |
Methanol | −6.51 | −2.28 | 4.22 | 6.51 | 2.28 | 2.11 | 1.06 | −4.40 | 4.40 | 4.58 |
[Ni(Phen)(Ile)2]∙6H2O | [Ni(Phen)3] | [Ni(Ile)3] | |
---|---|---|---|
Physicochemical properties | |||
Molecular weight (g/mol) | 607.34 | 599.31 | 460.19 |
TPSA (Å2) | 117.44 | 29.58 | 114.99 |
Lipophilicity | |||
Log Po/w (SILICOS-IT) | –2.29 | 1.56 | 0.78 |
Water Solubility | |||
Log S (SILICOS-IT) | –2.05 | –10.21 | –4.05 |
Solubility (mg/mL) | 4.60 | 6.11 × 10−11 | 8.81 × 10−5 |
Class | Soluble | Insoluble | Moderately soluble |
Pharmacokinetics | |||
GI absorption | High | Low | High |
BBB permeant | No | No | No |
P-gp substrate | Yes | Yes | Yes |
CYP1A2 inhibitor | No | No | No |
CYP2C19 inhibitor | No | No | No |
CYP2C9 inhibitor | No | No | No |
CYP2D6 inhibitor | No | No | No |
CYP3A4 inhibitor | No | No | No |
LogKp (skin permeation) (cm/s) | –6.55 | –5.15 | –5.72 |
Drug-likeness | |||
Lipinski | Yes; 1 violation * | Yes; 1 violation * | Yes; 0 violation |
Ghose | No | No | Yes |
Veber | Yes | Yes | Yes |
Egan | Yes | No | Yes |
Muegge | Yes | No | Yes |
Bioavailability Score | 0.55 | 0.55 | 0.55 |
Medicinal chemistry | |||
PAINS | 0 alert | 0 alert | 0 alert |
Brenk | 0 alert | 1 alert ** | 0 alert |
Lead-likeness | No | No | No; 2 violations # |
Synthetic accessibility | 6.73 | 4.04 | 5.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, J.C.d.; Neto, J.G.d.O.; Moreira, A.B.N.; da Silva, L.M.; Ayala, A.P.; Lage, M.R.; Lang, R.; de Sousa, F.F.; Mendes, F.; dos Santos, A.O. Exploring the Potential of a New Nickel(II):Phenanthroline Complex with L-isoleucine as an Antitumor Agent: Design, Crystal Structure, Spectroscopic Characterization, and Theoretical Insights. Molecules 2025, 30, 2873. https://doi.org/10.3390/molecules30132873
Santos JCd, Neto JGdO, Moreira ABN, da Silva LM, Ayala AP, Lage MR, Lang R, de Sousa FF, Mendes F, dos Santos AO. Exploring the Potential of a New Nickel(II):Phenanthroline Complex with L-isoleucine as an Antitumor Agent: Design, Crystal Structure, Spectroscopic Characterization, and Theoretical Insights. Molecules. 2025; 30(13):2873. https://doi.org/10.3390/molecules30132873
Chicago/Turabian StyleSantos, Jayson C. dos, João G. de Oliveira Neto, Ana B. N. Moreira, Luzeli M. da Silva, Alejandro P. Ayala, Mateus R. Lage, Rossano Lang, Francisco F. de Sousa, Fernando Mendes, and Adenilson O. dos Santos. 2025. "Exploring the Potential of a New Nickel(II):Phenanthroline Complex with L-isoleucine as an Antitumor Agent: Design, Crystal Structure, Spectroscopic Characterization, and Theoretical Insights" Molecules 30, no. 13: 2873. https://doi.org/10.3390/molecules30132873
APA StyleSantos, J. C. d., Neto, J. G. d. O., Moreira, A. B. N., da Silva, L. M., Ayala, A. P., Lage, M. R., Lang, R., de Sousa, F. F., Mendes, F., & dos Santos, A. O. (2025). Exploring the Potential of a New Nickel(II):Phenanthroline Complex with L-isoleucine as an Antitumor Agent: Design, Crystal Structure, Spectroscopic Characterization, and Theoretical Insights. Molecules, 30(13), 2873. https://doi.org/10.3390/molecules30132873