Is There Any Correlation Between Green Synthesis Parameters and the Properties of Obtained Selenium Nanoparticles?
Abstract
1. Introduction
2. Results and Discussion
2.1. General Observations and Overall Correlations
2.2. Detailed Correlations Determined for Each Herb
2.3. The Differences in the Mechanism of Action Between the Chemically and Green Synthesized SeNPs
3. Materials and Methods
3.1. Obtaining the Plant Extract
3.2. Selenium Nanoparticle Synthesis
3.3. Characterization of Obtained Nanoparticles
3.4. Antioxidant Activity Measurements
3.5. Antibacterial Activity Measurements
3.6. Statistical Analysis and Data Presentation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Nanomedicine: Current status and future prospects. FASEB J. 2005, 19, 311–330. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R.A.; Parak, W.J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. Math. Phys. Eng. Sci. 2010, 368, 1333–1383. [Google Scholar] [CrossRef]
- Huang, Y.; Fu, Y.; Li, M.; Jiang, D.; Kutyreff, C.J.; Engle, J.W.; Lan, X.; Cai, W.; Chen, T. Chirality-driven transportation and oxidation prevention by chiral selenium nanoparticles. Angew Chem. Int. Ed. Engl. 2020, 59, 4406–4414. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Yang, C.; Cheng, T.; Wang, X.; Wang, Q.; He, R.; Sang, S.; Zhu, K.; Xu, D.; Wang, J.; et al. Macrophage-biomimetic porous Se@SiO2 nanocomposites for dual modal immunotherapy against inflammatory osteolysis. J. Nanobiotechnol. 2021, 19, 382. [Google Scholar] [CrossRef]
- Heimler, D.; Romani, A.; Ieri, F. Plant polyphenol content, soil fertilization and agricultural management: A review. Eur. Food Res. Technol. 2017, 243, 1107–1115. [Google Scholar] [CrossRef]
- Blinov, A.V.; Maglakelidze, D.G.; Rekhman, Z.A.; Yasnaya, M.A.; Gvozdenko, A.A.; Golik, A.B.; Blinova, A.A.; Kolodkin, M.A.; Alharbi, N.S.; Kadaikunnan, S.; et al. Investigation of the effect of dispersion medium parameters on the aggregative stability of selenium nanoparticles stabilized with catamine AB. Micromachines 2023, 14, 433. [Google Scholar] [CrossRef]
- Sentkowska, A.; Pyrzyńska, K. The influence of synthesis conditions on the antioxidant activity of selenium nanoparticles. Molecules 2022, 27, 2486. [Google Scholar] [CrossRef]
- Korde, P.; Ghotekar, S.; Pagar, T.; Pansambal, S.; Oza, R.; Mane, D. Plant extract assisted eco-benevolent synthesis of selenium nanoparticles- a review on plant parts involved, characterization and their recent applications. J. Chem. Rev. 2020, 2, 157–168. [Google Scholar]
- Sarkar, J.; Dey, P.; Saha, S.; Acharya, K. Mycosynthesis of selenium nanoparticles. Micro Nano Lett. 2011, 6, 599–602. [Google Scholar] [CrossRef]
- Sentkowska, A.; Pyrzyńska, K. Does the type matter? Verification of different tea types’ potential in the synthesis of SeNPs. Antioxidants 2022, 11, 2489. [Google Scholar] [CrossRef] [PubMed]
- Yasnaya, M.A.; Blinov, A.V.; Blinova, A.A.; Kobina, A.V.; Gvozdenko, A.A.; Maglakelidze, D.G. Neutral Network Simulation for Studying the Influence of Dispersion Phase Conditions on the Stability of Selenium Colloidal Systems. Sovremennaya Nauka i Innovatsii; The North-Caucasus Federal University Press: Stavropol, Russia, 2021; pp. 22–28. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiu, C.; Li, X.; McClements, D.J.; Jiao, A.; Wang, J.; Jin, Z. Advances in research on interactions between polyphenols and biology-based nano-delivery systems and their applications in improving the bioavailability of polyphenols. Trends Food Sci. Technol. 2021, 116, 492–500. [Google Scholar] [CrossRef]
- Liu, C.; Dong, S.; Wang, X.; Xu, H.; Liu, C.; Yang, X.; Wu, S.; Jiang, X.; Kan, M.; Xu, C. Research progress of polyphenols in nanoformulations for antibacterial application. Mater. Today Bio 2023, 21, 100729. [Google Scholar] [CrossRef]
- Omidfar, F.; Gheybi, F.; Zareian, M.; Karimi, E. Polyphenols in food industry, nano-based technology development and biological properties: An overview. eFood 2023, 3, e88. [Google Scholar] [CrossRef]
- Sari, T.P.; Mann, B.; Kumar, R.; Singh, R.R.B.; Sharma, R.; Bhardwaj, M.; Athira, S. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocoll. 2015, 43, 540–546. [Google Scholar] [CrossRef]
- Panov, D.A.; Katsev, A.M.; Omelchenko, A.V. Synthesis and properties of selenium nanoparticles in a natural polisaccharide matrix. Russ. J. Bioorg. Chem. 2023, 49, 1567–1576. [Google Scholar] [CrossRef]
- Sentkowska, A.; Konarska, J.; Szmytke, J.; Grudniak, A. Herbal polyphenols as selenium reducers in the green synthesis of selenium nanoparticles: Antibacterial and antioxidant capabilities of the obtained SeNPs. Molecules 2024, 29, 1686. [Google Scholar] [CrossRef]
- Brugè, F.; Damiani, E.; Puglia, C.; Offerta, A.; Armeni, T.; Littarru, G.P.; Tiano, L. Nanostructured lipid carriers loaded with CoQ10: Effect on human dermal fibroblasts under normal and UVA-mediated oxidative conditions. Int. J. Pharm. 2013, 455, 348–356. [Google Scholar] [CrossRef]
- Sharma, G.; Sharma, A.R.; Bhavesh, R.; Park, J.; Ganbold, B.; Nam, J.S.; Lee, S.S. Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (Raisin) extract. Molecules 2014, 19, 2761–2770. [Google Scholar] [CrossRef]
- Zhang, J.; Taylor, E.W.; Wan, X.; Peng, D. Impact of heat treatment on size, structure, and bioactivity of elemental selenium nanoparticles. Int. J. Nanomed. 2012, 7, 815–825. [Google Scholar] [CrossRef]
- Hughes, J.M.; Budd, P.M.; Grieve, A.; Dutta, P.; Tiede, K.; Lewis, J. Highly monodisperse, lanthanide-containing polystyrene nanoparticles as potential standard reference materials for environmental “nano” fate analysis. J. Appl. Polym. Sci. 2015, 132, 42069. [Google Scholar] [CrossRef]
- Geoffrion, L.D.; Hesabizadeh, T.; Medina-Cruz, D.; Kusper, M.; Taylor, P.; Vernet-Crua, A.; Chen, J.; Ajo, A.; Webster, T.J.; Guisbiers, G. Naked selenium nanoparticles for antibacterial and anticancer treatments. ACS Omega 2020, 5, 2660–2669. [Google Scholar] [CrossRef] [PubMed]
- Sólyom, K.; Solá, R.; Cocero, M.J.; Mato, R.B. Thermal degradation of grape marc polyphenols. Food Chem. 2014, 15, 361–366. [Google Scholar] [CrossRef]
- Chen, W.; Yue, L.; Jiang, Q.; Liu, X.; Xia, W. Synthesis of varisized chitosan-selenium nanocomposites through heating treatment and evaluation of their antioxidant properties. Int. J. Biol. Macromol. 2018, 114, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Melinas, C.; Jimenez, A.; Garrigos, M.C. Microwave-assisted green synthesis and antioxidant activity of selenium nanoparticles using Theobroma cacao L. bean shell extract. Molecules 2019, 24, 4048. [Google Scholar] [CrossRef]
- Fardsadegh, B.; Jafarizadeh-Malmiri, H. Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Proc. Synth. 2019, 8, 399–407. [Google Scholar] [CrossRef]
- Boroumand, S.; Safari, M.; Shaabani, E.; Shirzah, M.; Faridi-Maijidi, R. Selenium nanoparticles: Synthesis, characterization and study of their cytotoxicity, antioxidant and antimicrobial activity. Mater. Res. Express 2019, 6, 0850d8. [Google Scholar] [CrossRef]
- Van Overschelde, O.; Guisbiers, G.; Snyders, R. Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water. APL Mater. 2013, 1, 042114. [Google Scholar] [CrossRef]
- Faller, A.L.K.; Fialho, E. Polyphenol content and antioxidant capacity in organic and conventional plant foods. J. Food Comp. Anal. 2010, 23, 561–568. [Google Scholar] [CrossRef]
- Marslin, G.; Siram, K.; Maqbool, Q.; Selvakesavan, R.K.; Kruszka, D.; Kachlicki, P.; Franklin, G. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials 2018, 11, 940. [Google Scholar] [CrossRef]
- Souza I., D.L.; Saez, V.; Mansur C., R.E. Lipid nanoparticles containing coenzyme Q10 for topical applications: An overview of their characterization. Coll. Surf. B Biointerfaces 2023, 230, 113491. [Google Scholar] [CrossRef]
- Putranti, A.R.; Primaharinastiti, R.; Hendradi, E. Effectivity and physicochemical stability of nanostructured lipid carrier coenzyme q10 in different ratio of lipid cetyl palmitate and alpha tocopheryl acetate as carrier. Asian J. Pharm. Clin. Res. 2017, 10, 146–152. [Google Scholar] [CrossRef]
- Kumbhar, D.D.; Pokharkar, V.B. Engineering of a nanostructured lipid carrier for the poorly water-soluble drug, bicalutamide: Physicochemical investigations. Colloids Surf. A Physicochem. Eng. Asp. 2013, 416, 32–42. [Google Scholar] [CrossRef]
- Muller R., H.; Shegokar, R.; Keck, C.M. 20 years of lipid nanoparticles (SLN & NLC): Present state of development & industrial applications. Curr. Drug Discov. Technol. 2011, 8, 207–227. [Google Scholar]
- dos Santos Souza, L.M.; Dibo, M.; Puño Sarmiento, J.J.; Barozzi Seabra, A.; Pinto Medeiros, L.; Martins Lourenço, I.; Katsuko, R.; Takayama Kobayashi, R.; Nakazato, G. Biosynthesis of selenium nanoparticles using combinations of plant extracts and their antibacterial activity. Curr. Res. Green Sustain. Chem. 2022, 5, 100303. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Dai, C.; Wang, P.; Fan, S.; Yu, B.; Qu, Y. Antibacterial properties and mechanism of selenium nanoparticles synthesized by Providencia sp. DCX. Environ. Res. 2021, 194, 110630. [Google Scholar] [CrossRef]
- Cavalu, S.; Kamel, E.; Laslo, V.; Fritea, L.T.; Costea, I.V.; Antoniac, E.; Vasile, A.; Antoniac, A.; Semenescu, A.; Mohani, A.; et al. Eco-friendly, facile and rapid way for synthesis of selenium nanoparticles. Production, structural and morphological characterization. Rev. Chim. 2017, 68, 2963–2966. [Google Scholar] [CrossRef]
- Bisht, N.; Phalswal, P.; Khanna, P.K. Selenium nanoparticles: A review on synthesis and biomedical applications. Mater. Adv. 2022, 3, 1415–1431. [Google Scholar] [CrossRef]
- Hassanien, R.; Abed-Elmageed, A.A.I.; Husein, D.Z. Eco-friendly approach to synthesize selenium nanoparticles: Photocatalytic degradation of sunset yellow azo dye and anticancer activity. Chem. Sel. 2019, 4, 9018–9026. [Google Scholar] [CrossRef]
- Khiralla G., M.; El-Deeb B, A. Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens. LWT—Food Sci. Technol. 2015, 63, 1001–1007. [Google Scholar] [CrossRef]
- Ali, E.N.; El-Sonbaty, S.M.; Salem, F.M. Evaluation of selenium nanoparticles as a potential chemopreventive agent against lung carcinoma. Int. J. Pharmacol. Biol. Sci. 2013, 2, 38–46. [Google Scholar]
- Fritea, L.; Laslo, V.; Cavalu, S.; Costea, T.; Vicas, S.I. Green biosynthesis of selenium nanoparticles using parsley (Petroselinum crispum) leaves extract. Stud. Univ. Vasile Goldis Arad. Ser. Stiint. Vietii (Life Sci. Ser.) 2017, 27, 203–208. [Google Scholar]
- Ramamurthy, C.H.; Sampath, K.S.; Arunkumar, P.; Kumar, M.S.; Sujatha, V.; Premkumar, K.; Thirunavukkarasu, C. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst. Eng. 2013, 36, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Filipović, N.; Usjak, D.; Milenković, M.T.; Zheng, K.; Liverani, L.; Boccaccini, A.R.; Stevanović, M.M. Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure. Front. Bioeng. Biotechnol. 2021, 8, 1591. [Google Scholar] [CrossRef] [PubMed]
- Grudniak, A.; Folcik, J.; Szmytke, J.; Sentkowska, A. Mechanism of antioxidant activity of selenium nanoparticles obtained by green and chemical synthesis. Int. J. Nanomed. 2025, 20, 2797–2811. [Google Scholar] [CrossRef]
- Blinova, A.; Blinov, A.; Kravtsov, A.; Nagdalian, A.; Rekhman, Z.; Gvozdenko, A.; Kolodkin, M.; Filippov, D.; Askerova, A.; Golik, A.; et al. Synthesis, characterization and potential antimicrobial activity of selenium nanoparticles stabilized with cetyltrimethylammonium chloride. Nanomaterials 2023, 13, 3128. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, S.; Gadd, G.M.; McGrath, J.; Rooney, D.W.; Zhao, Q. Fungal-derived selenium nanoparticles and their potential applications in electroless silver coatings for preventing pin-tract infections. Regen. Biomater. 2022, 9, rbac013. [Google Scholar]
- Han, H.W.; Patel, K.D.; Kwak, J.H.; Jun, S.K.; Jang, T.S.; Lee, S.H.; Knowles, J.C.; Kim, H.W.; Lee, H.H.; Lee, J.H. Selenium nanoparticles as candidates for antibacterial substitutes and supplements against multidrug-resistant bacteria. Biomolecules 2021, 11, 1028. [Google Scholar] [CrossRef]
- Smirnoff, N.; Cumbes, Q.J. Hydroxyl radical activity of compatible solutes. Phytochemistry 1987, 28, 1057–1060. [Google Scholar] [CrossRef]
- Apak, R.; Guclu, K.; Ozyurek, M.; Karademir, S.E.; Ercag, E. The cupric reducing antioxidant capacity and polyphenolic content of some herbal teas. Int. J. Food Sci. Nutr. 2006, 57, 292–304. [Google Scholar] [CrossRef]
- Seeram, N.P.; Aviram, M.; Zhang, Y.; Henning, S.M.; Feng, L.; Dreher, M.; Heber, D. Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J. Agric. Food Chem. 2008, 56, 1415–1422. [Google Scholar] [CrossRef]
- Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 10th ed.; CLSI Standard M07; Clinical and Laboratory Standards Institute Publishing: Valley View, VA, USA, 2024.
- Wang, H.; He, Y.; Liu, L.; Tao, W.; Wang, G.; Sun, W.; Pei, X.; Xiao, Z.; Jin, Y.; Wang, M. Prooxidation and cytotoxicity of selenium nanoparticles at nonlethal level in sprague-dawley rats and buffalo rat liver cells. Oxidative Med. Cell Longev. 2020, 14, 7680276. [Google Scholar] [CrossRef]
- Anjum, S.; Hashim, M.; Imran, M.; Babur, S.; Adnan, S.; Hano, C.; Ibrahim, W.N. Selenium nanoparticles in cancer therapy: Unveiling cytotoxic mechanisms and therapeutic potential. Cancer Rep. 2025, 8, e70210. [Google Scholar] [CrossRef]
- Varlamova, E.G. ’ Goltyaev M.V.; Maltseva V.N.; Turovsky E.A.; Sarimov R.M.; Simakin A.V.; Gudkov S.V. Mechanisms of the cytotoxic effect of selenium nanoparticles in different human cancer cell lines. Int. J. Mol. Sci. 2021, 22, 7798. [Google Scholar] [CrossRef]
Herb | Physical Parameters | Antioxidant Properties | Antibacterial Activity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Reagent Ratio | Zeta Potential [mV] | Diameter [nm] | PDI | OH [%] | DPPH [mmolTr/L] | CUPRAC [mmolTr/L] | FC [mgGa/L] | AOX | E. coli [%] | S. aureus [%] | |
Yarrow (Achillea L.) | 1:1 | −22.5 ± 0.124 | 156 | 0.335 | 91.0 ± 3.60 a | 0.200 ± 0.004 a | 1.27 ± 0.03 a | 37.8 ± 0.831 a | 98.7 ± 2.57 a | 50 | 25 |
1:2 | −18.1 ± 0.368 | 161 | 0.054 | 98.2 ± 1.96 b | 0.642 ± 0.02 b | 1.16 ± 0.03 b | 40.0 ± 0.703 b | 96.1 ± 1.30 b | 50 | 25 | |
1:3 | −17.7 ± 0.216 | 175 | 0.033 | 99.3 ± 3.44 c | 0.699 ± 0.02 c | 1.39 ± 0.01 c | 60.6 ± 0.912 c | 98.5 ± 2.71 a | 100 | 25 | |
1:1 H | −18.4 ± 0.653 | 110 | 0.232 | 89.2 ± 2.66 d | 0.290 ± 0.01 d | 0.82 ± 0.02 d | 35.1 ± 1.41 d | 93.3 ± 2.21 c | 50 | 6 | |
1:2 H | −15.7 ± 0.627 | 128 | 0.173 | 98.9 ± 2.95 b | 0.697 ± 0.03 e | 1.28 ± 0.02 a | 59.4 ± 1.01 e | 98.4 ± 1.08 a | 50 | 25 | |
1:3 H | −12.4 ± 0.417 | 146 | 0.036 | 90.6 ± 3.79 d | 0.701 ± 0.03 f | 1.40 ± 0.02 c | 60.1 ± 1.09 e | 97.7 ± 1.87 d | 100 | 25 | |
Blackberry (Rubus L.) | 1:1 | −23.8 ± 1.02 | 96.8 | 0.150 | 99.0 ± 4.07 a | 0.748 ± 0.01 a | 1.37 ± 0.04 a | 32.4 ± 1.50 a | 98.5 ± 4.22 a | 25 | 12.5 |
1:2 | −20.1 ± 1.02 | 169 | 0.211 | 93.7 ± 3.95 b | 0.753 ± 0.03 b | 1.41 ± 0.03 b | 60.3 ± 2.85 b | 96.9 ± 4.09 b | 50 | 3 | |
1:3 | −18.5 ± 1.35 | 175 | 0.309 | 84.7 ± 2.98 c | 0.748 ± 0.03 a | 1.40 ± 0.04 b | 104 ± 4.23 c | 99.4 ± 4.04 c | 25 | 6 | |
1:1 H | −23.4 ± 0.205 | 157 | 0.187 | 61.2 ± 2.95 d | 0.741 ± 0.02 c | 1.36 ± 0.04 c | 24.1 ± 1.05 c | 98.2 ± 3.96 a | 25 | 12.5 | |
1:2 H | −19.6 ± 0.317 | 171 | 0.268 | 89.9 ± 4.02 e | 0.751 ± 0.02 b | 1.42 ± 0.02 b | 52.2 ± 2.33 d | 95.7 ± 3.66 b | 50 | 3 | |
1:3 H | −18.7 ± 0.215 | 182 | 0.341 | 70.5 ± 3.32 f | 0.757 ± 0.02 d | 1.39 ± 0.03 b | 93.5 ± 4.21 e | 99.0 ± 4.32 c | 25 | 6 | |
Sage (Salvia officinalis L.) | 1:1 | −13.1 ± 0.518 | 74.0 | 0.125 | 90.3 ± 3.98 a | 0.845 ± 0.04 a | 1.28 ± 0.05 a | 19.2 ± 0.831 a | 99.5 ± 3.87 a | 25 | 25 |
1:2 | −14.1 ± 0.464 | 164 | 0.190 | 99.2 ± 3.87 b | 0.740 ± 0.03 b | 1.39 ± 0.03 b | 46.9 ± 1.83 b | 98.7 ± 4.08 b | 12.5 | 12.5 | |
1:3 | −14.5 ± 0.419 | 179 | 0.333 | 99.0 ± 3.76 c | 0.770 ± 0.03 c | 1.07 ± 0.04 c | 93.3 ± 4.08 c | 98.8 ± 4.20 b | 12.5 | 6 | |
1:1 H | −12.5 ± 0.490 | 93.1 | 0.212 | 91.7 ± 4.07 a | 0.725 ± 0.02 d | 1.36 ± 0.04 d | 18.7 ± 0.673 a | 97.5 ± 2.53 c | 50 | 25 | |
1:2 H | −12.4 ± 0.323 | 173 | 0.231 | 99.0 ± 3.32 c | 0.745 ± 0.02 b | 1.40 ± 0.05 e | 53.6 ± 2.31 d | 95.3 ± 3.77 d | 12.5 | 12.5 | |
1:3 H | −12.5 ± 0.402 | 182 | 0.397 | 99.0 ± 2.98 c | 0.750 ± 0.02 e | 1.40 ± 0.05 e | 76.6 ± 2.93 e | 97.6 ± 3.88 c | 12.5 | 6 | |
Nettle (Urtica L.) | 1:1 | −29.4 ± 1.27 | 83.4 | 0.095 | 93.4 ± 2.80 a | 0.086 ± 0.004 a | 0.832 ± 0.02 a | 63.7 ± 2.13 a | 99.5 ± 2.18 a | 12.5 | 50 |
1:2 | −26.2 ± 1.02 | 155 | 0.193 | 91.5 ± 2.72 b | 0.193 ± 0.007 b | 1.21 ± 0.03 b | 47.8 ± 0.93 b | 97.5 ± 2.21 b | 12.5 | 12.5 | |
1:3 | −24.3 ± 1.04 | 220 | 0.304 | 94.9 ± 3.80 c | 0.313 ± 0.009 c | 1.28 ± 0.04 c | 62.1 ± 1.74 a | 94.5 ± 1.91 c | 12.5 | 25 | |
1:1 H | −24.5 ± 0.680 | 140 | 0.100 | 95.2 ± 2.86 c | 0.113 ± 0.002 d | 0.884 ± 0.01 d | 51.6 ± 1.38 c | 93.4 ± 2.24 d | 12.5 | 25 | |
1:2 H | −22.5 ± 0.424 | 166 | 0.059 | 96.1 ± 3.81 d | 0.276 ± 0.01 e | 1.22 ± 0.03 b | 47.5 ± 0.87 b | 96.4 ± 3.61 e | 12.5 | 12.5 | |
1:3 H | −22.0 ± 0.697 | 140 | 0.090 | 91.6 ± 1.87 b | 0.187 ± 0.007 b | 1.39 ± 0.05 e | 76.5 ± 2.14 d | 97.6 ± 1.47 b | 25 | 12.5 | |
Hop (Humulus L.) | 1:1 | −19.7 ± 0.805 | 84.9 | 0.109 | 99.0 ± 4.11 a | 0.289 ± 0.01 a | 0.957 ± 0.03 a | 11.2 ± 0.48 a | 97.7 ± 3.75 a | 50 | 12.5 |
1:2 | −19.2 ± 0.419 | 143 | 0.154 | 80.1 ± 3.35 b | 0.621 ± 0.02 b | 1.36 ± 0.03 b | 17.2 ± 0.73 b | 99.4 ± 4.00 b | 100 | 6 | |
1:3 | −18.0 ± 0.411 | 170 | 0.322 | 77.8 ± 3.70 c | 0.749 ± 0.03 c | 1.41 ± 0.03 c | 17.3 ± 0.74 b | 99.0 ± 3.54 b | NoI | 6 | |
1:1 H | −18.2 ± 0.543 | 120 | 0.115 | 92.1 ± 3.25 d | 0.296 ± 0.02 d | 1.08 ± 0.02 d | 10.9 ± 0.45 c | 98.3 ± 3.98 c | 50 | 12.5 | |
1:2 H | −17.8 ± 0.410 | 165 | 0.195 | 77.6 ± 2.87 c | 0.666 ± 0.02 e | 1.39 ± 0.05 b | 17.8 ± 0.65 b | 96.6 ± 3.22 d | 100 | 6 | |
1:3 H | −17.2 ± 0.776 | 175 | 0.271 | 75.7 ± 2.92 e | 0.747 ± 0.02 c | 1.42 ± 0.04 c | 22.8 ± 1.03 d | 96.7 ± 2.91 d | NoI | 6 | |
Lemon balm (Melissa officinalis L.) | 1:1 | −19.3 ± 1.07 | 79.0 | 0.103 | 98.0 ± 2.36 a | 0.810 ± 0.03 a | 0.840 ± 0.03 a | 98.5 ± 3.47 a | 99.6 ± 3.29 a | 100 | 50 |
1:2 | −17.0 ± 0.497 | 85.0 | 0.111 | 99.5 ± 3.95 b | 0.791 ± 0.02 b | 1.32 ± 0.04 b | 213 ± 8.51 b | 99.2 ± 4.08 a | 100 | 100 | |
1:3 | −18.9 ± 0.826 | 113 | 0.172 | 83.1 ± 3.07 c | 0.790 ± 0.02 b | 1.43 ± 0.02 c | 101 ± 4.08 a | 99.1 ± 3.79 a | NoI | 100 | |
1:1 H | −15.5 ± 1.02 | 115 | 0.121 | 99.0 ± 3.33 b | 0.824 ± 0.03 c | 0.958 ± 0.04 e | 98.9 ± 2.36 a | 96.6 ± 2.41 b | 100 | 50 | |
1:2 H | −15.9 ± 0.632 | 158 | 0.210 | 99.0 ± 2.98 b | 0.824 ± 0.03 c | 1.41 ± 0.03 c | 216 ± 9.02 b | 98.2 ± 3.21 c | 100 | 100 | |
1:3 H | −16.6 ± 0.249 | 162 | 0.261 | 92.5 ± 4.04 d | 0.765 ± 0.02 d | 1.41 ± 0.03 c | 186 ± 3.33 c | 99.1 ± 3.84 b | NoI | 100 | |
Ribwort plantain (Plantago lanceolata L.) | 1:1 | −13.8 ± 0.589 | 130 | 0.067 | 66.4 ± 2.12 a | 0.266 ± 0.006 a | 1.07 ± 0.03 a | 15.0 ± 0.411 a | 96.4 ± 2.02 a | 100 | 50 |
1:2 | −14.9 ± 1.18 | 162 | 0.054 | 52.7 ± 1.61 b | 0.766 ± 0.02 b | 1.44 ± 0.04 b | 27.9 ± 1.08 b | 97.5 ± 1.85 b | 100 | 100 | |
1:3 | −14.6 ± 0.997 | 175 | 0.046 | 88.0 ± 3.50 c | 0.733 ± 0.02 c | 1.42 ± 0.03 b | 46.0 ± 1.32 c | 98.5 ± 2.05 c | NoI | 100 | |
1:1 H | −16.6 ± 1.23 | 163 | 0.040 | 64.4 ± 1.80 d | 0.292 ± 0.01 d | 1.12 ± 0.03 c | 16.8 ± 0.319 d | 93.7 ± 3.50 d | 100 | 50 | |
1:2 H | −13.4 ± 1.21 | 161 | 0.038 | 48.3 ± 1.42 e | 0.747 ± 0.02 e | 1.48 ± 0.02 d | 26.4 ± 0.933 b | 94.1 ± 2.44 e | 100 | 100 | |
1:3 H | −11.8 ± 1.25 | 149 | 0.035 | 84.0 ± 2.52 f | 0.719 ± 0.01 f | 1.40 ± 0.04 b | 44.7 ± 0.893 c | 96.8 ± 1.97 a | NoI | 100 | |
Raspberry (Rubus idaeus L.) | 1:1 | −19.9 ± 0.818 | 74.0 | 0.132 | 89.2 ± 3.23 a | 0.392 ± 0.01 a | 1.39 ± 0.06 a | 15.4 ± 0.63 a | 98.3 ± 4.15 a | 25 | 25 |
1:2 | −19.0 ± 1.23 | 109 | 0.184 | 98.2 ± 4.32 b | 0.854 ± 0.04 b | 1.37 ± 0.04 b | 36.9 ± 1.60 b | 94.9 ± 3.54 b | 12.5 | 12.5 | |
1:3 | −20.9 ± 0.741 | 124 | 0.141 | 99.0 ± 4.33 b | 0.798 ± 0.02 c | 1.06 ± 0.02 c | 72.0 ± 2.37 c | 98.5 ± 3.47 a | 12.5 | 12.5 | |
1:1 H | −16.6 ± 0.822 | 84.1 | 0.175 | 86.9 ± 4.20 c | 0.492 ± 0.02 d | 1.34 ± 0.03 d | 14.4 ± 0.51 d | 96.0 ± 3.89 c | 50 | 50 | |
1:2 H | −15.3 ± 0.713 | 167 | 0.190 | 81.6 ± 3.70 d | 0.773 ± 0.02 e | 1.37 ± 0.03 e | 37.6 ± 1.73 b | 99.3 ± 4.24 d | 12.5 | 25 | |
1:3 H | −14.7 ± 0.616 | 181 | 0.263 | 30.7 ± 0.992 e | 0.746 ± 0.01 f | 1.38 ± 0.04 e | 72.1 ± 2.75 c | 99.0 ± 4.18 d | 12.5 | 6 |
Correlation Coefficients (R2) | |||||||||||
A | Size | PDI | Ratio | ζ-Potential | FC | CUPRAC | DPPH | OH | AOX | MIC E. coli | MIC S. aureus |
Size | 0.148 | 0.937 | −0.021 | −0.043 | 0.103 | −0.045 | −0.024 | 0.026 | −0.060 | −0.041 | |
PDI | 0.148 | 0.681 | −0.113 | −0.036 | −0.019 | −0.042 | −0.033 | −0.045 | 0.173 | 0.203 | |
Ratio | 0.681 | 0.681 | 0.936 | 0.693 | 0.522 | −0.850 | 0.659 | −0.998 | −0.850 | 0.435 | |
ζ-potential | −0.021 | −0.113 | 0.936 | −0.045 | 0.057 | 0.303 | −0.303 | −0.041 | 0.039 | 0.015 | |
FC | −0.043 | −0.036 | 0.693 | −0.045 | −0.042 | 0.047 | 0.319 | 0.031 | −0.026 | 0.120 | |
CUPRAC | 0.103 | −0.019 | 0.522 | 0.057 | −0.042 | 0.138 | 0.033 | 0.039 | −0.030 | −0.035 | |
DPPH | −0.045 | −0.042 | −0.850 | 0.303 | 0.047 | 0.138 | −0.085 | −0.039 | −0.043 | −0.020 | |
OH | −0.024 | −0.033 | 0.659 | −0.303 | 0.319 | 0.033 | −0.085 | 0.045 | 0.038 | 0.107 | |
AOX | 0.026 | −0.045 | −0.998 | −0.041 | 0.031 | 0.039 | −0.039 | 0.045 | −0.040 | −0.020 | |
MIC E. coli | −0.060 | 0.173 | −0.850 | 0.030 | −0.026 | −0.030 | −0.043 | 0.038 | −0.040 | 0.011 | |
MIC S. aureus | −0.041 | 0.203 | 0.435 | 0.015 | 0.120 | −0.035 | −0.020 | 0.107 | −0.020 | 0.011 | |
Correlation Coefficients (R2) | |||||||||||
B | Size | PDI | Ratio | ζ-potential | FC | CUPRAC | DPPH | OH | AOX | MIC E. coli | MIC S. aureus |
Size | 0.052 | 0.914 | −0.045 | 0.008 | 0.181 | 0.056 | 0.069 | −0.009 | 0.027 | 0.027 | |
PDI | 0.052 | 0.880 | −0.038 | 0.033 | 0.026 | 0.178 | −0.044 | 0.101 | 0.078 | −0.044 | |
Ratio | 0.914 | 0.880 | 0.784 | 0.716 | 0.031 | 0.964 | 0.362 | −0.996 | 0.850 | 0.435 | |
ζ-potential | −0.045 | −0.038 | 0.784 | −0.043 | 0.109 | 0.333 | −0.040 | −0.021 | −0.006 | 0.008 | |
FC | 0.008 | 0.033 | 0.716 | −0.043 | −0.035 | 0.048 | 0.026 | 0.103 | −0.045 | 0.179 | |
CUPRAC | 0.181 | 0.026 | 0.031 | 0.109 | −0.035 | 0.361 | 0.023 | 0.217 | −0.030 | −0.010 | |
DPPH | 0.056 | 0.178 | 0.964 | 0.333 | 0.048 | 0.361 | −0.018 | 0.217 | −0.041 | 0.013 | |
OH | 0.069 | −0.044 | 0.362 | −0.040 | 0.026 | 0.023 | −0.018 | −0.045 | −0.044 | −0.045 | |
AOX | −0.009 | 0.101 | −0.996 | −0.021 | 0.103 | 0.217 | 0.217 | −0.045 | 0.027 | −0.043 | |
MIC E. coli | 0.027 | 0.078 | 0.850 | −0.006 | −0.045 | −0.030 | −0.041 | −0.044 | 0.027 | 0.016 | |
MIC S. aureus | 0.027 | −0.044 | 0.435 | 0.008 | 0.179 | −0.010 | 0.013 | −0.045 | −0.043 | 0.016 |
Herb | Correlation Coefficients (R2) | |||||||||||
A | Size | PDI | Ratio | ζ-Potential | FC | CUPRAC | DPPH | OH | AOX | MIC E. coli | MIC S. aureus | |
Yarrow (Achillea L.) | Size | −0.746 | −0.853 | 0.124 | 0.943 | 0.069 | 0.197 | 0.232 | −0.923 | 0.871 | - | |
PDI | −0.746 | 0.932 | 0.999 | −0.222 | −0.746 | 0.996 | 0.993 | −0.488 | −0.388 | - | ||
Ratio | −0.853 | 0.932 | 0.936 | 0.146 | −0.851 | 0.960 | 0.969 | −0.770 | −0.031 | - | ||
ζ-potential | 0.124 | 0.999 | 0.936 | −0.212 | −0.981 | 0.997 | 0.993 | −0.497 | −0.379 | 0.990 | ||
FC | 0.943 | −0.222 | 0.146 | −0.212 | 0.356 | −0.139 | −0.104 | −0.742 | 0.985 | - | ||
CUPRAC | 0.069 | −0.983 | −0.851 | −0.981 | 0.356 | −0.964 | −0.954 | 0.550 | - | |||
DPPH | 0.197 | 0.996 | 0.960 | 0.997 | −0.139 | −0.964 | 0.999 | 0.321 | 0.507 | - | ||
OH | 0.232 | 0.993 | 0.969 | 0.993 | −1.04 | −0.954 | 0.999 | 0.321 | −0.275 | - | ||
AOX | −0.923 | −0.488 | −0.770 | −0.497 | −0.742 | 0.321 | 0.321 | −0.589 | −0.615 | - | ||
MIC E. coli | 0.871 | −0.388 | −0.031 | −0.379 | 0.985 | 0.550 | −0.309 | −0.275 | −0.615 | - | ||
MIC S. aureus | 0.864 | - | - | 0.990 | - | - | - | - | - | - | ||
Size | PDI | Ratio | ζ-potential | FC | CUPRAC | DPPH | OH | AOX | MIC E. coli | MIC S. aureus | ||
Blackberry (Rubus L.) | Size | 0.384 | 0.937 | 0.896 | 0.399 | 0.786 | −0.405 | 0.356 | −0.983 | −0.614 | −0.721 | |
PDI | 0.384 | 0.681 | 0.753 | 0.999 | −0.268 | −0.964 | 0.999 | −0.545 | −0.964 | −0.383 | ||
Ratio | 0.937 | 0.681 | 0.994 | 0.693 | 0.522 | −0.850 | 0.659 | −0.998 | 0.850 | 0.435 | ||
ζ-potential | 0.896 | 0.753 | 0.994 | 0.763 | 0.430 | −0.900 | 0.734 | −0.962 | −0.900 | 0.339 | ||
FC | 0.399 | 0.999 | 0.693 | 0.763 | −0.253 | −0.968 | 0.999 | −0.559 | −0.968 | −0.348 | ||
CUPRAC | 0.786 | −0.268 | 0.522 | 0.430 | −0.253 | 0.005 | −0.297 | −0.661 | 0.005 | 0.995 | ||
DPPH | −0.405 | −0.964 | −0.850 | −0.900 | −0.968 | 0.005 | 0.709 | −0.660 | −0.472 | −0.926 | ||
OH | 0.356 | 0.999 | 0.659 | 0.734 | 0.999 | −0.297 | 0.709 | −0.521 | −0.956 | −0.390 | ||
AOX | −0.983 | −0.545 | −0.998 | −0.962 | −0.559 | −0.661 | −0.660 | −0.521 | 0.747 | −0.582 | ||
MIC E. coli | −0.614 | −0.964 | 0.850 | −0.900 | −0.125 | 0.500 | −0.472 | −0.956 | 0.747 | 0.104 | ||
MIC S. aureus | −0.721 | −0.383 | 0.435 | 0.339 | −0.968 | 0.913 | −0.926 | −0.390 | −0.582 | 0.104 | ||
Size | PDI | Ratio | ζ-potential | FC | CUPRAC | DPPH | OH | AOX | MIC E. coli | MIC S. aureus | ||
Sage (Salvia officinalis L.) | Size | 0.354 | 0.974 | 0.701 | 0.478 | −0.790 | 0.677 | 0.954 | −0.880 | 0.965 | 0.912 | |
PDI | 0.354 | 0.556 | −0.417 | 0.991 | 0.293 | 0.448 | 0.057 | −0.133 | 0.097 | 0.706 | ||
Ratio | 0.974 | 0.556 | 0.522 | 0.685 | −0.631 | 0.493 | 0.880 | 0.750 | 0.881 | 0.981 | ||
ζ-potential | 0.701 | −0.417 | 0.522 | −0.289 | −0.991 | 0.999 | 0.882 | 0.956 | 0.863 | 0.348 | ||
FC | 0.478 | 0.991 | 0.685 | −0.289 | 0.159 | −0.322 | 0.194 | 0.004 | 0.232 | 0.796 | ||
CUPRAC | −0.790 | 0.293 | −0.631 | −0.991 | 0.159 | −0.985 | −0.937 | −0.986 | −0.923 | −0.471 | ||
DPPH | 0.677 | 0.448 | 0.493 | 0.999 | −0.322 | −0.985 | 0.866 | −0.986 | 0.846 | 0.317 | ||
OH | 0.954 | 0.057 | 0.880 | 0.882 | 0.194 | −0.937 | 0.866 | 0.982 | 0.999 | 0.748 | ||
AOX | −0.880 | −0.133 | 0.750 | 0.956 | 0.004 | −0.986 | −0.986 | 0.982 | 0.974 | 0.608 | ||
MIC E. coli | 0.965 | 0.097 | 0.881 | 0.863 | 0.232 | −0.923 | 0.846 | 0.999 | 0.974 | 0.773 | ||
MIC S. aureus | 0.912 | 0.706 | 0.981 | 0.348 | 0.796 | −0.471 | 0.317 | 0.748 | 0.608 | 0.773 | ||
Size | PDI | Ratio | ζ-potential | FC | CUPRAC | DPPH | OH | AOX | MIC E. coli | MIC S. aureus | ||
Nettle (Urtica L.) | Size | 0.906 | 0.875 | 0.972 | −0.972 | 0.761 | 0.992 | −0.655 | 0.959 | −0.998 | −0.879 | |
PDI | 0.906 | 0.810 | 0.934 | −0.993 | 0.672 | 0.999 | −0.554 | 0.987 | - | −0.213 | ||
Ratio | 0.875 | 0.810 | 0.965 | −0.740 | 0.979 | 0.815 | −0.938 | 0.708 | - | 0.339 | ||
ζ-potential | 0.972 | 0.934 | 0.965 | −0.889 | 0.892 | 0.937 | −0.813 | 0.867 | 0.728 | 0.148 | ||
FC | −0.972 | −0.993 | −0.740 | −0.889 | −0.586 | −0.992 | 0.458 | −0.999 | - | 0.321 | ||
CUPRAC | 0.761 | 0.672 | 0.979 | 0.892 | −0.586 | 0.678 | −0.988 | 0.547 | - | 0.579 | ||
DPPH | 0.992 | 0.999 | 0.815 | 0.937 | −0.992 | 0.678 | −0.560 | 0.548 | - | 0.706 | ||
OH | −0.655 | −0.554 | −0.938 | −0.813 | 0.458 | −0.988 | −0.560 | −0.417 | - | −0.694 | ||
AOX | 0.959 | 0.987 | 0.708 | 0.867 | −0.999 | 0.547 | 0.548 | −0.417 | - | −0.304 | ||
MIC E. coli | −0.998 | - | - | 0.728 | - | - | - | - | - | 0.785 | ||
MIC S. aureus | −0.879 | −0.213 | 0.399 | 0.148 | 0.321 | 0.579 | 0.706 | −0.694 | −0.364 | 0.785 | ||
Size | PDI | Ratio | ζ-potential | FC | CUPRAC | DPPH | OH | AOX | MIC E. coli | MIC S. aureus | ||
Hop (Humulus L.) | Size | 0.489 | 0.353 | 0.703 | 0.823 | 0.909 | 0.996 | 0.907 | −0.907 | 0.807 | 0.807 | |
PDI | 0.489 | 0.384 | 0.964 | −0.090 | 0.081 | 0.413 | 0.078 | −0.530 | 0.120 | −0.119 | ||
Ratio | 0.353 | 0.384 | −0.597 | 0.894 | 0.957 | 0.999 | 0.956 | 0.584 | −0.879 | 0.880 | ||
ζ-potential | 0.703 | 0.964 | −0.597 | 0.175 | 0.342 | 0.640 | 0.339 | −0.301 | −0.147 | 0.147 | ||
FC | 0.823 | −0.090 | 0.894 | 0.175 | 0.985 | 0.869 | 0.986 | 0.885 | −0.999 | 0.999 | ||
CUPRAC | 0.909 | 0.081 | 0.957 | 0.342 | 0.985 | 0.941 | −0.999 | 0.793 | −0.979 | 0.980 | ||
DPPH | 0.996 | 0.413 | 0.999 | 0.640 | 0.869 | 0.941 | 0.940 | 0.793 | −0.854 | 0.854 | ||
OH | 0.907 | 0.078 | 0.956 | 0.339 | 0.986 | −0.999 | 0.940 | 0.794 | −0.980 | 0.980 | ||
AOX | −0.908 | −0.530 | 0.584 | −0.301 | 0.885 | 0.793 | 0.793 | 0.794 | −0.898 | 0.898 | ||
MIC E. coli | 0.807 | 0.120 | −0.879 | −0.147 | −0.999 | −0.979 | −0.854 | −0.980 | −0.898 | −1 | ||
MIC S. aureus | 0.807 | −0.119 | 0.880 | 0.147 | 0.999 | 0.980 | 0.854 | 0.980 | 0.898 | −1 | ||
Size | PDI | Ratio | ζ-potential | FC | CUPRAC | DPPH | OH | AOX | MIC E. coli | MIC S. aureus | ||
Lemon balm (Melissa officinalis L.) | Size | 0.993 | −0.805 | −0.901 | −0.778 | 0.160 | −0.102 | 0.878 | 0.187 | 0.945 | −0.190 | |
PDI | 0.993 | −0.768 | −0.842 | −0.698 | 0.041 | 0.221 | 0.924 | 0.069 | 0.977 | −0.306 | ||
Ratio | −0.805 | 0.180 | 0.682 | −0.830 | 0.990 | 0.919 | −0.204 | 0.994 | −0.030 | 0.881 | ||
ζ-potential | −0.901 | −0.842 | 0.682 | 0.974 | −0.572 | −0.990 | −0.584 | −0.595 | −0.710 | −0.255 | ||
FC | −0.778 | −0.698 | −0.830 | 0.974 | −0.744 | −0.544 | −0.384 | −0.762 | −0.531 | −0.531 | ||
CUPRAC | 0.160 | 0.041 | 0.990 | −0.572 | −0.744 | −0.991 | −0.330 | 0.999 | −0.170 | 0.938 | ||
DPPH | −0.102 | 0.221 | 0.919 | −0.990 | −0.544 | −0.991 | −0.585 | −0.996 | −0.421 | 0.996 | ||
OH | 0.878 | 0.924 | −0.204 | −0.584 | −0.384 | −0.330 | −0.585 | −0.304 | 0.986 | 0.773 | ||
AOX | 0.187 | 0.069 | 0.994 | −0.595 | −0.762 | 0.999 | −0.996 | −0.304 | −0.143 | 0.928 | ||
MIC E. coli | 0.945 | 0.977 | −0.030 | −0.710 | −0.531 | −0.170 | −0.421 | 0.986 | −0.143 | −0.500 | ||
MIC S. aureus | −0.190 | −0.306 | 0.881 | −0.255 | −0.467 | 0.938 | 0.996 | 0.773 | 0.928 | −0.500 | ||
Size | PDI | Ratio | ζ-potential | FC | CUPRAC | DPPH | OH | AOX | MIC E. coli | MIC S. aureus | ||
Ribwort Plantain (Plantago lanceolata L.) | Size | −0.986 | 0.999 | 0.292 | 0.711 | 0.844 | 0.837 | −0.752 | 0.862 | −0.062 | 0.895 | |
PDI | −0.986 | 0.961 | 0.091 | 0.893 | 0.638 | 0.628 | −0.514 | 0.976 | 0.247 | 0.715 | ||
Ratio | 0.999 | 0.961 | 0.364 | 0.734 | 0.827 | 0.818 | −0.732 | 0.878 | −0.031 | 0.881 | ||
ζ-potential | 0.292 | 0.091 | 0.364 | −0.365 | 0.825 | 0.833 | −0.901 | −0.127 | −0.942 | 0.762 | ||
FC | 0.711 | 0.893 | 0.734 | −0.365 | 0.224 | 0.211 | −0.073 | 0.969 | 0.656 | 0.325 | ||
CUPRAC | 0.844 | 0.638 | 0.827 | 0.825 | 0.224 | 0.999 | −0.988 | 0.457 | −0.587 | 0.994 | ||
DPPH | 0.837 | 0.628 | 0.818 | 0.833 | 0.211 | 0.999 | 0.999 | 0.457 | −0.598 | 0.993 | ||
OH | −0.752 | −0.514 | −0.732 | −0.901 | −0.073 | −0.988 | 0.999 | −0.316 | 0.704 | −0.967 | ||
AOX | 0.862 | 0.976 | 0.878 | −0.127 | 0.969 | 0.457 | 0.457 | −0.316 | 0.452 | 0.547 | ||
MIC E. coli | −0.062 | 0.247 | −0.031 | −0.942 | 0.656 | −0.587 | −0.598 | 0.704 | 0.452 | −0.500 | ||
MIC S. aureus | 0.895 | 0.715 | 0.881 | 0.762 | 0.325 | 0.994 | 0.993 | −0.967 | 0.547 | −0.500 | ||
Size | PDI | Ratio | ζ-potential | FC | CUPRAC | DPPH | OH | AOX | MIC E. coli | MIC S. aureus | ||
Raspberry (Rubus idaeus L.) | Size | −0.711 | −0.998 | −0.779 | 0.745 | 0.162 | 0.685 | 0.902 | −0.937 | 0.829 | 0.829 | |
PDI | −0.711 | −0.637 | 0.114 | −0.998 | 0.041 | 0.221 | −0.339 | 0.911 | −0.634 | −0.197 | ||
Ratio | −0.998 | −0.637 | −0.836 | 0.675 | 0.078 | 0.776 | −0.985 | −0.898 | 0.881 | 0.887 | ||
ζ-potential | −0.779 | 0.114 | −0.836 | −0.164 | 0.492 | −0.973 | 0.513 | 0.513 | −0.996 | −0.996 | ||
FC | 0.745 | −0.998 | 0.675 | −0.164 | 0.778 | 0.025 | 0.584 | −0.931 | 0.245 | 0.245 | ||
CUPRAC | 0.162 | 0.041 | 0.078 | 0.492 | 0.778 | −0.608 | −0.280 | −0.495 | −0.417 | −0.418 | ||
DPPH | 0.685 | 0.221 | 0.776 | −0.973 | 0.025 | −0.608 | 0.932 | 0.495 | 0.975 | 0.975 | ||
OH | 0.902 | −0.339 | −0.985 | 0.513 | 0.584 | −0.280 | 0.932 | −0.695 | 0.989 | 0.989 | ||
AOX | −0.937 | 0.911 | −0.898 | 0.513 | −0.931 | −0.495 | 0.495 | −0.695 | −0.583 | −0.583 | ||
MIC E. coli | 0.829 | −0.634 | 0.881 | −0.996 | 0.245 | −0.417 | 0.975 | 0.989 | −0.583 | 1 | ||
MIC S. aureus | 0.829 | −0.197 | 0.887 | −0.996 | 0.245 | −0.418 | 0.975 | 0.989 | −0.583 | 1 | ||
Herb | Correlation Coefficients (R2) | |||||||||||
B | Size | PDI | Ratio | ζ-potential | FC | CUPRAC | DPPH | OH | AOX | MIC E. coli | MIC S. aureus | |
Yarrow (Achillea L.) | Size | 0.989 | 0.843 | 0.993 | 0.537 | 0.786 | 0.509 | −0.966 | 0.999 | 0.506 | 0.864 | |
PDI | 0.989 | 0.761 | 0.943 | 0.408 | 0.687 | 0.378 | −0.993 | 0.117 | 0.625 | 0.363 | ||
Ratio | 0.843 | 0.761 | 0.784 | 0.903 | 0.994 | 0.880 | −0.680 | 0.734 | −0.031 | 0.881 | ||
ζ-potential | 0.993 | 0.943 | 0.784 | 0.442 | 0.714 | 0.413 | −0.988 | 0.154 | 0.596 | 0.397 | ||
FC | 0.537 | 0.408 | 0.903 | 0.442 | 0.943 | 0.999 | −0.300 | 0.954 | −0.456 | 0.988 | ||
CUPRAC | 0.786 | 0.687 | 0.994 | 0.714 | 0.943 | 0.932 | −0.600 | 0.801 | −0.136 | 0.926 | ||
DPPH | 0.509 | 0.378 | 0.880 | 0.413 | 0.999 | 0.932 | −0.269 | 0.801 | −0.485 | 0.999 | ||
OH | −0.966 | −0.993 | −0.680 | −0.988 | −0.300 | −0.600 | −0.269 | −0.002 | −0.711 | −0.253 | ||
AOX | 0.999 | 0.117 | 0.734 | 0.154 | 0.954 | 0.801 | 0.801 | −0.002 | −0.701 | 0.967 | ||
MIC E. coli | 0.506 | 0.625 | −0.031 | 0.596 | −0.456 | −0.136 | −0.485 | −0.711 | −0.701 | −0.500 | ||
MIC S. aureus | 0.864 | 0.363 | 0.881 | 0.397 | 0.988 | 0.926 | 0.999 | −0.253 | 0.967 | −0.500 | ||
Size | PDI | Ratio | ζ-potential | FC | CUPRAC | DPPH | OH | AOX | MIC E. coli | MIC S. aureus | ||
Blackberry (Rubus L.) | Size | 0.999 | 0.825 | 0.849 | 0.937 | −0.375 | 0.989 | 0.707 | −0.946 | −0.990 | 0.034 | |
PDI | 0.999 | 0.880 | 0.805 | 0.961 | −0.447 | 0.974 | −0.760 | −0.917 | −0.998 | −0.044 | ||
Ratio | 0.825 | 0.880 | 0.990 | 0.716 | 0.031 | 0.964 | −0.387 | −0.996 | 0.850 | 0.435 | ||
ζ-potential | 0.849 | 0.805 | 0.990 | 0.610 | 0.171 | 0.918 | −0.227 | −0.974 | −0.769 | 0.557 | ||
FC | 0.937 | 0.961 | 0.716 | 0.610 | −0.798 | 0.875 | −0.970 | −0.645 | −0.921 | −0.484 | ||
CUPRAC | −0.375 | −0.447 | 0.031 | 0.171 | −0.798 | −0.235 | 0.921 | 0.054 | 0.500 | 0.913 | ||
DPPH | 0.989 | 0.974 | 0.964 | 0.918 | 0.875 | −0.235 | −0.595 | 0.054 | −0.960 | 0.181 | ||
OH | 0.707 | −0.760 | −0.387 | −0.227 | −0.970 | 0.921 | −0.595 | 0.440 | 0.798 | 0.682 | ||
AOX | −0.946 | −0.917 | −0.996 | −0.974 | −0.645 | 0.054 | 0.054 | 0.440 | 0.892 | −0.360 | ||
MIC E. coli | −0.990 | −0.998 | 0.850 | −0.769 | −0.921 | 0.500 | −0.960 | 0.798 | 0.892 | 0.104 | ||
MIC S. aureus | 0.034 | −0.044 | 0.435 | 0.557 | −0.484 | 0.913 | 0.181 | 0.682 | −0.360 | 0.104 | ||
Size | PDI | Ratio | ζ-potential | FC | CUPRAC | DPPH | OH | AOX | MIC E. coli | MIC S. aureus | ||
Sage (Salvia officinalis L.) | Size | −0.152 | 0.953 | −0.983 | 0.810 | 0.983 | 0.980 | 0.981 | −0.880 | 0.983 | 0.876 | |
PDI | −0.152 | 0.155 | 0.390 | 0.456 | −0.331 | 0.436 | −0.330 | −0.592 | −0.330 | 0.342 | ||
Ratio | 0.953 | 0.155 | −0.880 | 0.950 | −0.880 | 0.994 | 0.857 | −0.883 | 0.881 | 0.981 | ||
ζ-potential | −0.983 | 0.390 | −0.880 | −0.689 | −1 | −0.928 | −1 | 0.565 | −1 | −0.773 | ||
FC | 0.810 | 0.456 | 0.950 | −0.689 | 0.689 | 0.908 | 0.689 | −0.987 | 0.687 | 0.992 | ||
CUPRAC | 0.983 | −0.331 | −0.880 | −1 | 0.689 | 0.928 | 1 | −0.565 | −1 | 0.773 | ||
DPPH | 0.980 | 0.436 | 0.994 | −0.928 | 0.908 | 0.928 | 0.929 | −0.565 | 0.928 | 0.953 | ||
OH | 0.981 | −0.330 | 0.857 | −1 | 0.689 | 1 | 0.929 | −0.565 | 1 | 0.748 | ||
AOX | −0.880 | −0.592 | −0.883 | 0.565 | −0.987 | −0.565 | −0.565 | −0.565 | −0.565 | −0.960 | ||
MIC E. coli | 0.983 | −0.330 | 0.881 | −1 | 0.687 | −1 | 0.928 | 1 | −0.565 | 0.773 | ||
MIC S. aureus | 0.876 | 0.342 | 0.981 | −0.773 | 0.992 | 0.773 | 0.953 | 0.748 | −0.960 | 0.773 | ||
Size | PDI | Ratio | ζ-potential | FC | CUPRAC | DPPH | OH | AOX | MIC E. coli | MIC S. aureus | ||
Nettle (Urtica L.) | Size | 0.906 | −0.829 | −0.788 | 0.585 | −0.919 | 0.898 | −0.176 | −0.868 | −0.528 | 0.471 | |
PDI | 0.906 | −0.518 | −0.423 | −0.669 | −0.664 | 0.892 | −0.577 | −0.575 | −0.839 | −0.051 | ||
Ratio | −0.829 | −0.518 | 0.994 | −0.288 | 0.983 | −0.075 | −0.399 | 0.997 | −0.031 | 0.881 | ||
ζ-potential | −0.788 | −0.423 | 0.994 | −0.968 | 0.958 | 0.032 | −0.495 | 0.984 | −0.138 | 0.927 | ||
FC | 0.585 | −0.669 | −0.288 | −0.968 | −0.857 | −0.278 | 0.695 | −0.910 | 0.378 | 0.321 | ||
CUPRAC | −0.919 | −0.664 | 0.983 | 0.958 | −0.857 | −0.255 | −0.226 | 0.993 | 0.151 | 0.780 | ||
DPPH | 0.898 | 0.892 | −0.075 | 0.032 | −0.278 | −0.255 | −0.884 | 0.983 | −0.994 | 0.405 | ||
OH | −0.176 | −0.577 | −0.399 | −0.495 | 0.695 | −0.226 | −0.884 | −0.417 | 0.928 | 0.785 | ||
AOX | −0.868 | −0.575 | 0.997 | 0.984 | −0.910 | 0.993 | 0.983 | −0.417 | 0.038 | 0.846 | ||
MIC E. coli | −0.528 | −0.839 | −0.031 | −0.138 | 0.378 | 0.151 | −0.994 | 0.928 | 0.038 | −0.500 | ||
MIC S. aureus | 0.471 | −0.051 | 0.881 | 0.927 | 0.321 | 0.780 | 0.405 | 0.785 | 0.846 | −0.500 | ||
Size | PDI | Ratio | ζ-potential | FC | CUPRAC | DPPH | OH | AOX | MIC E. coli | MIC S. aureus | ||
Hop (Humulus L.) | Size | 0.781 | 0.951 | 0.517 | 0.867 | 0.983 | 0.999 | 0.999 | 0.901 | −0.941 | −0.941 | |
PDI | 0.781 | 0.865 | 0.938 | 0.988 | 0.654 | 0.778 | 0.692 | 0.433 | −0.525 | 0.525 | ||
Ratio | 0.951 | 0.865 | 0.639 | 0.932 | 0.944 | 0.988 | 0.961 | 0.826 | −0.880 | 0.880 | ||
ζ-potential | 0.517 | 0.938 | 0.639 | 0.876 | 0.353 | 0.514 | 0.402 | 0.096 | −0.200 | 0.200 | ||
FC | 0.867 | 0.988 | 0.932 | 0.876 | 0.762 | 0.865 | 0.795 | 0.566 | −0.649 | 0.649 | ||
CUPRAC | 0.983 | 0.654 | 0.944 | 0.353 | 0.762 | 0.984 | 0.998 | 0.965 | −0.987 | 0.987 | ||
DPPH | 0.999 | 0.778 | 0.988 | 0.514 | 0.865 | 0.984 | 0.992 | 0.965 | −0.943 | 0.943 | ||
OH | 0.999 | 0.692 | 0.961 | 0.402 | 0.795 | 0.998 | 0.992 | 0.794 | −0.977 | 0.977 | ||
AOX | 0.901 | 0.433 | 0.826 | 0.096 | 0.566 | 0.965 | 0.965 | 0.794 | −0.994 | 0.994 | ||
MIC E. coli | −0.941 | −0.525 | −0.880 | −0.200 | −0.649 | −0.987 | −0.943 | −0.977 | −0.994 | −1 | ||
MIC S. aureus | −0.941 | 0.525 | 0.880 | 0.200 | 0.649 | 0.987 | 0.943 | 0.977 | 0.994 | −1 | ||
Size | PDI | Ratio | ζ-potential | FC | CUPRAC | DPPH | OH | AOX | MIC E. coli | MIC S. aureus | ||
Lemon balm (Melissa officinalis L.) | Size | 0.835 | 0.942 | 0.357 | 0.795 | 0.988 | −0.361 | −0.361 | 0.840 | −0.361 | 0.988 | |
PDI | 0.835 | 0.970 | 0.812 | 0.329 | 0.741 | 0.211 | 0.211 | 0.999 | 0.211 | 0.741 | ||
Ratio | 0.942 | 0.970 | 0.647 | 0.547 | 0.880 | −0.031 | −0.031 | 0.972 | −0.030 | 0.881 | ||
ζ-potential | 0.357 | 0.812 | 0.647 | −0.283 | 0.210 | 0.742 | 0.742 | 0.806 | 0.742 | 0.210 | ||
FC | 0.795 | 0.329 | 0.547 | −0.283 | 0.878 | −0.859 | −0.853 | 0.339 | −0.853 | 0.878 | ||
CUPRAC | 0.988 | 0.741 | 0.880 | 0.210 | 0.878 | −0.500 | −0.500 | 0.747 | −0.500 | 1 | ||
DPPH | −0.361 | 0.211 | −0.031 | 0.742 | −0.859 | −0.500 | 1 | 0.747 | 1 | −0.500 | ||
OH | −0.361 | 0.211 | −0.031 | 0.742 | −0.853 | −0.500 | 1 | 0.202 | 1 | 0.630 | ||
AOX | 0.840 | 0.999 | 0.972 | 0.806 | 0.339 | 0.747 | 0.747 | 0.202 | 0.202 | 0.747 | ||
MIC E. coli | −0.361 | 0.211 | −0.030 | 0.742 | −0.853 | −0.500 | 1 | 1 | 0.202 | −0.500 | ||
MIC S. aureus | 0.988 | 0.741 | 0.881 | 0.210 | 0.878 | 1 | −0.500 | 0.630 | 0.747 | −0.500 | ||
Size | PDI | Ratio | ζ-potential | FC | CUPRAC | DPPH | OH | AOX | MIC E. coli | MIC S. aureus | ||
Ribwort Plantain (Plantago lanceolata L.) | Size | 0.851 | 0.225 | 0.388 | 0.911 | −0.630 | −0.360 | 0.363 | 0.999 | 0.965 | −0.255 | |
PDI | 0.851 | 0.708 | 0.814 | 0.992 | −0.128 | 0.183 | −0.180 | 0.836 | 0.684 | 0.289 | ||
Ratio | 0.225 | 0.708 | 0.986 | 0.613 | 0.606 | 0.824 | −0.821 | 0.206 | −0.031 | 0.881 | ||
ζ-potential | 0.388 | 0.814 | 0.986 | 0.734 | 0.472 | 0.720 | −0.717 | 0.383 | 0.134 | 0.791 | ||
FC | 0.911 | 0.992 | 0.613 | 0.734 | −0.251 | 0.057 | −0.054 | 0.969 | 0.771 | 0.167 | ||
CUPRAC | −0.630 | −0.128 | 0.606 | 0.472 | −0.251 | 0.952 | −0.952 | −0.650 | −0.811 | 0.912 | ||
DPPH | −0.360 | 0.183 | 0.824 | 0.720 | 0.057 | 0.952 | −0.999 | −0.650 | 0.591 | 0.993 | ||
OH | 0.363 | −0.180 | −0.821 | −0.717 | −0.054 | −0.952 | −0.999 | 0.388 | 0.594 | −0.993 | ||
AOX | 0.999 | 0.836 | 0.206 | 0.383 | 0.969 | −0.650 | −0.650 | 0.388 | 0.972 | −0.282 | ||
MIC E. coli | 0.965 | 0.684 | −0.031 | 0.134 | 0.771 | −0.811 | 0.591 | 0.594 | 0.972 | 0.011 | ||
MIC S. aureus | −0.255 | 0.289 | 0.881 | 0.791 | 0.167 | 0.912 | 0.993 | −0.993 | −0.282 | 0.011 | ||
Size | PDI | Ratio | ζ-potential | FC | CUPRAC | DPPH | OH | AOX | MIC E. coli | MIC S. aureus | ||
Raspberry (Rubus idaeus L.) | Size | 0.064 | 0.974 | 0.989 | 0.536 | 0.873 | 0.904 | 0.080 | −0.937 | 0.964 | 0.813 | |
PDI | 0.064 | 0.285 | 0.352 | 0.876 | 0.544 | −0.369 | 0.989 | −0.360 | −0.202 | 0.634 | ||
Ratio | 0.974 | 0.285 | −0.997 | 0.711 | 0.960 | 0.784 | 0.140 | −0.898 | 0.881 | 0.922 | ||
ζ-potential | 0.989 | 0.352 | −0.997 | 0.759 | 0.977 | 0.740 | −0.209 | 0.746 | 0.845 | 0.947 | ||
FC | 0.536 | 0.876 | 0.711 | 0.759 | 0.881 | 0.124 | 0.794 | 0.133 | 0.294 | 0.928 | ||
CUPRAC | 0.873 | 0.544 | 0.960 | 0.977 | 0.881 | 0.579 | 0.413 | 0.587 | 0.712 | 0.994 | ||
DPPH | 0.904 | −0.369 | 0.784 | 0.740 | 0.124 | 0.579 | −0.503 | 0.587 | 0.985 | 0.484 | ||
OH | 0.080 | 0.989 | 0.140 | −0.209 | 0.794 | 0.413 | −0.503 | −0.695 | −0.345 | 0.512 | ||
AOX | −0.937 | −0.360 | −0.898 | 0.746 | 0.133 | 0.587 | 0.587 | −0.695 | 0.986 | 0.493 | ||
MIC E. coli | 0.964 | −0.202 | 0.881 | 0.845 | 0.294 | 0.712 | 0.985 | −0.345 | 0.986 | 1 | ||
MIC S. aureus | 0.813 | 0.634 | 0.922 | 0.947 | 0.928 | 0.994 | 0.484 | 0.512 | 0.493 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sentkowska, A.; Folcik, J.; Szmytke, J.; Grudniak, A. Is There Any Correlation Between Green Synthesis Parameters and the Properties of Obtained Selenium Nanoparticles? Molecules 2025, 30, 2865. https://doi.org/10.3390/molecules30132865
Sentkowska A, Folcik J, Szmytke J, Grudniak A. Is There Any Correlation Between Green Synthesis Parameters and the Properties of Obtained Selenium Nanoparticles? Molecules. 2025; 30(13):2865. https://doi.org/10.3390/molecules30132865
Chicago/Turabian StyleSentkowska, Aleksandra, Julia Folcik, Jakub Szmytke, and Anna Grudniak. 2025. "Is There Any Correlation Between Green Synthesis Parameters and the Properties of Obtained Selenium Nanoparticles?" Molecules 30, no. 13: 2865. https://doi.org/10.3390/molecules30132865
APA StyleSentkowska, A., Folcik, J., Szmytke, J., & Grudniak, A. (2025). Is There Any Correlation Between Green Synthesis Parameters and the Properties of Obtained Selenium Nanoparticles? Molecules, 30(13), 2865. https://doi.org/10.3390/molecules30132865