Understanding Bio-Orthogonal Strain-Driven Sydnone Cycloadditions: Data-Assisted Profiles and the Search for Linear Relationships
Abstract
1. Introduction
2. Materials and Methods
2.1. Electronic Structure Calculations
2.2. Conformational Analysis of BCN
2.3. Kinetic Calculations
3. Results and Discussion
3.1. Conformations of BCN
3.2. Reaction Mechanism for the Reaction of BCN and Sydnone H
3.3. Calculation of Rate Constants
3.4. Relationship of Electronic Effects with Rate Constants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. [Google Scholar] [CrossRef]
- Prescher, J.A.; Bertozzi, C.R. Chemistry in living systems. Nat. Chem. Biol. 2005, 1, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Sletten, E.; Bertozzi, C. Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality. Angew. Chem. Int. Ed. 2009, 48, 6974–6998. [Google Scholar] [CrossRef]
- Lang, K.; Chin, J.W. Bioorthogonal Reactions for Labeling Proteins. ACS Chem. Biol. 2014, 9, 16–20. [Google Scholar] [CrossRef]
- Ramil, C.P.; Lin, Q. Bioorthogonal chemistry: Strategies and recent developments. Chem. Commun. 2013, 49, 11007–11022. [Google Scholar] [CrossRef]
- Kenry; Liu, B. Bio-orthogonal Click Chemistry for In Vivo Bioimaging. Trends Chem. 2019, 1, 763–778. [Google Scholar] [CrossRef]
- Bird, R.E.; Lemmel, S.A.; Yu, X.; Zhou, Q.A. Bioorthogonal Chemistry and Its Applications. Bioconjugate Chem. 2021, 32, 2457–2479. [Google Scholar] [CrossRef]
- Scinto, S.L.; Bilodeau, D.A.; Hincapie, R.; Lee, W.; Nguyen, S.S.; Xu, M.; am Ende, C.W.; Finn, M.G.; Lang, K.; Lin, Q.; et al. Bioorthogonal chemistry. Nat. Rev. Methods Prim. 2021, 1, 30. [Google Scholar] [CrossRef]
- Taiariol, L.; Chaix, C.; Farre, C.; Moreau, E. Click and Bioorthogonal Chemistry: The Future of Active Targeting of Nanoparticles for Nanomedicines? Chem. Rev. 2022, 122, 340–384. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, Q. Bio-Orthogonal Chemistry in Cell Engineering. Adv. NanoBiomed Res. 2023, 3, 2200128. [Google Scholar] [CrossRef]
- Schauenburg, D.; Weil, T. Not So Bioorthogonal Chemistry. J. Am. Chem. Soc. 2025, 147, 8049–8062. [Google Scholar] [CrossRef] [PubMed]
- Ramsden, C.A. Heterocyclic mesomeric betaines: The recognition of five classes and nine sub-classes based on connectivity-matrix analysis. Tetrahedron 2013, 69, 4146–4159. [Google Scholar] [CrossRef]
- Ramsden, C.A.; Dumitrascu, F. Chapter Three—Type A mesoionic compounds (1980–2020). In Heterocyclic Mesomeric Betaines and Mesoionic Compounds; Advances in Heterocyclic Chemistry; Ramsden, C.A., Ed.; Academic Press: Cambridge, MA, USA, 2022; Volume 137, pp. 71–189. [Google Scholar] [CrossRef]
- International Union of Pure and Applied Chemistry (IUPAC). IUPAC Compendium of Chemical Terminology. 2025. Available online: https://doi.org/doi:10.1351/goldbook.M03842.
- Ávalos, M.; Babiano, R.; Cintas, P.; Jiménez, J.L.; Palacios, J.C. Exploiting Synthetic Chemistry with Mesoionic Rings: Improvements Achieved with Thioisomünchnones. Acc. Chem. Res. 2005, 38, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Browne, D.L.; Harrity, J.P. Recent developments in the chemistry of sydnones. Tetrahedron 2010, 66, 553–568. [Google Scholar] [CrossRef]
- Gribble, G.W. Mesoionic Oxazoles. In Oxazoles: Synthesis, Reactions, and Spectroscopy; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2003; Chapter 4; pp. 473–576. [Google Scholar] [CrossRef]
- García de la Concepción, J.; Martínez, R.F.; Cintas, P.; Jiménez, J.L. Cycloadditions with Mesoionic Dipoles: Strategy and Control. In Targets in Heterocyclic Systems; Italian Society of Chemistry: Rome, Italy, 2017; Chapter 21; pp. 228–253. [Google Scholar]
- García de la Concepción, J.; Ávalos, M.; Cintas, P.; Jiménez, J.L.; Light, M.E. On the dual reactivity of a Janus-type mesoionic dipole: Experiments and theoretical validation. Org. Biomol. Chem. 2018, 16, 4778–4783. [Google Scholar] [CrossRef]
- Romero-Fernández, M.P.; Cintas, P.; Rojas-Buzo, S. Switchable Cycloadditions of Mesoionic Dipoles: Refreshing up a Regioselective Approach to Two Distinctive Heterocycles. J. Org. Chem. 2022, 87, 12854–12866. [Google Scholar] [CrossRef]
- Porte, K.; Riomet, M.; Figliola, C.; Audisio, D.; Taran, F. Click and Bio-Orthogonal Reactions with Mesoionic Compounds. Chem. Rev. 2021, 121, 6718–6743. [Google Scholar] [CrossRef]
- Ribéraud, M.; Porte, K.; Chevalier, A.; Madegard, L.; Rachet, A.; Delaunay-Moisan, A.; Vinchon, F.; Thuéry, P.; Chiappetta, G.; Champagne, P.A.; et al. Fast and Bioorthogonal Release of Isocyanates in Living Cells from Iminosydnones and Cycloalkynes. J. Am. Chem. Soc. 2023, 145, 2219–2229. [Google Scholar] [CrossRef]
- Fumanal Idocin, A.; Specklin, S.; Taran, F. Sydnonimines: Synthesis, properties and applications in chemical biology. Chem. Commun. 2025, 61, 5704–5718. [Google Scholar] [CrossRef]
- Martins, M.A.P.; Orlando, T.; Rosa, J.M.L.; Lima, P.S.V.d.; Salbego, P.R.d.S. Evaluation of mesoionic compound aromaticity using the HOMHED index. CrystEngComm 2025, 27, 4264–4273. [Google Scholar] [CrossRef]
- Sterling, A.J.; Smith, R.C.; Anderson, E.A.; Duarte, F. Beyond Strain Release: Delocalization-Enabled Organic Reactivity. J. Org. Chem. 2024, 89, 9979–9989. [Google Scholar] [CrossRef] [PubMed]
- García de la Concepción, J.; Ávalos, M.; Cintas, P.; Jiménez, J.L. Computational Screening of New Orthogonal Metal-Free Dipolar Cycloadditions of Mesomeric Betaines. Chem. Eur. J. 2018, 24, 7507–7512. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Sakmar, T.P.; Huber, T. A simple method for enhancing the bioorthogonality of cyclooctyne reagent. Chem. Commun. 2016, 52, 5451–5454. [Google Scholar] [CrossRef] [PubMed]
- Dommerholt, J.; Schmidt, S.; Temming, R.; Hendriks, L.J.A.; Rutjes, F.P.J.T.; van Hest, J.C.M.; Lefeber, D.J.; Friedl, P.; van Delft, F.L. Readily Accessible Bicyclononynes for Bioorthogonal Labeling and Three-Dimensional Imaging of Living Cells. Angew. Chem. Int. Ed. 2010, 49, 9422–9425. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision A.03; Gaussian: Wallingford, CT, USA, 2016. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Francl, M.M.; Pietro, W.J.; Hehre, W.J.; Binkley, J.S.; Gordon, M.S.; DeFrees, D.J.; Pople, J.A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982, 77, 3654–3665. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Performance of SM6, SM8, and SMD on the SAMPL1 Test Set for the Prediction of Small-Molecule Solvation Free Energies. J. Phys. Chem. B 2009, 113, 4538–4543. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Vermeeren, P.; Dalla Tiezza, M.; Wolf, M.E.; Lahm, M.E.; Allen, W.D.; Schaefer, H.F.; Hamlin, T.A.; Bickelhaupt, F.M. Pericyclic reaction benchmarks: Hierarchical computations targeting CCSDT(Q)/CBS and analysis of DFT performance. Phys. Chem. Chem. Phys. 2022, 24, 18028–18042. [Google Scholar] [CrossRef]
- Alecu, I.M.; Zheng, J.; Zhao, Y.; Truhlar, D.G. Computational Thermochemistry: Scale Factor Databases and Scale Factors for Vibrational Frequencies Obtained from Electronic Model Chemistries. J. Chem. Theory Comput. 2010, 6, 2872–2887. [Google Scholar] [CrossRef] [PubMed]
- Hirshfeld, F.L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 1977, 44, 129–138. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 2024, 161, 082503. [Google Scholar] [CrossRef]
- Pracht, P.; Bohle, F.; Grimme, S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys. Chem. Chem. Phys. 2020, 22, 7169–7192. [Google Scholar] [CrossRef]
- Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-XTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar] [CrossRef]
- Plougastel, L.; Koniev, O.; Specklin, S.; Decuypere, E.; Créminon, C.; Buisson, D.A.; Wagner, A.; Kolodych, S.; Taran, F. 4-Halogeno-sydnones for fast strain promoted cycloaddition with bicyclo-[6.1.0]-nonyne. Chem. Commun. 2014, 50, 9376–9378. [Google Scholar] [CrossRef]
- Liu, H.; Audisio, D.; Plougastel, L.; Decuypere, E.; Buisson, D.A.; Koniev, O.; Kolodych, S.; Wagner, A.; Elhabiri, M.; Krzyczmonik, A.; et al. Ultrafast Click Chemistry with Fluorosydnones. Angew. Chem. Int. Ed. 2016, 55, 12073–12077. [Google Scholar] [CrossRef]
- Di Valentin, C.; Freccero, M.; Gandolfi, R.; Rastelli, A. Concerted vs Stepwise Mechanism in 1,3-Dipolar Cycloaddition of Nitrone to Ethene, Cyclobutadiene, and Benzocyclobutadiene. A Computational Study. J. Org. Chem. 2000, 65, 6112–6120. [Google Scholar] [CrossRef]
- Cantillo, D.; Ávalos, M.; Babiano, R.; Cintas, P.; Jiménez, J.L.; Light, M.E.; Palacios, J.C. Thionation of Mesoionics with Isothiocyanates: Evidence Supporting a Four-Step Domino Process and Ruling Out a [2 + 2] Mechanism. J. Org. Chem. 2009, 74, 3698–3705. [Google Scholar] [CrossRef]
- Houk, K.N.; Sims, J.; Watts, C.R.; Luskus, L.J. Origin of reactivity, regioselectivity, and periselectivity in 1,3-dipolar cycloadditions. J. Am. Chem. Soc. 1973, 95, 7301–7315. [Google Scholar] [CrossRef]
- Levandowski, B.J.; Svatunek, D.; Sohr, B.; Mikula, H.; Houk, K.N. Secondary Orbital Interactions Enhance the Reactivity of Alkynes in Diels–Alder Cycloadditions. J. Am. Chem. Soc. 2019, 141, 2224–2227. [Google Scholar] [CrossRef] [PubMed]
- da Silva Filho, A.J.; da Cruz Dantas, L.; de Santana, O.L. Diradicalar Character and Ring Stability of Mesoionic Heterocyclic Oxazoles and Thiazoles by Ab Initio Mono and Multi-Reference Methods. Molecules 2020, 25, 4524. [Google Scholar] [CrossRef] [PubMed]
- Henneveld, J.S.; Lucas, N.T.; Bissember, A.C.; Hawkins, B.C. Dipole-Transmissive 1,3-Dipolar Cycloadditions: Modular, Diversity-Oriented Synthesis of Polycyclic Alkaloid Scaffolds. Org. Lett. 2025, 27, 5917–5923. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Tang, C.; Zhao, R.; Wang, Y.; Jiao, H.; Ang, H.; Chen, Y.; Wang, X.; Liang, Y. Sydnthiones are versatile bioorthogonal hydrogen sulfide donors. Nat. Commun. 2024, 15, 10288. [Google Scholar] [CrossRef]
- March, J. Advanced Organic Chemistry; Wiley-Interscience: Hoboken, NJ, USA, 1992; p. 280. [Google Scholar]
Sydnone | |||
---|---|---|---|
OMe | 0.006 | 0.048 | 0.021 |
Me | 0.032 | 0.052 | 0.023 |
H | 0.027 | 0.075 | 0.033 |
CO | 0.059 | 0.301 | 0.133 |
CF | 0.199 | 0.386 | 0.171 |
NO | 0.289 | 0.480 | 0.213 |
MeF | 42.0 | 61.0 | 27.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García de la Concepción, J.; Cintas, P.; Martínez, R.F. Understanding Bio-Orthogonal Strain-Driven Sydnone Cycloadditions: Data-Assisted Profiles and the Search for Linear Relationships. Molecules 2025, 30, 2770. https://doi.org/10.3390/molecules30132770
García de la Concepción J, Cintas P, Martínez RF. Understanding Bio-Orthogonal Strain-Driven Sydnone Cycloadditions: Data-Assisted Profiles and the Search for Linear Relationships. Molecules. 2025; 30(13):2770. https://doi.org/10.3390/molecules30132770
Chicago/Turabian StyleGarcía de la Concepción, Juan, Pedro Cintas, and Rafael Fernando Martínez. 2025. "Understanding Bio-Orthogonal Strain-Driven Sydnone Cycloadditions: Data-Assisted Profiles and the Search for Linear Relationships" Molecules 30, no. 13: 2770. https://doi.org/10.3390/molecules30132770
APA StyleGarcía de la Concepción, J., Cintas, P., & Martínez, R. F. (2025). Understanding Bio-Orthogonal Strain-Driven Sydnone Cycloadditions: Data-Assisted Profiles and the Search for Linear Relationships. Molecules, 30(13), 2770. https://doi.org/10.3390/molecules30132770