Bee Pollen as a Dietary Mineral Source: In Vitro Bioaccessibility and Health Risk Evaluation
Abstract
1. Introduction
2. Results and Discussion
2.1. Botanical Origins and Mineral Composition of Undigested Bee Pollens
2.2. Mineral Composition Changes During In Vitro Digestion and Bioaccessibility Results
2.3. Assessment of Nutritional Value and Potential Health Risks
3. Materials and Methods
3.1. Materials
3.2. Analytical Methods
3.2.1. Palynological Analysis of Bee Pollen Samples
3.2.2. In Vitro Digestion
3.2.3. Mineral Composition Analysis of Bee Pollen Samples
3.2.4. Contribution of Minerals to the Recommended Daily Allowance, and Their Health Risk Assessment
3.2.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aylanc, V.; Falcão, S.I.; Vilas-Boas, M. Bee pollen and bee bread nutritional potential: Chemical composition and macronutrient digestibility under in vitro gastrointestinal system. Food Chem. 2023, 413, 135597. [Google Scholar] [CrossRef] [PubMed]
- Kolayli, S.; Birinci, C.; Kanbur, E.D.; Ucurum, O.; Kara, Y.; Takma, C. Comparison of biochemical and nutritional properties of bee pollen samples according to botanical differences. Eur. Food Res. Technol. 2024, 250, 799–810. [Google Scholar] [CrossRef]
- Mayda, N.; Özkök, A.; Ecem Bayram, N.; Gerçek, Y.C.; Sorkun, K. Bee bread and bee pollen of different plant sources: Determination of phenolic content, antioxidant activity, fatty acid and element profiles. Food Meas. Charact. 2020, 14, 1795–1809. [Google Scholar] [CrossRef]
- Erdoğan, A.; Şeker, M.E.; Kahraman, S.D. Evaluation of environmental and nutritional aspects of bee pollen samples collected from East Black Sea region, Turkey, via elemental analysis by ICP-MS. Biol. Trace Elem. Res. 2023, 201, 1488–1502. [Google Scholar] [CrossRef] [PubMed]
- Pohl, P.; Dzimitrowicz, A.; Greda, K.; Jamroz, P.; Lesniewicz, A.; Szymczycha-Madeja, A.; Welna, M. Element analysis of bee-collected pollen and bee bread by atomic and mass spectrometry–methodological development in addition to environmental and nutritional aspects. TrAC-Trends Anal. Chem. 2020, 128, 115922. [Google Scholar] [CrossRef]
- Valverde, S.; Tapia, J.A.; Pérez-Sanz, A.; González-Porto, A.V.; Higes, M.; Lucena, J.J.; Martín-Hernández, R.; Bernal, J. Mineral composition of bee pollen and its relationship with botanical origin and harvesting period. J. Food Compos. Anal. 2023, 119, 105235. [Google Scholar] [CrossRef]
- Luz, G.M.; Orlando, E.A.; Rebellato, A.P.; Greiner, R.; Pallone, J.A.L. Essential minerals and anti-nutritional compounds in plant-based burgers using the INFOGEST in vitro digestion protocol. J. Food Compos. Anal. 2024, 135, 106574. [Google Scholar] [CrossRef]
- Kostić, A.Ž.; Pešić, M.B.; Mosić, M.D.; Dojčinović, B.P.; Natić, M.M.; Trifković, J.Đ. Mineral content of bee pollen from Serbia. Arh. Hig. Rada Toksikol. 2015, 66, 251–258. [Google Scholar] [CrossRef]
- El Hosry, L.; Sok, N.; Richa, R.; Al Mashtoub, L.; Cayot, P.; Bou-Maroun, E. Sample preparation and analytical techniques in the determination of trace elements in food: A review. Foods 2023, 12, 895. [Google Scholar] [CrossRef]
- Ibourki, M.; Hallouch, O.; Devkota, K.; Guillaume, D.; Hirich, A.; Gharby, S. Elemental analysis in food: An overview. J. Food Compos. Anal. 2023, 120, 105330. [Google Scholar] [CrossRef]
- Oliveira, S.R.; Chacon-Madrid, K.; Arruda, M.A.Z.; Júnior, F.B. In vitro gastrointestinal digestion to evaluate the total, bioaccessible and bioavailable concentrations of iron and manganese in açaí (Euterpe oleracea Mart.) pulps. J. Trace Elem. Med. Biol. 2019, 53, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Bohn, T.; Carriere, F.; Day, L.; Deglaire, A.; Egger, L.; Freitas, D.; Golding, M.; Le Feunteun, S.; Macierzanka, A.; Ménard, O. Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Crit. Rev. Food Sci. Nutr. 2018, 58, 2239–2261. [Google Scholar] [CrossRef]
- Aylanc, V.; Tomás, A.; Russo-Almeida, P.; Falcão, S.I.; Vilas-Boas, M. Assessment of bioactive compounds under simulated gastrointestinal digestion of bee pollen and bee bread: Bioaccessibility and antioxidant activity. Antioxidants 2021, 10, 651. [Google Scholar] [CrossRef]
- Mutlu, C.; Erbas, M. Turkish bee pollen: Composition, regional discrimination and polyphenol bioaccessibility. Food Biosci. 2023, 53, 102805. [Google Scholar] [CrossRef]
- ISO/FDIS 24382:2023; Bee Pollen—Specifications. ISO/TC 34/SC 19. Secretariat: SAC; ISO: Geneva, Switzerland, 2023.
- Asmae, E.G.; Nawal, E.M.; Bakour, M.; Lyoussi, B. Moroccan monofloral bee pollen: Botanical origin, physicochemical characterization, and antioxidant activities. J. Food Qual. 2021, 2021, 8877266. [Google Scholar] [CrossRef]
- Çobanoğlu, D.N.; Kizilpinar Temizer, İ.; Candan, E.D.; Yolcu, U.; Güder, A. Evaluation of the nutritional value of bee pollen by palynological, antioxidant, antimicrobial, and elemental characteristics. Eur. Food Res. Technol. 2023, 249, 307–325. [Google Scholar] [CrossRef]
- Topal, E.; Çakıcı, N.; Mărgăoan, R.; Takma, Ç.; Güney, F.; Kösoğlu, M.; Cornea-Cipcigan, M.; Atmaca, H. Annual development performance of fixed honeybee colonies linked with chemical and mineral profile of bee collected pollen. Chem. Biodivers. 2022, 19, e202200468. [Google Scholar] [CrossRef]
- Zafeiraki, E.; Kasiotis, K.M.; Nisianakis, P.; Manea-Karga, E.; Machera, K. Occurrence and human health risk assessment of mineral elements and pesticides residues in bee pollen. Food Chem. Toxicol. 2022, 161, 112826. [Google Scholar] [CrossRef]
- Stanciu, O.; Mărghitaş, L.A.; Dezmirean, D.; Campos, M. A comparison between the mineral content of flower and honeybee collected pollen of selected plant origin (Helianthus annuus L. and Salix sp.). Rom. Biotechnol. Lett. 2011, 16, 6291–6296. [Google Scholar]
- Scrob, T.; Covaci, E.; Hosu, A.; Tanaselia, C.; Casoni, D.; Torok, A.I.; Frentiu, T.; Cimpoiu, C. Effect of in vitro simulated gastrointestinal digestion on some nutritional characteristics of several dried fruits. Food Chem. 2022, 385, 132713. [Google Scholar] [CrossRef]
- Ceccanti, C.; Guidi, L.; D’Alessandro, C.; Cupisti, A. Potassium bioaccessibility in uncooked and cooked plant foods: Results from a static in vitro digestion methodology. Toxins. 2022, 14, 668. [Google Scholar] [CrossRef] [PubMed]
- Caetano-Silva, M.E.; Netto, F.M.; Bertoldo-Pacheco, M.T.; Alegría, A.; Cilla, A. Peptide-metal complexes: Obtention and role in increasing bioavailability and decreasing the pro-oxidant effect of minerals. Crit. Rev. Food Sci. Nutr. 2021, 61, 1470–1489. [Google Scholar] [CrossRef]
- Dias, M.I.; Morales, P.; Barreira, J.C.; Oliveira, M.B.P.; Sánchez-Mata, M.C.; Ferreira, I.C. Minerals and vitamin B9 in dried plants vs. infusions: Assessing absorption dynamics of minerals by membrane dialysis tandem in vitro digestion. Food Biosci. 2016, 13, 9–14. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Panozzo, J.; Hall, M.S.; Ajlouni, S. Bioaccessibility of some essential minerals in three selected Australian pulse varieties using an in vitro gastrointestinal digestion model. J. Food Sci. 2018, 83, 2873–2881. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, P.; Kaur, J.; Rasane, P. Bee pollen: A superfood with health benefits and digestibility challenges. J. Food Chem. Nanotechnol. 2023, 9, S483–S489. [Google Scholar]
- Sumczynski, D.; Fišera, M.; Salek, R.N.; Orsavová, J. The effect of flake production and in vitro digestion on releasing minerals and trace elements from wheat flakes: The extended study of dietary intakes for individual life stage groups. Nutrients 2023, 15, 2509. [Google Scholar] [CrossRef]
- Maares, M.; Haase, H. A guide to human zinc absorption: General overview and recent advances of in vitro intestinal models. Nutrients 2020, 12, 762. [Google Scholar] [CrossRef]
- Gyamfi, E.T.; Ackah, M.; Gore, D.B. Bioaccessibility, exposure and risk assessment of potentially toxic elements and essential micronutrients in ayurvedic, traditional Chinese and Ghanaian medicines. Biometals 2023, 36, 943–960. [Google Scholar] [CrossRef]
- Erdemir, U.S.; Gucer, S. Assessment of in vitro bioaccessibility of manganese in wheat flour by ICP-MS and on-line coupled with HPLC. J. Cereal Sci. 2016, 69, 199–206. [Google Scholar] [CrossRef]
- Affonfere, M.; Chadare, F.J.; Fassinou, F.T.K.; Linnemann, A.R.; Duodu, K.G. In-vitro digestibility methods and factors affecting minerals bioavailability: A review. Food Rev. Int. 2023, 39, 1014–1042. [Google Scholar] [CrossRef]
- European Parliament and Council of the European Union. Regulation (EU) No. 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers. Off. J. Eur. Union 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32011R1169 (accessed on 10 May 2025).
- Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem. 2019, 195, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Erdoğan, A.; Şeker, M.E.; Yüksel, B.; Ustaoğlu, F.; Yazman, M.M. Elemental composition and nutritional values of chocolate bars available in Turkish markets: An integrated health risk assessment study. J. Food Compos. Anal. 2024, 135, 106629. [Google Scholar] [CrossRef]
- Barth, O.M.; Freitas, A.S.; Oliveira, É.S.; Silva, R.A.; Maester, F.M.; Andrella, R.R.; Cardozo, G.M. Evaluation of the botanical origin of commercial dry bee pollen load batches using pollen analysis: A proposal for technical standardization. An. Acad. Bras. Ciênc. 2010, 82, 893–902. [Google Scholar] [CrossRef]
- Erdtman, G. Handbook of Palynology: Morphology-Taxonomy-Ecology: An Introduction to the Study of Pollen Grains and Spores; Hafner Publishing: New York, NY, USA, 1969; 486p. [Google Scholar]
- Ricciardelli D’ Albore, G. Textbook of Melissopalynology; Apimondia: Bucharest, Romania, 1997. [Google Scholar]
- Corvucci, F.; Nobili, L.; Melucci, D.; Grillenzoni, F.-V. The discrimination of honey origin using melissopalynology and Raman spectroscopy techniques coupled with multivariate analysis. Food Chem. 2015, 169, 297–304. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Huertas, R.; Allwood, J.W.; Hancock, R.D.; Stewart, D. Iron and zinc bioavailability in common bean (Phaseolus vulgaris) is dependent on chemical composition and cooking method. Food Chem. 2022, 387, 132900. [Google Scholar] [CrossRef]
- Ghosh, S.; Kim, M.-J.; Sun, S.; Jung, C. Amino acid profile and mineral content of cultivated snails Acusta despecta and Achatina fulica: Assessing their potential as nutritional source. Foods 2025, 14, 123. [Google Scholar] [CrossRef]
Samples | Dominant Pollen (>%45) | Secondary Pollen (%16–45) | Minor Pollen (%3–15) | Trace Pollen (<%3) | Botanical Origin | Location |
---|---|---|---|---|---|---|
BP1 | - | Fabaceae: 43 Rosaceae: 31 Asteraceae: 25 | - | Lamiaceae: 1.2 | Multifloral | Antalya |
BP2 | Salix spp.: 48 | Fabaceae: 38 | Cistaceae: 4.8 Onobrychis spp.: 4.8 Rosaceae: 4.8 | - | Multifloral | Iğdır |
BP3 | Nigella spp.: 85 | - | Apiaceae: 9.1 Rosaceae: 3.4 | Brassicaceae: 1.1 Cistaceae: 1.1 | Nigella spp. | Denizli |
BP4 | - | Brassicaceae: 29 | Trifolium spp.: 15 Asteraceae: 12 Campanula spp.: 12 Papaveraceae: 10 Lamiaceae: 7.5 Cistaceae: 6.2 Echium spp.: 6.2 | Onobrychis spp.: 1.2 | Multifloral | Adıyaman |
BP5 | Helianthus annuus: 90 | Chenopodiaceae: 6.9 | - | Cephalaria spp.: 1.0 Fabaceae: 1.0 Xanthium spp.: 1.0 | Helianthus annuus | Konya |
BP6 | - | Brassicaceae: 44 Cistaceae: 16 | Rosaceae: 15 Salix spp.: 7.4 Echium spp.: 6.5 Cichorium spp.: 5.5 Papaveraceae: 4.6 | Fabaceae: 0.9 | Multifloral | Samsun |
BP7 | Castanea sativa: 83 | - | Lineria spp.: 6.9 | Cistaceae: 2.8 Brassicaceae: 2.1 Fabaceae: 2.1 Geraniaceae: 2.1 Rosaceae: 1.4 | Castanea sativa | Yalova |
Sample Name | K | Ca | ||||||
Undigested | Oral | Gastric | Intestinal | Undigested | Oral | Gastric | Intestinal | |
BP1 | 3410 Cc ± 10 | 2609 Ec ± 296 | 8092 BAa ± 66 | 7071 Ab ± 144 | 293 Eb ± 7 | 65 Dc ± 9 | 654 Ba ± 8 | 42 DCc ± 6 |
BP2 | 2420 Dc ± 38 | 4514 DCb ± 301 | 7715 Ba ± 294 | 5458 CBb ± 49 | 433 Db ± 8 | 196 CBc ± 14 | 799 Aa ± 8 | 142 Bc ± 4 |
BP3 | 3228 Cc ± 39 | 5728 DCBb ± 367 | 7744 Ba ± 33 | 6784 BAba ± 366 | 96 Fb ± 6 | 70 Dc ± 1 | 356 Ca ± 1 | 13 Dd ± 1 |
BP4 | 3304 Cc ± 40 | 5979 CBb ± 457 | 7772 Ba ± 160 | 5826 CBAb ± 288 | 431 Db ± 13 | 230 BAc ± 4 | 612 Ba ± 21 | 187 Ac ± 8 |
BP5 | 2476 Db ± 112 | 4330 Da ± 91 | 5548 Ca ± 398 | 5126 Ca ± 344 | 570 Ca ± 16 | 188 Cb ± 2 | 593 Ba ± 50 | 168 BAb ± 7 |
BP6 | 3963 Bc ± 93 | 7136 BAba ± 7 | 8582 BAa ± 524 | 6288 CBAb ± 263 | 667 Ba ± 10 | 246 Ac ± 1 | 602 Bb ± 6 | 72 Cd ± 10 |
BP7 | 6854 Ab ± 87 | 8643 Aa ± 225 | 9380 Aa ± 160 | 7131 Ab ± 146 | 835 Aa ± 21 | 203 CBc ± 6 | 564 Bb ± 22 | 145 Bc ± 6 |
Sample Name | Mg | Fe | ||||||
Undigested | Oral | Gastric | Intestinal | Undigested | Oral | Gastric | Intestinal | |
BP1 | 623 Cb ± 3 | 258 Dc ± 9 | 1002 BAa ± 1 | 648 Bb ± 16 | 70 Ba ± 1 | 2.3 CBb ± 0.2 | 1.4 EDb ± 0.1 | 1.0 Bb ± 0.2 |
BP2 | 537 Dc ± 10 | 362 DCd ± 24 | 845 Ba ± 5 | 651 Bb ± 12 | 28 EDa ± 0 | 1.1 DCd ± 0.1 | 2.2 DCc ± 0.2 | 3.6 Bb ± 0 |
BP3 | 330 Fc ± 0 | 336 DCc ± 2 | 537 Da ± 5 | 416 Db ± 7 | 31 Da ± 1 | 1.7 DCBd ± 0.0 | 5.7 Bb ± 0.2 | 3.6 Bc ± 0.2 |
BP4 | 636 Cb ± 3 | 608 Bb ± 33 | 821 CBa ± 34 | 707 BAba ± 23 | 34 DCa ± 0 | 2.4 Bb ± 0.1 | 3.5 Cb ± 0.1 | 8.8 Ab ± 2.3 |
BP5 | 472 Ecb ± 3 | 423 Cc ± 4 | 649 DCa ± 23 | 513 Cb ± 7 | 38 Ca ± 1 | 1.0 Db ± 0.0 | 0.8 Eb ± 0.1 | 2.4 Bb ± 0.2 |
BP6 | 1075 Aba ± 12 | 879 Acb ± 38 | 1132 Aa ± 78 | 764 Ac ± 10 | 24 Ea ± 1 | 2.2 DCBb ± 0.0 | 3.0 Cb ± 0.2 | 1.8 Bb ± 0.1 |
BP7 | 698 Ba ± 2 | 415 Cb ± 31 | 647 DCa ± 2 | 469 DCb ± 7 | 178 Aa ± 1 | 4.9 Ac ± 0.6 | 16.9 Ab ± 0.6 | 1.6 Bc ± 0.2 |
Sample name | Mn | Cu | ||||||
Undigested | Oral | Gastric | Intestinal | Undigested | Oral | Gastric | Intestinal | |
BP1 | 28.0 Ca ± 0.9 | 2.78 Ec ± 0.3 | 24.5 Cb ± 0.5 | 1.7 Ec ± 0.2 | 7.4 Ca ± 0.0 | 1.9 CBb ± 0.1 | 1.8 CBb ± 0.0 | 1.9 CBb ± 0.0 |
BP2 | 67.2 Ba ± 0.2 | 15.26 Bc ± 1.6 | 47.9 Bb ± 0.0 | 7.8 Bd ± 0.1 | 6.8 Da ± 0.0 | 1.7 Cc ± 0.1 | 2.4 BAb ± 0.1 | 2.4 BAb ± 0.0 |
BP3 | 19.5 Da ± 0.2 | 10.87 Cb ± 0.0 | 19.2 Da ± 0.2 | 7.8 Bc ± 0.2 | 6.1 Ea ± 0.0 | 1.0 Db ± 0.1 | 1.2 DCb ± 0.0 | 1.7 DCb ± 0.2 |
BP4 | 19.6 Da ± 0.2 | 11.42 Cc ± 0.1 | 17.1 Eb ± 0.2 | 5.0 Cd ± 0.3 | 8.8 Ba ± 0.1 | 2.2 BAb ± 0.0 | 1.3 DCc ± 0.1 | 1.5 DCc ± 0.0 |
BP5 | 10.2 Ea ± 0.3 | 6.18 EDb ± 0.1 | 9.7 Ga ± 0.3 | 3.3 Dc ± 0.1 | 7.7 Ca ± 0.2 | 1.8 CBc ± 0.1 | 1.6 Cc ± 0.1 | 2.7 Ab ± 0.1 |
BP6 | 14.6 EDa ± 0.3 | 9.64 DCb ± 0.1 | 14.3 Fa ± 0.2 | 1.6 Ec ± 0.1 | 8.5 Ba ± 0.0 | 2.4 Ab ± 0.0 | 2.4 Ab ± 0.1 | 2.4 BAb ± 0.2 |
BP7 | 101.4 Aa ± 2.3 | 36.39 Ac ± 0.4 | 67.4 Ab ± 0.4 | 23.4 Ad ± 0.6 | 11.6 Aa ± 0.1 | 0.8 Db ± 0.0 | 0.9 Db ± 0.3 | 1.0 Db ± 0.1 |
Sample name | Zn | |||||||
Undigested | Oral | Gastric | Intestinal | |||||
BP1 | 144.8 Ba ± 0.9 | 17.9 Dc ± 0.9 | 102.6 Bb ± 0.3 | nd | ||||
BP2 | 97.9 Ea ± 0.4 | 30.1 Cc ± 2.6 | 69.7 Eb ± 0.2 | 32.8 Ac ± 0.9 | ||||
BP3 | 119.6 Ca ± 0.0 | 51.1 Bc ± 0.1 | 92.5 Cb ± 1.0 | nd | ||||
BP4 | 100.7 Ea ± 0.1 | 56.7 Bc ± 0.2 | 77.3 Db ± 1.1 | 4.0 Cd ± 0.1 | ||||
BP5 | 106.1 Da ± 0.8 | 56.2 Bc ± 0.8 | 74.3 EDb ± 0.8 | 12.4 Bd ± 0.6 | ||||
BP6 | 89.7 Fa ± 0.4 | 51.3 Bc ± 1.5 | 63.4 Fb ± 0.5 | nd | ||||
BP7 | 178.6 Aa ± 0.9 | 86.5 Ac ± 0.2 | 126.0 Ab ± 1.9 | 5.5 Cd ± 0.5 |
Minerals | RDA Values (mg) | RDA% | EDI Values (mg/kg bw/day) | THQ Values | HI Values | |||||
---|---|---|---|---|---|---|---|---|---|---|
Women | Men | Women | Men | Women | Men | Women | Men | Women | Men | |
K | 2600 | 3400 | 9.6 | 7.4 | 4.165 | 3.570 | - | 0.086 | 0.073 | |
Ca | 1000 | 1000 | 0.4 | 0.4 | 0.071 | 0.061 | - | |||
Mg | 320 | 420 | 7.4 | 5.7 | 0.397 | 0.340 | - | |||
Fe | 18 | 8 | 0.6 | 1.4 | 0.002 | 0.002 | 0.003 | 0.002 | ||
Mn | 1.8 | 2.3 | 16.0 | 12.5 | 0.005 | 0.004 | 0.034 | 0.029 | ||
Cu | 0.9 | 0.9 | 8.3 | 8.3 | 0.001 | 0.001 | 0.031 | 0.027 | ||
Zn | 8 | 11 | 3.9 | 2.8 | 0.005 | 0.004 | 0.017 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutlu, C.; Aylanc, V.; Vilas-Boas, M. Bee Pollen as a Dietary Mineral Source: In Vitro Bioaccessibility and Health Risk Evaluation. Molecules 2025, 30, 2745. https://doi.org/10.3390/molecules30132745
Mutlu C, Aylanc V, Vilas-Boas M. Bee Pollen as a Dietary Mineral Source: In Vitro Bioaccessibility and Health Risk Evaluation. Molecules. 2025; 30(13):2745. https://doi.org/10.3390/molecules30132745
Chicago/Turabian StyleMutlu, Ceren, Volkan Aylanc, and Miguel Vilas-Boas. 2025. "Bee Pollen as a Dietary Mineral Source: In Vitro Bioaccessibility and Health Risk Evaluation" Molecules 30, no. 13: 2745. https://doi.org/10.3390/molecules30132745
APA StyleMutlu, C., Aylanc, V., & Vilas-Boas, M. (2025). Bee Pollen as a Dietary Mineral Source: In Vitro Bioaccessibility and Health Risk Evaluation. Molecules, 30(13), 2745. https://doi.org/10.3390/molecules30132745