Application of Liquid Chromatography–Mass Spectrometry-Based Untargeted Metabolomics to Reveal Metabolites Related to Antioxidant Activity in Buckwheat Honey
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Data Processing Parameters
2.2. Principal Component Analysis (PCA)
2.3. Orthogonal Projections to Latent Structures (OPLS-DA)
2.4. Identification of Marker Compounds Associated with Increased Antioxidant Activity
2.5. Antioxidant Activity and Total Phenolic Content
3. Materials and Methods
3.1. Chemicals and Instruments
3.2. Sample Preparation
3.3. LC-MS Analysis
3.4. Chemometric Analysis of the LC-MS Fingerprints
3.5. Statistical Analysis
3.6. Antioxidant Activity Tests
3.6.1. Total Phenolic Content (TPC)
3.6.2. Antiradical Activity (DPPH Assay)
3.6.3. Total Antioxidant Activity (FRAP Assay)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LC-MS | Liquid Chromatography–Mass Spectrometry |
PCA | Principal Component Analysis |
OPLS-DA | Orthogonal Projections to Latent Structures Discriminant Analysis |
QC | Quality Control |
TPC | Total Phenolic Content |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl (radical scavenging assay) |
FRAP | Ferric Reducing Antioxidant Power |
RT | Retention Time |
ESI+/ESI− | Electrospray Ionization Positive / Negative Mode |
MS/MS | Tandem Mass Spectrometry |
UV | Ultraviolet (Spectroscopy) |
GAE | Gallic Acid Equivalent |
References
- Gośliński, M.; Nowak, D.; Szwengiel, A. Multidimensional comparative analysis of bioactive phenolic compounds of honeys of various origin. Antioxidants 2021, 10, 530. [Google Scholar] [CrossRef] [PubMed]
- Kunat-Budzyńska, M.; Rysiak, A.; Wiater, A.; Grąz, M.; Andrejko, M.; Budzyński, M.; Bryś, M.S.; Sudziński, M.; Tomczyk, M.; Gancarz, M.; et al. Chemical Composition and Antimicrobial Activity of New Honey Varietals. Int. J. Environ. Res. Public Health 2023, 20, 2458. [Google Scholar] [CrossRef] [PubMed]
- Becerril-Sánchez, A.L.; Quintero-salazar, B.; Dublán-garcía, O.; Escalona-buendía, H.B. Phenolic compounds in honey and their relationship with antioxidant activity, botanical origin, and color. Antioxidants 2021, 10, 1700. [Google Scholar] [CrossRef]
- Waheed, M.; Hussain, M.B.; Javed, A.; Mushtaq, Z.; Hassan, S.; Shariati, M.A.; Khan, M.U.; Majeed, M.; Nigam, M.; Mishra, A.P.; et al. Honey and cancer: A mechanistic review. Clin. Nutr. 2019, 38, 2499–2503. [Google Scholar] [CrossRef]
- Azman, K.F.; Zakaria, R. Honey as an antioxidant therapy to reduce cognitive ageing. Iran. J. Basic Med. Sci. 2019, 22, 1368–1377. [Google Scholar]
- Brudzynski, K. Unexpected Value of Honey Color for Prediction of a Non-Enzymatic H2O2 Production and Honey Antibacterial Activity: A Perspective. Metabolites 2023, 13, 526. [Google Scholar] [CrossRef]
- Brudzynski, K.; Miotto, D. Honey melanoidins: Analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity. Food Chem. 2011, 127, 1023–1030. [Google Scholar] [CrossRef]
- Brudzynski, K.; Miotto, D. The recognition of high molecular weight melanoidins as the main components responsible for radical-scavenging capacity of unheated and heat-treated Canadian honeys. Food Chem. 2011, 125, 570–575. [Google Scholar] [CrossRef]
- Shamsudin, S.; Selamat, J.; Sanny, M.; Jambari, N.N.; Sukor, R.; Salleh, N.A.; Aziz, M.F.; Khatib, A. Integrated Gas Chromatography–Mass Spectrometry and Liquid Chromatography-Quadruple Time of Flight-Mass Spectrometry-Based Untargeted Metabolomics Reveal Possible Metabolites Related to Antioxidant Activity in Stingless Bee Honey. Food Anal. Methods 2022, 15, 3209–3224. [Google Scholar] [CrossRef]
- Yan, S.; Wang, X.; Wu, Y.; Wang, K.; Shan, J.; Xue, X. A metabolomics approach revealed an Amadori compound distinguishes artificially heated and naturally matured acacia honey. Food Chem. 2022, 385, 132631. [Google Scholar] [CrossRef]
- Tugizimana, F.; Steenkamp, P.A.; Piater, L.A.; Dubery, I.A. A conversation on data mining strategies in LC-MS untargeted metabolomics: Pre-processing and pre-treatment steps. Metabolites 2016, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Castillo, S.; Gopalacharyulu, P.; Yetukuri, L.; Orešič, M. Algorithms and tools for the preprocessing of LC-MS metabolomics data. Chemom. Intell. Lab. Syst. 2011, 108, 23–32. [Google Scholar] [CrossRef]
- Kranjac, M.; Kuś, P.M.; Prđun, S.; Odžak, R.; Tuberoso, C.I.G. Chromatography-Based Metabolomics as a Tool in Bioorganic Research of Honey. Metabolites 2024, 14, 606. [Google Scholar] [CrossRef]
- Deng, J.; Liu, R.; Lu, Q.; Hao, P.; Xu, A.; Zhang, J.; Tan, J. Biochemical properties, antibacterial and cellular antioxidant activities of buckwheat honey in comparison to manuka honey. Food Chem. 2018, 252, 243–249. [Google Scholar] [CrossRef]
- Ongalbek, D.; Tokul-Ölmez, Ö.; Şahin, B.; Küçükaydın, S.; Aydoğmuş-Öztürk, F.; Sıcak, Y.; Yeskaliyeva, B.; Öztürk, M. Classification of buckwheat honey produced in Kazakhstan according to their biochemical ingredients and bioactivities by chemometric approach. Food Chem. 2024, 451, 139409. [Google Scholar] [CrossRef]
- Jaśkiewicz, K.; Szczęsna, T.; Jachuła, J. How Phenolic Compounds Profile and Antioxidant Activity Depend on Botanical Origin of Honey—A Case of Polish Varietal Honeys. Molecules 2025, 30, 360. [Google Scholar] [CrossRef]
- Kędzierska-Matysek, M.; Stryjecka, M.; Teter, A.; Skałecki, P.; Domaradzki, P.; Florek, M. Relationships between the content of phenolic compounds and the antioxidant activity of polish honey varieties as a tool for botanical discrimination. Molecules 2021, 26, 1810. [Google Scholar] [CrossRef]
- Sun, J.; Xia, Y. Pretreating and normalizing metabolomics data for statistical analysis. Genes Dis. 2024, 11, 100979. [Google Scholar] [CrossRef]
- Schiffman, C.; Petrick, L.; Perttula, K.; Yano, Y.; Carlsson, H.; Whitehead, T.; Metayer, C.; Hayes, J.; Rappaport, S.; Dudoit, S. Filtering procedures for untargeted lc-ms metabolomics data. BMC Bioinform. 2019, 20, 334. [Google Scholar] [CrossRef]
- Liigand, P.; Kaupmees, K.; Haav, K.; Liigand, J.; Leito, I.; Girod, M.; Antoine, R.; Kruve, A. Think Negative: Finding the Best Electrospray Ionization/MS Mode for Your Analyte. Anal. Chem. 2017, 89, 5665–5668. [Google Scholar] [CrossRef]
- Okińczyc, P.; Widelski, J.; Nowak, K.; Radwan, S.; Włodarczyk, M.; Kuś, P.M.; Susniak, K.; Korona-Głowniak, I. Phytochemical Profiles and Antimicrobial Activity of Selected Populus spp. Bud Extracts. Molecules 2024, 29, 437. [Google Scholar] [CrossRef] [PubMed]
- Houriet, J.; Vidar, W.S.; Manwill, P.K.; Todd, D.A.; Cech, N.B. How Low Can You Go? Selecting Intensity Thresholds for Untargeted Metabolomics Data Preprocessing. Anal. Chem. 2022, 94, 17964–17971. [Google Scholar] [CrossRef] [PubMed]
- Broeckling, C.D.; Beger, R.D.; Cheng, L.L.; Cumeras, R.; Cuthbertson, D.J.; Dasari, S.; Davis, W.C.; Dunn, W.B.; Evans, A.M.; Fernández-Ochoa, A.; et al. Current Practices in LC-MS Untargeted Metabolomics: A Scoping Review on the Use of Pooled Quality Control Samples. Anal. Chem. 2023, 95, 18645–18654. [Google Scholar] [CrossRef]
- Sancho, M.T.; Mato, I.; Huidobro, J.F.; Fernández-Muiño, M.A.; Pascual-Maté, A. Nonaromatic organic acids of honeys. In Pot-Honey: A Legacy of Stingless Bees; Springer: New York, NY, USA, 2013; pp. 447–458. [Google Scholar]
- Sun, L.; Shi, F.; He, X.; Cai, Y.; Yu, Y.; Yao, D.; Zhou, J.; Wei, X. Establishment and application of quantitative method for 22 organic acids in honey based on SPE-GC–MS. Eur. Food Res. Technol. 2023, 249, 473–484. [Google Scholar] [CrossRef]
- Gheldof, N.; Wang, X.H.; Engeseth, N.J. Identification and quantification of antioxidant components of honeys from various floral sources. J. Agric. Food Chem. 2002, 50, 5870–5877. [Google Scholar] [CrossRef]
- Mu, W.; Yu, S.; Zhu, L.; Zhang, T.; Jiang, B. Recent research on 3-phenyllactic acid, a broad-spectrum antimicrobial compound. Appl. Microbiol. Biotechnol. 2012, 95, 1155–1163. [Google Scholar] [CrossRef]
- Minestrini, M.; Charton, S.; Iken, M.; Larondelle, Y.; Renaut, J.; Hausman, J.F.; Sergeant, K. Identification of amadori products and oligosaccharide-glycated amino acids in brewer’s spent grain extract. Front. Food Sci. Technol. 2022, 2, 968865. [Google Scholar] [CrossRef]
- Kuś, P.M. Honey as source of nitrogen compounds: Aromatic amino acids, free nucleosides and their derivatives. Molecules 2020, 25, 847. [Google Scholar] [CrossRef]
- Dimins, F.; Cinkmanis, I.; Radenkovs, V.; Augspole, I.; Valdovska, A. Analysis of 18 Free Amino Acids in Honeybee and Bumblebee Honey from Eastern and Northern Europe and Central Asia Using HPLC-ESI-TQ-MS/MS Approach Bypassing Derivatization Step. Foods 2022, 11, 2744. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, R.; Mats, L.; Zhu, H.; Roasa, J.; Khan, T.; Ahmed, A.; Brummer, Y.; Cui, S.; Sievenpiper, J.; et al. A comprehensive characterization of phenolics, amino acids and other minor bioactives of selected honeys and identification of botanical origin markers. J. Food Bioact. 2024, 25, 25–41. [Google Scholar] [CrossRef]
- Machado, A.M.; Miguel, M.G.; Vilas-Boas, M.; Figueiredo, A.C. Honey volatiles as a fingerprint for botanical origin—A review on their occurrence on monofloral honeys. Molecules 2020, 25, 374. [Google Scholar] [CrossRef] [PubMed]
- Karabagias, I.K.; Badeka, A.; Kontominas, M.G. A decisive strategy for monofloral honey authentication using analysis of volatile compounds and pattern recognition techniques. Microchem. J. 2020, 152, 104263. [Google Scholar] [CrossRef]
- Yu, W.; Sun, F.; Xu, R.; Cui, M.; Liu, Y.; Xie, Q.; Guo, L.; Kong, C.; Li, X.; Guo, X.; et al. Chemical composition and anti-inflammatory activities of Castanopsis honey. Food Funct. 2022, 14, 250–261. [Google Scholar] [CrossRef]
- Khallouki, F.; Akdad, M.; Bouddine, T.; Hajji, L.; Owen, R.W. HPLC-ESI-MS and GC-EI-MS Identification and Quantitation of Polyphenolics and Alkaloids in Moroccan Jujube Honeys. J. Apic. Sci. 2021, 64, 287–299. [Google Scholar] [CrossRef]
- McLoone, P.; Zhumbayeva, A.; Yunussova, S.; Kaliyev, Y.; Yevstafeva, L.; Verrall, S.; Sungurtas, J.; Austin, C.; Allwood, J.W.; McDougall, G.J. Identification of components in Kazakhstan honeys that correlate with antimicrobial activity against wound and skin infecting microorganisms. BMC Complement. Med. Ther. 2021, 21, 1–11. [Google Scholar] [CrossRef]
- Alissandrakis, E.; Tarantilis, P.A.; Pappas, C.; Harizanis, P.C.; Polissiou, M. Ultrasound-assisted extraction gas chromatography-mass spectrometry analysis of volatile compounds in unifloral thyme honey from Greece. Eur. Food Res. Technol. 2009, 229, 365–373. [Google Scholar] [CrossRef]
- Frérot, E.; Velluz, A.; Decorzant, E.; Naef, R. From linden flower to linden honey. Part 2: Glycosidic precursors of cyclohexa-1,3-diene-1-carboxylic acids. Chem. Biodivers. 2006, 3, 94–100. [Google Scholar] [CrossRef]
- Fukada, K.; Okamitsu, M.; Sato, M. Evaluation of Acyclic Form Content and Molar Absorption Coefficient of Carbonyl Group of Ketohexoses in Aqueous Solution. Chem. Lett. 2012, 41, 1686–1688. [Google Scholar] [CrossRef]
- Sarakatsani, E.; Ermio, J.D.; Rahman, S.; Bella, P.; Agrò, A.; Pinto, M.L.; Peri, E.; Colazza, S.; Lievens, B.; Rostás, M.; et al. Nectar-inhabiting bacteria differently affect the longevity of co-occurring egg parasitoid species by modifying nectar chemistry. Ann. Appl. Biol. 2024, 186, 204–215. [Google Scholar] [CrossRef]
- Kato, A.; Asano, N.; Kizu, H.; Matsui, K.; Watson, A.A.; Nash, R.J. Fagomine Isomers and Glycosides from Xanthocercis zambesiaca. J. Nat. Prod. 1997, 60, 312–314. [Google Scholar] [CrossRef]
- Pérez, M.; Dominguez-López, I.; Lamuela-Raventós, R.M. The Chemistry Behind the Folin-Ciocalteu Method for the Estimation of (Poly)phenol Content in Food: Total Phenolic Intake in a Mediterranean Dietary Pattern. J. Agric. Food Chem. 2023, 71, 17543–17553. [Google Scholar] [CrossRef] [PubMed]
- Lamuela-Raventós, R.M. Folin-Ciocalteu Method for the Measurement of Total Phenolic Content and Antioxidant Capacity. In Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Dzugan, M.; Tomczyk, M.; Sowa, P.; Grabek-Lejko, D. Antioxidant activity as biomarker of honey variety. Molecules 2018, 23, 2069. [Google Scholar] [CrossRef] [PubMed]
- Kuś, P.M.; Congiu, F.; Teper, D.; Sroka, Z.; Jerković, I.; Tuberoso, C.I.G. Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six Polish unifloral honey types. LWT 2014, 55, 124–130. [Google Scholar] [CrossRef]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough study of reactivity of various compound classes toward the folin-Ciocalteu reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef]
- Colovic, M.B.; Vasic, V.M.; Djuric, D.M.; Krstic, D.Z. Sulphur-containing Amino Acids: Protective Role Against Free Radicals and Heavy Metals. Curr. Med. Chem. 2018, 25, 324–335. [Google Scholar] [CrossRef]
- Atmaca, G. Antioxidant effects of sulfur-containing amino acids. Yonsei Med. J. 2004, 45, 776–788. [Google Scholar] [CrossRef]
- Yu, J.; Shan, Y.; Li, S.; Zhang, L. Potential contribution of Amadori compounds to antioxidant and angiotensin I converting enzyme inhibitory activities of raw and black garlic. LWT 2020, 129, 109553. [Google Scholar] [CrossRef]
- Zhou, R.; Zhu, X.; Xie, T.; Li, W.; Xie, D.; Zhang, G.; Xiao, Y.; Zhang, L. Amadori compounds (N-(1-Deoxy-D-fructos-1-yl)-amino acid): The natural transition metal ions (Cu2+, Fe2+, Zn2+) chelators formed during food processing. LWT 2024, 191, 115600. [Google Scholar] [CrossRef]
- Pérez-Burillo, S.; Rajakaruna, S.; Pastoriza, S.; Paliy, O.; Ángel Rufián-Henares, J. Bioactivity of food melanoidins is mediated by gut microbiota. Food Chem. 2020, 316, 126309. [Google Scholar] [CrossRef]
- de la Cueva, S.P.; Seiquer, I.; Mesías, M.; Rufián-Henares, J.Á.; Delgado-Andrade, C. Evaluation of the availability and antioxidant capacity of maillard compounds present in bread crust: Studies in caco-2 cells. Foods 2017, 6, 5. [Google Scholar] [CrossRef]
- Li, T.; Yang, C.; Zhang, L. Novel insight into Amadori compounds: Fate of Amadori compounds in food supply chain. Compr Rev. Food Sci. Food Saf. 2025, 24, e70149. [Google Scholar] [CrossRef] [PubMed]
- Erbersdobler, H.F.; Faist, V. Metabolic transit of Amadori products. Nahr. Food 2001, 45, 177–181. [Google Scholar] [CrossRef]
- Förster, A.; Kühne, Y.; Henle, T. Studies on absorption and elimination of dietary Maillard reaction products. Ann. N. Y. Acad. Sci. 2005, 1043, 474–481. [Google Scholar] [CrossRef]
- Takahashi, N.; Kita, K. Fructosyl-valine orally administrated to chickens is absorbed from gastrointestinal tract. J. Poult. Sci. 2016, 53, 153–156. [Google Scholar] [CrossRef]
- Luo, Y.; Li, S.; Ho, C.-T. Key Aspects of Amadori Rearrangement Products as Future Food Additives. Molecules 2021, 26, 4314. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagent. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
Model | QC 2 | Ion Mode 3 | Gradient (min) | Treshold (Counts) | Type | R2X (cum) | R2Y (cum) | Q2 (cum) | Permutation (100) | C-A 1 (p) |
---|---|---|---|---|---|---|---|---|---|---|
The influence of QC inclusion, negative ionization and 30 min gradient on statistical models | ||||||||||
1. | + | − | 30 | 500 | PCA-X | 0.672 | 0.370 | |||
OPLS-DA | 0.656 | 0.962 | 0.919 | R2 = (0.0. 0.272) Q2 = (0.0. −0.509) | 5.34 × 10−8 | |||||
2. | + | − | 30 | 1000 | PCA-X | 0.753 | 0.682 | |||
OPLS-DA | 0.659 | 0.961 | 0.917 | R2 = (0.0. 0.296) Q2 = (0.0. −0.438) | 6.37 × 10−8 | |||||
3. | + | − | 30 | 2000 | PCA-X | 0.758 | 0.690 | |||
OPLS-DA | 0.661 | 0.961 | 0.917 | R2 = (0.0. 0.286) Q2 = (0.0. −0.392) | 6.33 × 10−8 | |||||
4. | + | − | 30 | 5000 | PCA-X | 0.765 | 0.689 | |||
OPLS-DA | 0.662 | 0.962 | 0.920 | R2 = (0.0. 0.288) Q2 = (0.0. −0.418) | 4.75 × 10−8 | |||||
The influence of QC inclusion, negative ionization and 37 min gradient on statistical models | ||||||||||
5. | + | − | 37 | 500 | PCA-X | 0.737 | 0.668 | |||
OPLS-DA | 0.625 | 0.958 | 0.902 | R2 = (0.0. 0.373) Q2 = (0.0. −0.449) | 2.12 × 10−7 | |||||
6. | + | − | 37 | 1000 | PCA-X | 0.745 | 0.678 | |||
OPLS-DA | 0.627 | 0.957 | 0.902 | R2 = (0.0. 0.373) Q2 = (0.0. −0.383) | 2.07 × 10−7 | |||||
7. | + | − | 37 | 2000 | PCA-X | 0.751 | 0.683 | |||
OPLS-DA | 0.641 | 0.955 | 0.906 | R2 = (0.0. 0.324) Q2 = (0.0. −0.545) | 1.54 × 10−7 | |||||
8. | + | − | 37 | 5000 | PCA-X | 0.685 | 0.400 | |||
OPLS-DA | 0.657 | 0.957 | 0.914 | R2 = (0.0. 0.316) Q2 = (0.0. −0.488) | 7.84 × 10−8 | |||||
The influence of QC inclusion, positive ionization and 30 min gradient on statistical models | ||||||||||
9. | + | + | 30 | 500 | PCA-X | 0.748 | 0.676 | |||
OPLS-DA | 0.853 | 0.983 | 0.898 | R2 = (0.0. 0.477) Q2 = (0.0. −0.769) | 9.39 × 10−6 | |||||
10. | + | + | 30 | 1000 | PCA-X | 0.756 | 0.684 | |||
OPLS-DA | 0.854 | 0.983 | 0.898 | R2 = (0.0. 0.502) Q2 = (0.0. −0.616) | 9.48 × 10−6 | |||||
11. | + | + | 30 | 2000 | PCA-X | 0.810 | 0.645 | |||
OPLS-DA | 0.854 | 0.983 | 0.898 | R2 = (0.0. 0.494) Q2 = (0.0. −0.681) | 9.48 × 10−6 | |||||
12. | + | + | 30 | 5000 | PCA-X | 0.815 | 0.650 | |||
OPLS-DA | 0.859 | 0.983 | 0.899 | R2 = (0.0. 0.465) Q2 = (0.0. −0.632) | 8.83 × 10−6 | |||||
The influence of QC inclusion, positive ionization and 37 min gradient on statistical models | ||||||||||
13. | + | + | 37 | 500 | PCA-X | 0.790 | 0.732 | |||
OPLS-DA | 0.894 | 0.990 | 0.927 | R2 = (0.0. 0.714) Q2 = (0.0. −0.688) | 6.40 × 10−6 | |||||
14. | + | + | 37 | 1000 | PCA-X | 0.804 | 0.748 | |||
OPLS-DA | 0.897 | 0.989 | 0.925 | R2 = (0.0. 0.714) Q2 = (0.0. −0.624) | 7.24 × 10−6 | |||||
15. | + | + | 37 | 2000 | PCA-X | 0.810 | 0.756 | |||
OPLS-DA | 0.898 | 0.989 | 0.926 | R2 = (0.0. 0.7) Q2 = (0.0. −0.708) | 7.15 × 10−6 | |||||
16. | + | + | 37 | 5000 | PCA-X | 0.827 | 0.689 | |||
OPLS-DA | 0.897 | 0.989 | 0.928 | R2 = (0.0. 0.704) Q2 = (0.0. −0.569) | 6.10 × 10−6 | |||||
The influence of not taking QC into account on statistical models | ||||||||||
17. | − | − | 30 | 1000 | PCA-X | 0.748 | 0.674 | |||
OPLS-DA | 0.657 | 0.961 | 0.917 | R2 = (0.0. 0.294) Q2 = (0.0. −0.447) | 6.24 × 10−8 | |||||
18. | − | − | 37 | 1000 | PCA-X | 0.675 | 0.393 | |||
OPLS-DA | 0.641 | 0.954 | 0.903 | R2 = (0.0. 0.326) Q2 = (0.0. −0.477) | 1.93 × 10−7 | |||||
19. | − | + | 30 | 1000 | PCA-X | 0.755 | 0.682 | |||
OPLS-DA | 0.949 | 0.999 | 0.951 | R2 = (0.0. 0.943) Q2 = (0.0. −0.789) | 1.04 × 10−4 | |||||
20. | − | + | 37 | 1000 | PCA-X | 0.763 | 0.696 | |||
OPLS-DA | 0.819 | 0.961 | 0.902 | R2 = (0.0. 0.285) Q2 = (0.0. −0.44) | 2.16 × 10−7 |
Model | Scaling Method | Type | R2X (cum) | R2Y (cum) | Q2 (cum) |
---|---|---|---|---|---|
Positive ionization | |||||
1. | Centering | PCA-X | 0.827 | 0.689 | |
OPLS-DA | 0.897 | 0.989 | 0.928 | ||
2. | No-Scaling | PCA-X | 0.928 | 0.904 | |
OPLS-DA | 0.963 | 0.981 | 0.909 | ||
3. | Unit Variance | PCA-X | 0.542 | 0.380 | |
OPLS-DA | 0.615 | 0.992 | 0.929 | ||
4. | Unit Variance Normalization | PCA-X | 0.716 | 0.614 | |
OPLS-DA | 0.820 | 0.991 | 0.864 | ||
5. | Pareto | PCA-X | 0.651 | 0.514 | |
OPLS-DA | 0.589 | 0.987 | 0.901 | ||
6. | Pareto Normalization | PCA-X | 0.815 | 0.762 | |
OPLS-DA | 0.814 | 0.892 | 0.850 | ||
Negative ionization | |||||
7. | Centering | PCA-X | 0.685 | 0.400 | |
OPLS-DA | 0.657 | 0.957 | 0.914 | ||
8. | No-Scaling | PCA-X | 0.840 | 0.760 | |
OPLS-DA | 0.888 | 0.965 | 0.919 | ||
9. | Unit Variance | PCA-X | 0.543 | 0.268 | |
OPLS-DA | 0.494 | 0.973 | 0.877 | ||
10. | Unit Variance Normalization | PCA-X | 0.689 | 0.545 | |
OPLS-DA | 0.815 | 0.982 | 0.882 | ||
11. | Pareto | PCA-X | 0.593 | 0.348 | |
OPLS-DA | 0.711 | 0.995 | 0.932 | ||
12. | Pareto Normalization | PCA-X | 0.756 | 0.690 | |
OPLS-DA | 0.863 | 0.985 | 0.915 |
No | Molecular Weight (Da) | Retention Time (s/min) | Compound/Feature |
---|---|---|---|
Negative ionization | |||
1 | 196.0586 | 0.92 | Gluconic acid 1,2 |
2 | 134.0217 | 1.05 | Malic acid 1,2 |
3 | 756.2525 | 1.22 | X |
4 | 192.0272 | 1.42 | Citric acid 1,2 |
5 | 129.0428 | 1.53 | Pyroglutamic acid 1 |
6 | 291.0955 | 1.57 | N-fructosyl-pyroglutamate 1 |
7 | 180.0635 | 1.74 | D-Tagatose 1,* |
8 | 311.1585 | 1.87 | X |
9 | 181.0703 | 1.96 | Tyrosine 1 |
10 | 361.1372 | 1.97 | Tyrosine [2M] |
11 | 425.1441 | 2.02 | X |
12 | 343.1268 | 2.1 | N-fructosyl-Tyr 1 |
13 | 189.1004 | 2.36 | N-Lactoylvaline 1,* |
14 | 293.1479 | 2.41 | N-fructosyl-Ile 1 |
15 | 455.2009 | 3.44 | N-fructosyl-Ile/Leu-hexoside 1 |
16 | 506.2003 | 10.11 | Linden glycoside isomer I 1 |
17 | 552.2063 | 10.52 | Linden glycoside isomer II 1 [M + HCOOH] |
18 | 506.2003 | 10.68 | Linden glycoside isomer III 1 |
19 | 1058.404 | 10.68 | Linden glycoside isomer III 1 [2M + HCCOH] |
20 | 554.2216 | 11.09 | X |
21 | 166.0632 | 12.15 | Phenyllactic acid 1,2 |
22 | 200.105 | 16.55 | X |
23 | 202.1205 | 17.06 | Sebacic acid 1 |
Positive ionization | |||
1 | 115.0637 | 0.92 | L-Proline 1 |
2 | 277.1159 | 1.05 | N-fructosyl-Pro 1 |
3 | 459.1946 | 1.1 | X |
4 | 117.0792 | 1.1 | Valine 1 |
5 | 279.1319 | 1.23 | N-fructosyl-Val 1 |
6 | 309.1424 | 1.32 | Glucopyranosylfagomine 1,* |
7 | 106.0421 | 1.40 | Benzaldehyde 1 |
8 | 285.1210 | 1.67 | X |
9 | 131.0950 | 1.77 | L-Isoleucine 1 |
10 | 131.0950 | 1.88 | L-Leucine 1 |
11 | 122.0371 | 1.97 | Salicylaldehyde 1 |
12 | 135.0686 | 1.98 | Tyrosine1 [M-HCOOH] |
13 | 164.0479 | 1.98 | 3′,4′-(methylenedioxy)aceto-phenone 1 |
14 | 343.1269 | 2.11 | N-fructosyl-Tyr 1 |
15 | 293.1479 | 2.29 | N-fructosyl-Ile 1 |
16 | 293.1478 | 2.43 | N-fructosyl-Leu 1 |
17 | 455.2000 | 3.44 | N-fructosyl-Ile/Leu hexoside 1 |
18 | 119.0738 | 3.67 | Indoline 1,* |
19 | 327.1319 | 4.20 | N-fructosyl-Phe 1 |
20 | 145.0522 | 8.17 | 4-hydroxyquinoline 1,2 |
Honey Variety | TPC (mg GAE/kg) | FRAP (mmol Fe2+/kg) | DPPH (mg GAE/kg) |
---|---|---|---|
Buckwheat | 982.63 ± 258.41 | 6.26 ± 1.96 | 60.58 ± 25.74 |
Canola | 116.62 ± 24.32 | 1.34 ± 0.13 | 11.81 ± 7.39 |
Compound/Feature | TPC | DPPH | FRAP |
---|---|---|---|
Negative ionization | |||
Gluconic acid | 0.667 | 0.540 | 0.636 |
Malic acid | 0.193 | 0.145 | 0.273 |
756.25247 Da 72.92 s | 0.132 | −0.020 | 0.065 |
Citric acid | 0.677 | 0.525 | 0.646 |
Pyroglutamic acid | 0.938 | 0.899 | 0.876 |
N-fructosyl-pyroglutamate | 0.926 | 0.933 | 0.931 |
D-Tagatose | 0.523 | 0.458 | 0.454 |
311.15849 Da 112.26 s | 0.851 | 0.705 | 0.712 |
Tyrosine | 0.903 | 0.772 | 0.784 |
Tyrosine [2M] | 0.898 | 0.755 | 0.774 |
425.14408 Da 121.37 s | 0.893 | 0.763 | 0.793 |
N-fructosyl-Tyr | 0.984 | 0.957 | 0.964 |
N-Lactoylvaline | 0.887 | 0.896 | 0.905 |
N-fructosyl-Ile | 0.920 | 0.956 | 0.953 |
N-fructosyl-Ile/Leu-hexoside | 0.975 | 0.928 | 0.935 |
Linden glycoside isomer I | 0.678 | 0.699 | 0.671 |
Linden glycoside isomer II [M + HCOOH] | 0.668 | 0.693 | 0.661 |
Linden glycoside isomer III | 0.666 | 0.703 | 0.627 |
Linden glycoside isomer III [2M + HCCOH] | 0.538 | 0.572 | 0.512 |
554.22159 Da 665.46 s | 0.607 | 0.651 | 0.579 |
Phenyllactic acid | 0.489 | 0.421 | 0.436 |
554.22159 Da 665.46 s | 0.654 | 0.509 | 0.573 |
Sebacic acid | 0.608 | 0.464 | 0.535 |
Positive ionization | |||
L-Proline | 0.740 | 0.664 | 0.724 |
N-fructosyl-Pro | 0.849 | 0.849 | 0.896 |
459.19456 Da 66.29 s | 0.940 | 0.860 | 0.845 |
Valine | 0.890 | 0.767 | 0.769 |
N-fructosyl-Val | 0.970 | 0.970 | 0.982 |
Glucopyranosylfagomine | 0.956 | 0.861 | 0.870 |
Benzaldehyde | 0.858 | 0.703 | 0.731 |
285.12095 Da 99.98 s | 0.981 | 0.926 | 0.955 |
L-Isoleucine | 0.935 | 0.819 | 0.840 |
L-Leucine | 0.929 | 0.821 | 0.835 |
Salicylaldehyde | 0.939 | 0.821 | 0.846 |
Tyrosine [M-HCOOH] | 0.938 | 0.822 | 0.843 |
3′,4′-(methylenedioxy)aceto-phenone | 0.939 | 0.826 | 0.842 |
N-fructosyl-Tyr | 0.965 | 0.969 | 0.978 |
N-fructosyl-Ile | 0.961 | 0.965 | 0.976 |
N-fructosyl-Leu | 0.966 | 0.964 | 0.977 |
N-fructosyl-Ile/Leu hex | 0.974 | 0.933 | 0.952 |
Indoline | 0.615 | 0.530 | 0.538 |
N-fructosyl-Phe | 0.843 | 0.843 | 0.849 |
4-hydroxyquinoline | 0.814 | 0.831 | 0.836 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pogoda, E.; Kuś, P.M. Application of Liquid Chromatography–Mass Spectrometry-Based Untargeted Metabolomics to Reveal Metabolites Related to Antioxidant Activity in Buckwheat Honey. Molecules 2025, 30, 2198. https://doi.org/10.3390/molecules30102198
Pogoda E, Kuś PM. Application of Liquid Chromatography–Mass Spectrometry-Based Untargeted Metabolomics to Reveal Metabolites Related to Antioxidant Activity in Buckwheat Honey. Molecules. 2025; 30(10):2198. https://doi.org/10.3390/molecules30102198
Chicago/Turabian StylePogoda, Emilia, and Piotr Marek Kuś. 2025. "Application of Liquid Chromatography–Mass Spectrometry-Based Untargeted Metabolomics to Reveal Metabolites Related to Antioxidant Activity in Buckwheat Honey" Molecules 30, no. 10: 2198. https://doi.org/10.3390/molecules30102198
APA StylePogoda, E., & Kuś, P. M. (2025). Application of Liquid Chromatography–Mass Spectrometry-Based Untargeted Metabolomics to Reveal Metabolites Related to Antioxidant Activity in Buckwheat Honey. Molecules, 30(10), 2198. https://doi.org/10.3390/molecules30102198