Potential of Carob Pulp Powder: Influence of Cultivar on Nutritional Composition, Antioxidant Activity, and Functional Properties
Abstract
1. Introduction
2. Results and Discussion
2.1. Nutritional Analysis
Source | Origin | Moisture (g/100 g dm) | Energy (kcal/100 g dm) | Carbohydrates (g/100 g dm) | Protein (g/100 g dm) | Dietary Fibre (g/100 g dm) | Total Sugars (g/100 g dm) | Sucrose (g/100 g dm) | Fructose (g/100 g dm) | Glucose (g/100 g dm) | Ash (g/100 g dm) | TPC (mg GAE/g dm) | Antioxidant Activity (CUPRAC) (µmol TE/g dm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Papaefstathiou et al. [10] | Cyprus | 9.3 | 327–331 | 51.8–53.7 | 5.0–5.4 | 30.3–37.3 | - | - | - | - | 3.3–3.5 | - | - |
Kamal et al. [29] | Aswan, Egypt | 5.5 | 366 | 75.92 | 6.74 | 7.70 | - | - | - | - | 3.4 | - | - |
Petkova et al. [27] | Plovdiv, Bulgaria | 8.2 ± 0.02 | 401 | 92.5 ± 0.02 | 5.9 ± 0.1 | - | - | 34 ± 1 | 4.16 ± 0.21 | 4.25 ± 0.42 | 2.25 ± 0.02 | 8.10 ± 1.15 | - |
Yousif et al. [15] | Jordan | 12.5 | - | - | 6.22 ± 0.38 | 12.4 | - | - | - | - | 3.1 ± 0.2 | - | - |
Simsek et al. [28] | Turkey | - | - | - | 6.1–9.1 | - | - | - | - | - | - | - | - |
Biner et al. [30] | Turkey | - | - | - | - | - | 53.1 ± 9.3 | 38.4 ± 7.6 | 11.5 ± 2.7 | 3.3 ± 1.6 | - | - | - |
Ayaz et al. [33] | Anatolia, Turkey | - | - | - | - | - | - | - | - | - | - | - | - |
Benković et al. [31] | Croatia | - | - | - | - | - | - | 35–38 | 17–19 | 18–22 | - | 15.58–17.96 | 34.78 ± 3.72 |
Fidan et al. [32] | Turkey | 9.9 | - | - | 22.56 | 28.17 | - | - | - | - | 2.4–3.4 | 4.53 ± 0.08 | - |
Le Chami et al. [26] | Morocco | 4.6 ± 0.8 | - | 90.5 ± 2.7 | 5.8 ± 1.8 | 37.3 ± 0.8 | - | 14.3 ± 6.7 | 8.1 ± 1.8 | 3.3 ± 1.8 | 3.4 ± 1.7 | 8.5 | |
Spain | 5.2 ± 1.3 | - | 92.3 ± 2.2 | 4.8 ± 1.8 | 37.9 ± 0.8 | - | 29.5 8.1 | 7.8 ± 1.6 | 3.0 ± 1.2 | 2.6 ± 0.7 | 12.7 | ||
Lebanon | 6.8 ± 1.5 | - | 91.7 ± 2.7 | 4.7 ± 1.0 | 38.4 ± 1.0 | - | 27.4 10.3 | 11.1 ± 2.2 | 2.2 ± 1.6 | 3.2 ± 1.5 | 5.1 |
2.2. pH and Acidity
2.3. Soluble Solids Content (SSolids)
2.4. Total Phenolic and Tannin Content and Antioxidant Activity
2.5. Colour
2.6. Functional Properties
2.7. Principal Component Analyses
3. Materials and Methods
3.1. Preparation of Carob Pulp Powder
3.2. Nutritional Analysis
3.3. Reagent
3.4. pH and Acidity
3.5. Soluble Solids Content
3.6. Total Polyphenol Content, Tannic Content, and Antioxidants
3.6.1. Extraction
3.6.2. Total Phenolic Content (TPC)
3.6.3. Tannin Content (TC)
3.6.4. Antioxidant Activity
3.7. Colour
3.8. Functional Properties
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Antioxidant activity |
ABTS | 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (radical scavenging assay) |
a* | Red/Green coordinate in CIELab* colour space |
b* | Yellow/Blue coordinate in CIELab* colour space |
CA | Citric Acid |
CPP | Carob Pulp Powder |
CUPRAC | Cupric Reducing Antioxidant activity (antioxidant assay) |
C* | Chroma (saturation) in CIELab* colour space |
dm | Dry Matter |
Dim1 | First principal component of the principal component analysis |
Dim2 | Second principal component of the principal component analysis |
Dim3 | Third principal component of the principal component analysis |
E410 | European food additive code for Carob Bean Gum |
EC | European Commission |
FRAP | Ferric Reducing Antioxidant Power (antioxidant assay) |
FRC | Fat retention capacity |
GA | Gallic Acid |
GAE | Gallic Acid Equivalents |
h* | Hue angle (hue degree) in CIELab* colour space |
L* | Lightness coordinate in the CIELab* colour space |
PCA | Principal components analysis |
SSolids | Soluble solids |
TFA | Total Fatty Acids |
TC | Total Tannin Content |
TE | Trolox Equivalent |
TPC | Total Phenolic Content |
WRC | Water retention capacity |
References
- Benković, M.; Siniša, S.; Bauman, I.; Ježek, D.; Karlović, S.; Kremer, D.; Karlović, K.; Erhatic, R. Assessment of Drying Characteristics and Texture in Relation with Micromorphological Traits of Carob (Ceratonia Siliqua L.) Pods and Seeds. Food Technol. Biotechnoly 2016, 54, 432–440. [Google Scholar] [CrossRef]
- Rodríguez-Solana, R.; Romano, A.; Moreno-Rojas, J.M.; Romano, A.; Moreno-Rojas, J.M.; Ma, W. Carob Pulp: A Nutritional and Functional By-Product Worldwide Spread in the Formulation of Different Food Products and Beverages. A Review. Processes 2021, 9, 1146. [Google Scholar] [CrossRef]
- Tetik, N.; Turhan, I.; Oziyci, H.R.; Gubbuk, H.; Karhan, M.; Ercisli, S. Physical and Chemical Characterization of Ceratonia Siliqua L. Germplasm in Turkey. Sci. Hortic. 2011, 129, 583–589. [Google Scholar] [CrossRef]
- Öztürk, M.; Seçmen, Ö.; Gucel, S.; Sakcali, S. An Overview of Economic and Medicinal Importance of Carob Plants (Ceratonia Siliqua L.) in the Mediterranean Basin. Acta Hortic. 2012, 964, 197–204. [Google Scholar] [CrossRef]
- Tous, J.; Romero, A.; Batlle, I. The Carob Tree: Botany, Horticulture, and Genetic Resources. Hortic. Rev. (Am. Soc. Hortic. Sci.) 2013, 41, 385–454. [Google Scholar] [CrossRef]
- Cantalejo, M.J. Effects of Roasting Temperature on the Aroma Components of Carob (Ceratonia Siliqua L.). J. Agric. Food Chem. 1997, 45, 1345–1350. [Google Scholar] [CrossRef]
- Kassout, J.; Hmimsa, Y.; Fatehi, S.E.; Kadaoui, K.; Houssni, M.; Chakkour, S.; Sahli, A.; El Chami, M.A.; Ariza-Mateos, D.; Palacios-Rodríguez, G.; et al. Aridity Gradients Shape Intraspecific Variability of Morphological Traits in Native Ceratonia Siliqua L. of Morocco. Plants 2023, 12, 3447. [Google Scholar] [CrossRef]
- Mouniane, Y.; Chriqui, A.; El-Khadir, I.; Hbyaj, K.; Rochd, A.; Aitouhanni, I.; Kouighat, M.; Hmouni, D. Assessing Morphological Trait Variability in Moroccan Carob (Ceratonia Siliqua L.) Ecotypes for Adaptive Breeding in Response to Climate Change and Sustainable Food Security. BIO Web Conf. 2024, 109, 01040. [Google Scholar] [CrossRef]
- López-Sánchez, J.; Moreno, D.A.; García-Viguer, C.; López-Sánchez, J.; Moreno, D.A.; García-Viguer, C. D-Pinitol, a Highly Valuable Product from Carob Pods: Health-Promoting Effects and Metabolic Pathways of This Natural Super-Food Ingredient and Its Derivatives. AIMS Agric. Food 2018, 3, 41–63. [Google Scholar] [CrossRef]
- Papaefstathiou, E.; Agapiou, A.; Giannopoulos, S.; Kokkinofta, R. Nutritional Characterization of Carobs and Traditional Carob Products. Food Sci. Nutr. 2018, 6, 2151–2161. [Google Scholar] [CrossRef]
- Goulas, V.; Stylos, E.; Chatziathanasiadou, M.V.; Mavromoustakos, T.; Tzakos, A.G. Functional Components of Carob Fruit: Linking the Chemical and Biological Space. Int. J. Mol. Sci. 2016, 17, 1875. [Google Scholar] [CrossRef] [PubMed]
- Loullis, A.; Pinakoulaki, E. Carob as Cocoa Substitute: A Review on Composition, Health Benefits and Food Applications. Eur. Food Res. Technol. 2017, 244, 959–977. [Google Scholar] [CrossRef]
- Brassesco, M.E.; Brandão, T.R.S.; Silva, C.L.M.; Pintado, M. Carob Bean (Ceratonia Siliqua L.): A New Perspective for Functional Food. Trends Food Sci. Technol. 2021, 114, 310–322. [Google Scholar] [CrossRef]
- Richane, A.; Ben Ismail, H.; Darej, C.; Attia, K.; Moujahed, N. Potential of Tunisian Carob Pulp as Feed for Ruminants: Chemical Composition and in Vitro Assessment. Trop. Anim. Health Prod. 2022, 1, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Yousif, A.K.; Alghzawi, H.M. Processing and Characterization of Carob Powder. Food Chem. 2000, 69, 283–287. [Google Scholar] [CrossRef]
- El Batal, H.; Hasib, A.; Ouatmane, A.; Dehbi, F.; Jaouad, A.; Boulli, A. Sugar Composition and Yield of Syrup Production from the Pulp of Moroccan Carob Pods (Ceratonia Siliqua L.). Arab. J. Chem. 2016, 9, S955–S959. [Google Scholar] [CrossRef]
- Aydın, S.; Özdemir, Y. Development and Characterization of Carob Flour Based Functional Spread for Increasing Use as Nutritious Snack for Children. J. Food Qual. 2017, 2017, 1–7. [Google Scholar] [CrossRef]
- Vitali Čepo, D.; Mornar, A.; Nigović, B.; Kremer, D.; Radanović, D.; Vedrina Dragojević, I. Optimization of Roasting Conditions as an Useful Approach for Increasing Antioxidant Activity of Carob Powder. LWT Food Sci. Technol. 2014, 58, 578–586. [Google Scholar] [CrossRef]
- Sȩczyk, Ł.; Świeca, M.; Gawlik-Dziki, U. Effect of Carob (Ceratonia Siliqua L.) Flour on the Antioxidant Potential, Nutritional Quality, and Sensory Characteristics of Fortified Durum Wheat Pasta. Food Chem. 2016, 194, 637–642. [Google Scholar] [CrossRef]
- Bate-Smith, E.C. Haemanalysis of Tannins: The Concept of Relative Astringency. Phytochemistry 1973, 12, 907–912. [Google Scholar] [CrossRef]
- Srour, N.; Daroub, H.; Toufeili, I.; Olabi, A. Developing a Carob-Based Milk Beverage Using Different Varieties of Carob Pods and Two Roasting Treatments and Assessing Their Effect on Quality Characteristics. J. Sci. Food Agric. 2016, 96, 3047–3057. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; El-Kersh, D.M.; Ehrlich, A.; Choucry, M.A.; El-Seedi, H.; Frolov, A.; Wessjohann, L.A. Variation in Ceratonia Siliqua Pod Metabolome in Context of Its Different Geographical Origin, Ripening Stage and Roasting Process. Food Chem. 2019, 283, 675–687. [Google Scholar] [CrossRef]
- Mahdad, Y.M.; Gaouar, S.B.S. Origin, Distribution and Domestication of the Carob Tree (Ceratonia Siliqua L.). Turk. J. Bot. 2023, 47, 89–96. [Google Scholar] [CrossRef]
- MAPA. Superficies y Producciones Anuales de Cultivos. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/superficies-producciones-anuales-cultivos/ (accessed on 17 May 2025).
- Barracosa, P.; Osório, J.; Cravador, A. Evaluation of Fruit and Seed Diversity and Characterization of Carob (Ceratonia Siliqua L.) Cultivars in Algarve Region. Sci. Hortic. 2007, 114, 250–257. [Google Scholar] [CrossRef]
- El Chami, M.A.; Palacios-Rodríguez, G.; Ordóñez-Díaz, J.L.; Rodríguez-Solana, R.; Navarro-Cerrillo, R.M.; Moreno-Rojas, J.M. Proximate Analysis, Total Phenolic Content, and Antioxidant Activity of Wild Carob Pulp from Three Mediterranean Countries. Appl. Sci. 2025, 15, 1340. [Google Scholar] [CrossRef]
- Petkova, N.T.; Ivanov, I.; Mihov, R. Nutritional and Antioxidant Potential of Carob (Ceratonia Siliqua) Flour and Evaluation of Functional Properties of Its Polysaccharide Fraction. J. Pharm. Sci. Res. 2017, 9, 2189–2195. [Google Scholar]
- Simsek, S.; Ozcan, M.M.; Al Juhaimi, F.; ElBabiker, E.; Ghafoor, K. Amino Acid and Sugar Contents of Wild and Cultivated Carob (Ceratonia Siliqua) Pods Collected in Different Harvest Periods. Chem. Nat. Compd. 2017, 53, 1008–1009. [Google Scholar] [CrossRef]
- Kamal, M.; Youssef, E.; El-Manfaloty, M.M.; Ali, H.M. Assessment of Proximate Chemical Composition, Nutritional Status, Fatty Acid Composition and Phenolic Compounds of Carob (Ceratonia Siliqua L.). Food Public Health 2013, 3, 304–308. [Google Scholar] [CrossRef]
- Biner, B.; Gubbuk, H.; Karhan, M.; Aksu, M.; Pekmezci, M. Sugar Profiles of the Pods of Cultivated and Wild Types of Carob Bean (Ceratonia Siliqua L.) in Turkey. Food Chem. 2007, 100, 1453–1455. [Google Scholar] [CrossRef]
- Benković, M.; Belščak-Cvitanović, A.; Bauman, I.; Komes, D.; Srečec, S. Flow Properties and Chemical Composition of Carob (Ceratonia Siliqua L.) Flours as Related to Particle Size and Seed Presence. Food Res. Int. 2017, 100, 211–218. [Google Scholar] [CrossRef]
- Fidan, H.; Mihaylova, D.; Petkova, N.; Sapoundzhieva, T.; Slavov, A.; Krastev, L. Determination of Chemical Composition, Antibacterial and Antioxidant Properties of Products Obtained from Carob and Honey Locust. Turk. J. Biochem. 2019, 44, 316–322. [Google Scholar] [CrossRef]
- Ayaz, F.A.; Torun, H.; Ayaz, S.; Correia, P.J.; Alaiz, M.; Sanz, C.; Grúz, J.; Strnad, M. Determination of Chemical Composition of Anatolian Carob Pod (Ceratonia Siliqua L.): Sugars, Amino and Organic Acids, Minerals and Phenolic Compounds. J. Food Qual. 2007, 30, 1040–1055. [Google Scholar] [CrossRef]
- Rasane, P.; Jha, A.; Sabikhi, L.; Kumar, A.; Unnikrishnan, V.S. Nutritional Advantages of Oats and Opportunities for Its Processing as Value Added Foods—A Review. J. Food Sci. Technol. 2013, 52, 662–675. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.C.; Murray, R.; Zelman, K.M. The Nutritional Value and Health Benefits of Chickpeas and Hummus. Nutrients 2016, 8, 766. [Google Scholar] [CrossRef] [PubMed]
- Al-Farsi, M.A.; Lee, C.Y. Nutritional and Functional Properties of Dates: A Review. Crit. Rev. Food Sci. Nutr. 2008, 48, 877–887. [Google Scholar] [CrossRef]
- Marcus, J.B. A Taste Primer. In Aging, Nutrition and Taste; Academic Press: Cambridge, MA, USA, 2019; pp. 105–140. [Google Scholar] [CrossRef]
- Soares, S.; Brandão, E.; Guerreiro, C.; Soares, S.; Mateus, N.; De Freitas, V. Tannins in Food: Insights into the Molecular Perception of Astringency and Bitter Taste. Molecules 2020, 25, 2590. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Comas-Serra, F.; Femenia, A.; Rosselló, C.; Simal, S. Effect of Power Ultrasound Application on Aqueous Extraction of Phenolic Compounds and Antioxidant Capacity from Grape Pomace (Vitis Vinifera L.): Experimental Kinetics and Modeling. Ultrason. Sonochem. 2015, 22, 506–514. [Google Scholar] [CrossRef]
- González-Centeno; Knoerzer, K.; Sabarez, H.; Simal, S.; Rosselló, C.; Femenia, A. Effect of Acoustic Frequency and Power Density on the Aqueous Ultrasonic-Assisted Extraction of Grape Pomace (Vitis Vinifera L.)—A Response Surface Approach. Ultrason. Sonochem. 2014, 21, 2176–2184. [Google Scholar] [CrossRef]
- Lipan, L.; Romero, A.; Echeverria, G.; Maldonado, M.; Company, T.; Escalona, J.M.; Ruiz, J.; Miarnau, X. Native versus Modern Almond Cultivars of Mallorca Island: From Biodiversity to Industrial Aptitude and Fruit Quality. Agronomy 2022, 12, 1933. [Google Scholar] [CrossRef]
- Eldeeb, G.S.S.; Mosilhey, S.H. Roasting Temperature Impact on Bioactive Compounds and PAHs in Carob Powder (Ceratonia Siliqua L.). J. Food Sci. Technol. 2022, 59, 105–113. [Google Scholar] [CrossRef]
- Rivas, M.Á.; Casquete, R.; de Córdoba, M.G.; Ruíz-Moyano, S.; Benito, M.J.; Pérez-Nevado, F.; Martín, A. Chemical Composition and Functional Properties of Dietary Fibre Concentrates from Winemaking By-Products: Skins, Stems and Lees. Foods 2021, 10, 1510. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Hong, S.; Li, Y. Pea Protein Composition, Functionality, Modification, and Food Applications: A Review. Adv. Food Nutr. Res. 2022, 101, 71–127. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.; Han, O.K.; Han, J.; Kang, C.S.; Kim, K.H.; Kim, Y.K.; Cheong, Y.K.; Park, T.I.; Choi, J.S.; Kim, K.J. Hydration and Pasting Properties of Oat (Avena Sativa) Flour. Prev. Nutr. Food Sci. 2012, 17, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Kyriacou, M.C.; Antoniou, C.; Rouphael, Y.; Graziani, G.; Kyratzis, A. Mapping the Primary and Secondary Metabolomes of Carob (Ceratonia Siliqua L.) Fruit and Its Postharvest Antioxidant Potential at Critical Stages of Ripening. Antioxidants 2021, 10, 57. [Google Scholar] [CrossRef]
- UNE-EN ISO/IEC 17025; Requisitos Generales Para la Competencia de los Laboratorios de Ensayo y Calibración. ISO/IEC: Madrid, Spain, 2017.
- ISO 2483-1973; Sodium Chloride for Industrial Use- Determination of the Loss of Mass at 110 °C. ISO: Geneva, Switzerland, 1973.
- AOAC Official Method 923.03; Ash of Flour. AOAC: Gaithersburg, MD, USA, 1998.
- AOAC Official Method 985.29; Total Dietary Fiber in Foods. AOAC: Gaithersburg, MD, USA, 1998.
- Lobit, P.; Soing, P.; Génard, M.; Habib, R. Theoretical Analysis of Relationships Between Composition, Ph, and Titratable Acidity of Peach Fruit. J. Plant Nutr. 2002, 25, 2775–2792. [Google Scholar] [CrossRef]
- Červenka, L.; Stępień, A.; Frühbauerová, M.; Velichová, H.; Witczak, M. Thermodynamic Properties and Glass Transition Temperature of Roasted and Unroasted Carob (Ceratonia Siliqua L.) Powder. Food Chem. 2019, 300, 125208. [Google Scholar] [CrossRef]
- Eim, V.S.; Simal, S.; Rosselló, C.; Femenia, A.; Bon, J. Optimisation of the Addition of Carrot Dietary Fibre to a Dry Fermented Sausage (Sobrassada) Using Artificial Neural Networks. Meat Sci. 2013, 94, 341–348. [Google Scholar] [CrossRef]
- Ricco, R.A.; Agudelo, I.J.; Wagner, M.L. Métodos Empleados En El Análisis de Los Polifenoles En Un Laboratorio de Baja Complejidad|Lilloa. Lilloa 2015, 52, 161–174. [Google Scholar]
- Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total Antioxidant Capacity of Plant Foods, Beverages and Oils Consumed in Italy Assessed by Three Different in Vitro Assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef]
- Ozgen, M.; Reese, R.N.; Tulio, A.Z.; Scheerens, J.C.; Miller, A.R. Modified 2,2-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic Acid (ABTS) Method to Measure Antioxidant Capacity of Selected Small Fruits and Comparison to Ferric Reducing Antioxidant Power (FRAP) and 2,2′-Diphenyl-1- Picrylhydrazyl (DPPH) Methods. J. Agric. Food Chem. 2006, 54, 1151–1157. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio Team: Boston, MA, USA, 2024. [Google Scholar]
Mean | Standard Deviation | Minimum Value | Maximum Value | Confidence Interval 95% | |
---|---|---|---|---|---|
Moisture (g/100 g dm) | 14.8 | 1.7 | 12.5 | 19.6 | [14.3, 15.4] |
Energy value (kcal/100 g dm) | 284.3 | 9.5 | 263.0 | 306.0 | [280.4, 288.3] |
Carbohydrates (g/100 g dm) | 60.7 | 5.5 | 42.7 | 70.1 | [59.0, 62.5] |
Fibre (g/100 g dm) | 31.7 | 5.1 | 22.6 | 47.4 | [30.1, 33.4] |
Sugars (g/100 g dm) | 45.9 | 8.1 | 22.5 | 62.5 | [43.3, 48.4] |
Sucrose (g/100 g dm) | 37.6 | 9.0 | 14.2 | 59.9 | [34.8, 40.5] |
Glucose (g/100 g dm) | 4.7 | 1.6 | 1.0 | 9.3 | [4.2, 5.2] |
Ash (g/100 g dm) | 3.1 | 0.3 | 2.7 | 3.7 | [3.0, 3.2] |
Fats (g/100 g dm) | 0.6 | 0.3 | 0.1 | 1.4 | [0.5, 0.7] |
Butyric acid (g/100 g TFA) 1 | 5.8 | 3.3 | 1.8 | 15.8 | [4.8, 6.9] |
Linoleic acid (g/100 g TFA) 1 | 13.8 | 2.4 | 9.7 | 20.2 | [13.0, 14.5] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garau, C.; Umaña, M.; Llompart, M.; Velázquez, I.; Gálvez, I.; Simal, S. Potential of Carob Pulp Powder: Influence of Cultivar on Nutritional Composition, Antioxidant Activity, and Functional Properties. Molecules 2025, 30, 2715. https://doi.org/10.3390/molecules30132715
Garau C, Umaña M, Llompart M, Velázquez I, Gálvez I, Simal S. Potential of Carob Pulp Powder: Influence of Cultivar on Nutritional Composition, Antioxidant Activity, and Functional Properties. Molecules. 2025; 30(13):2715. https://doi.org/10.3390/molecules30132715
Chicago/Turabian StyleGarau, Carme, Mónica Umaña, Miquel Llompart, Ismael Velázquez, Isabel Gálvez, and Susana Simal. 2025. "Potential of Carob Pulp Powder: Influence of Cultivar on Nutritional Composition, Antioxidant Activity, and Functional Properties" Molecules 30, no. 13: 2715. https://doi.org/10.3390/molecules30132715
APA StyleGarau, C., Umaña, M., Llompart, M., Velázquez, I., Gálvez, I., & Simal, S. (2025). Potential of Carob Pulp Powder: Influence of Cultivar on Nutritional Composition, Antioxidant Activity, and Functional Properties. Molecules, 30(13), 2715. https://doi.org/10.3390/molecules30132715