Utilization of SiO2 Nanoparticles in Developing Superhydrophobic Coatings for Road Construction: A Short Review
Abstract
1. Introduction
2. Properties of Nano-SiO2
3. Hydrophobic Functionalization of SiO2 Nanoparticles
Modification of SiO2 NPs | Coating Method | Substrate | WCA | Purpose of the Research Work | |
---|---|---|---|---|---|
1 | Polymethyltrifluoropropylsiloxane (Fluorine silicone polymer (PF)) [89] |
| - | 160.5° | Comparison of 3 types of substrates (SCM, SCN, and SCH) |
2 | Ttrimethoxy (1H,1H,2H,2H-heptadecafluorodecyl) silane (fluorinated silane coupling agent (FSCA)) [78] | spraying | - | 156° | Prepared fluorinated nano-silica SH coating with anti-icing properties for cement pavement |
3 | APTES ((3-aminopropyl) triethoxysilan) [90] |
| Glass, steel, filter paper, fabric, wood, and cotton wool | 165° | Fluorine-free SH surfaces created using hydrophobic SiO2 nanoparticles modified with APTES |
4 | (3-glycidyloxypropyl) trimethoxysilane (GPTMS), (trihydroxysilyl) propyl methylphosphonate (THPMP), APTES [92] | mixed with bitumen | Mixed with bitumen | - | Modification of SNPs using various silane coupling agents and dual combinations like APTES- THPMP and APTES-GPTMS |
5 | Dichlorodimethylsilane (DMDCS) [93] | dropping | Copper mesh | 155° | The amount of modifier applied plays a crucial role in altering the surface wettability |
6 | Polydimethylsiloxane (PDMS) [94] | spraying | Glass, paper, and plastic | 156.4° | One-step spray coating method using PDMS andSiO2 for scalable applications like oil–water separation and self-cleaning |
7 | Hexadecyltrimethoxysilane (HDTMS) [91] | - | - | 170.9° | Modified nano-SiO2 achieving a water contact angle exceeding 170° |
8 | Octadecyltrichlorosilane (OTS) [95] | spraying | Glass slide | 165.5° | SiO2/silicone rubber nanocomposite coating; icing behavior analysis of water droplets on cold SH surface |
4. SiO2-Based Superhydrophobic Coatings in Road Construction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tileuberdi, Y.; Ongarbayev, Y.; Mukatayeva, Z.; Zhanbekov, K.; Mukhambetkaliyev, K.; Akkazin, Y.; Shadin, N.; Imanbayev, Y. Studying Characteristics of Hot Fine-Grained Asphalt Concrete with the Addition of Coked Sands from the Pyrolysis of Oil Sands. Processes 2024, 12, 2540. [Google Scholar] [CrossRef]
- Teltayev, B.; Massanov, A.; Aitbayev, Y.; Zhaisanbayev, A. Performance of a Semi-Rigid Pavement: A North Kazakhstan Case Study. Eng. Sci. 2024, 29, 1089. [Google Scholar] [CrossRef]
- Austruy, F.; Tileuberdi, Y.; Ongarbaev, Y.; Mansurov, Z. Study of Production of Rubber-Bitumen Compounds. Eurasian Chem.-Technol. J. 2012, 14, 133–138. [Google Scholar] [CrossRef]
- Min, Z.; Xia, Y.; Li, X.; Tao, Z. Performances evaluation of epoxy asphalt mixture containing snow-melting agent. Constr. Build. Mater. 2017, 155, 762–769. [Google Scholar] [CrossRef]
- She, W.; Yang, J.; Hong, J.; Sun, D.; Mu, S.; Miao, C. Superhydrophobic concrete with enhanced mechanical robustness: Nanohybrid composites, strengthen mechanism and durability evaluation. Constr. Build. Mater. 2020, 247, 118563. [Google Scholar] [CrossRef]
- Liu, Z.; Xing, M.; Chen, S.; He, R.; Cong, P. Influence of the chloride-based anti-freeze filler on the properties of asphalt mixtures. Constr. Build. Mater. 2013, 51, 133–140. [Google Scholar] [CrossRef]
- Jiao, W.; Sha, A.; Liu, Z.; Li, W.; Zhang, L.; Jiang, S. Optimization design and prediction of the snow-melting pavement based on electrical-thermal system. Cold Reg. Sci. Technol. 2021, 193, 103406. [Google Scholar] [CrossRef]
- Liu, Z.; Sha, A.; Xing, M.; Li, Z. Low temperature property and salt releasing characteristics of antifreeze asphalt concrete under static and dynamic conditions. Cold Reg. Sci. Technol. 2015, 114, 9–14. [Google Scholar] [CrossRef]
- Wei, H.; He, Q.; Jiao, Y.; Chen, J.; Hu, M. Evaluation of anti-icing performance for crumb rubber and diatomite compound modified asphalt mixture. Constr. Build. Mater. 2016, 107, 109–116. [Google Scholar] [CrossRef]
- Cao, Y.; Li, J.; Sha, A.; Liu, Z.; Zhang, F.; Li, X. A power-intensive piezoelectric energy harvester with efficient load utilization for road energy collection: Design, testing, and application. J. Clean. Prod. 2022, 369, 133287. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, S.; He, R.; Xing, M.; Bai, Y.; Dou, H. Investigation on the properties of asphalt mixtures containing antifreeze fillers. J. Mater. Civ. Eng. 2014, 27, 04014180. [Google Scholar] [CrossRef]
- Chen, H.; Wu, Y.; Xia, H.; Jing, B.; Zhang, Q. Review of ice-pavement adhesion study and development of hydrophobic surface in pavement deicing. J. Traffic Transp. Eng. (Engl. Ed.) 2018, 5, 224–238. [Google Scholar] [CrossRef]
- She, W.; Wang, X.; Miao, C.; Zhang, Q.; Zhang, Y.; Yang, J.; Hong, J. Biomimetic superhydrophobic surface of concrete: Topographic and chemical modification assembly by direct spray. Constr. Build. Mater. 2018, 181, 347–357. [Google Scholar] [CrossRef]
- Zhang, H.F.; Huang, H.L.; Sun, Y.F.; Zhang, L.F.; Yao, B.X. Application of water reducing agent in concrete of engineering materials. Adv. Mater. Res. 2012, 578, 87–90. [Google Scholar] [CrossRef]
- Jia, L.; Shi, C.; Pan, X.; Zhang, J.; Wu, L. Effects of inorganic surface treatment on water permeability of cement-based materials. Cem. Concr. Compos. 2016, 67, 85–92. [Google Scholar] [CrossRef]
- Pan, X.; Shi, Z.; Shi, C.; Ling, T.-C.; Li, N. A review on concrete surface treatment Part I: Types and mechanisms. Constr. Build. Mater. 2016, 132, 578–590. [Google Scholar] [CrossRef]
- Li, Y.; Gou, L.; Wang, H.; Wang, Y.; Zhang, J.; Li, N.; Hu, S.; Yang, J. Fluorine-free superhydrophobic carbon-based coatings on the concrete. Mater. Lett. 2019, 244, 31–34. [Google Scholar] [CrossRef]
- Deng, X.; Mammen, L.; Zhao, Y.; Lellig, P.; Müllen, K.; Li, C.; Butt, H.; Vollmer, D. Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules. Adv. Mater. 2011, 23, 2962–2965. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Huang, J.; Chen, Z.; Chen, G.; Lai, Y. Bioinspired surfaces with superamphiphobic properties: Concepts, synthesis, and applications. Adv. Funct. Mater. 2018, 28, 1707415. [Google Scholar] [CrossRef]
- Su, B.; Tian, Y.; Jiang, L. Bioinspired interfaces with superwettability: From materials to chemistry. J. Am. Chem. Soc. 2016, 138, 1727–1748. [Google Scholar] [CrossRef]
- Al-Kheetan, M.J.; Byzyka, J.; Ghaffar, S.H. Sustainable valorisation of silane-treated waste glass powder in concrete pavement. Sustainability 2021, 13, 4949. [Google Scholar] [CrossRef]
- Seralin, A.; Sugurbekova, G.; Kurbanova, A.; Nuraje, N.; Toktarbaiuly, O. Designing water-repellent concrete composites using cheap organic materials. Eurasian Chem.-Technol. J. 2022, 24, 251–258. [Google Scholar] [CrossRef]
- Lu, Y.; Sathasivam, S.; Song, J.; Crick, C.R.; Carmalt, C.J.; Parkin, I.P. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 2015, 347, 1132–1135. [Google Scholar] [CrossRef]
- Cai, R.; Glinel, K.; De Smet, D.; Vanneste, M.; Mannu, N.; Kartheuser, B.; Nysten, B.; Jonas, A.M. Environmentally friendly super-water-repellent fabrics prepared from water-based suspensions. ACS Appl. Mater. Interfaces 2018, 10, 15346–15351. [Google Scholar] [CrossRef] [PubMed]
- Suiindik, Z.; Adotey, E.; Kydyrbay, N.; Zhazitov, M.; Nuraje, N.; Toktarbaiuly, O. Formulating superhydrophobic coatings with silane for microfiber applications. Eurasian Chem.-Technol. J. 2024, 26, 53–60. [Google Scholar] [CrossRef]
- Kurbanova, A.; Myrzakhmetova, N.; Akimbayeva, N.; Kishibayev, K.; Nurbekova, M.; Kanagat, Y.; Tursynova, A.; Zhunussova, T.; Seralin, A.; Kudaibergenova, R.; et al. Superhydrophobic SiO2/trimethylchlorosilane coating for self-cleaning application of construction materials. Coatings 2022, 12, 1422. [Google Scholar] [CrossRef]
- Coady, M.J.; Wood, M.; Wallace, G.Q.; Nielsen, K.E.; Kietzig, A.-M.; Lagugné-Labarthet, F.; Ragogna, P.J. Icephobic behavior of UV-cured polymer networks incorporated into slippery lubricant-infused porous surfaces: Improving slips durability. ACS Appl. Mater. Interfaces 2018, 10, 2890–2896. [Google Scholar] [CrossRef]
- Chen, J.; Luo, Z.; Fan, Q.; Lv, J.; Wang, J. Anti-ice coating inspired by ice skating. Small 2014, 10, 4693–4699. [Google Scholar] [CrossRef]
- Cheng, T.; He, R.; Zhang, Q.; Zhan, X.; Chen, F. Magnetic particle-based super-hydrophobic coatings with excellent anti-icing and thermoresponsive deicing performance. J. Mater. Chem. A 2015, 3, 21637–21646. [Google Scholar] [CrossRef]
- Ding, J.; Rahman, O.U.; Peng, W.; Dou, H.; Yu, H. A novel hydroxyl epoxy phosphate monomer enhancing the anticorrosive performance of waterborne Graphene/Epoxy coatings. Appl. Surf. Sci. 2018, 427, 981–991. [Google Scholar] [CrossRef]
- Ou, J.; Hu, W.; Xue, M.; Wang, F.; Li, W. One-step solution immersion process to fabricate superhydrophobic surfaces on light alloys. ACS Appl. Mater. Interfaces 2013, 5, 9867–9871. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Z.; Wang, M.; Men, X.; Xue, Q. Environmentally safe, substrate-independent and repairable nanoporous coatings: Large-scale preparation, high transparency and antifouling properties. J. Mater. Chem. A 2017, 5, 20277–20288. [Google Scholar] [CrossRef]
- Sohn, E.-H.; Kang, H.S.; Bom, J.-C.; Ha, J.-W.; Lee, S.-B.; Park, I.J. Silica-core perfluorinated polymer-shell composite nanoparticles for highly stable and efficient superhydrophobic surfaces. J. Mater. Chem. A 2018, 6, 12950–12955. [Google Scholar] [CrossRef]
- Girard, H.-L.; Khan, S.; Varanasi, K.K. Multilevel robustness. Nat. Mater. 2018, 17, 298–300. [Google Scholar] [CrossRef]
- Toktarbaiuly, O.; Kurbanova, A.; Imekova, G.; Abutalip, M.; Toktarbay, Z. Desert water saving and transportation for enhanced oil recovery: Bridging the gap for sustainable oil recovery. Eurasian Chem. J. 2023, 25, 193–200. [Google Scholar] [CrossRef]
- Li, F.; Wang, Z.; Huang, S.; Pan, Y.; Zhao, X. Flexible, durable, and unconditioned superoleophobic/superhydrophilic surfaces for controllable transport and oil–water separation. Adv. Funct. Mater. 2018, 28, 1706867. [Google Scholar] [CrossRef]
- Al-Kheetan, M.J.; Al-Tarawneh, M.; Ghaffar, S.H.; Chougan, M.; Jweihan, Y.S.; Rahman, M.M. Resistance of hydrophobic concrete with different moisture contents to advanced freeze–thaw cycles. Struct. Concr. 2020, 22, E1050–E1061. [Google Scholar] [CrossRef]
- Quan, X.; Yang, L.; Li, H.; Chen, Y.; Shi, S. Performance evaluation of a multifunctional road marking coating for tunnels based on Nano SiO2 and TiO2 modifications. Buildings 2024, 14, 459. [Google Scholar] [CrossRef]
- Al-Kheetan, M.J.; Rahman, M.M.; Chamberlain, D.A. Remediation and protection of masonry structures with crystallising moisture blocking treatment. Int. J. Build. Pathol. Adapt. 2018, 36, 77–92. [Google Scholar] [CrossRef]
- Zhao, Y.; Qin, M.; Wen, K.; Liang, N.; Wang, Y. Research progress in super hydrophobic bionic anti-icing material of asphalt pavement. Mater. Rep. 2021, 35, 1141–1153. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, J.; Cheng, Y.; Yang, H.; Chen, Z.; Lai, Y. Bioinspired surfaces with superwettability for anti-Icing and ice-phobic application: Concept, mechanism, and design. Small 2017, 13, 1701867. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Hu, X.; You, Z.; Xu, F.; Jiang, G.; Ouyang, H.; Guo, C.; Ma, H.; Lu, L.; Dai, J. Investigation of anti-icing, anti-skid, and water impermeability performances of an acrylic superhydrophobic coating on asphalt pavement. Constr. Build. Mater. 2020, 264, 120702. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, H.; You, Z.; Xu, F.; Jiang, G.; Lv, S.; Zhang, R.; Yang, H. Preparation and anti-icing properties of a superhydrophobic silicone coating on asphalt mixture. Constr. Build. Mater. 2018, 189, 227–235. [Google Scholar] [CrossRef]
- Nahvi, A.; Sadoughi, M.K.; Arabzadeh, A.; Sassani, A.; Hu, C.; Ceylan, H.; Kim, S. Multi-objective Bayesian optimization of super hydrophobic coatings on asphalt concrete surfaces. J. Comput. Des. Eng. 2019, 6, 693–704. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Zhang, K.; Zhang, S. Preparation of super-hydrophobic anti-icing coating for asphalt pavement and evaluation of its anti-icing properties. J. Mater. Civ. Eng. 2021, 33, 04021004. [Google Scholar] [CrossRef]
- Yu, H.; He, Z.; Qian, G.; Gong, X.; Qu, X. Research on the anti-icing properties of silicone modified polyurea coatings (SMPC) for asphalt pavement. Constr. Build. Mater. 2020, 242, 117793. [Google Scholar] [CrossRef]
- Li, H.; Lin, X.; Wang, H. Fabrication and evaluation of nano-TiO2 superhydrophobic coating on asphalt pavement. Materials 2021, 14, 211. [Google Scholar] [CrossRef]
- Zhambolova, A.; Vocaturo, A.L.; Tileuberdi, Y.; Ongarbayev, Y.; Caputo, P.; Aiello, I.; Rossi, C.O.; Godbert, N. Functionalization and Modification of Bitumen by Silica Nanoparticles. Appl. Sci. 2020, 10, 6065. [Google Scholar] [CrossRef]
- Guo, Y.; Tian, B.; Zhao, J.; Ji, G.; Wang, X. Study on automatic anti-icing effect and rheological properties of asphalt based on SiO2 nanowires. Case Stud. Constr. Mater. 2024, 21, e03714. [Google Scholar] [CrossRef]
- Ghaleh, V.R.; Mohammadi, A. The stability and surface activity of environmentally responsive surface-modified silica nanoparticles: The importance of hydrophobicity. J. Dispers. Sci. Technol. 2019, 41, 1299–1310. [Google Scholar] [CrossRef]
- de Ferri, L.; Lottici, P.P.; Lorenzi, A.; Montenero, A.; Salvioli-Mariani, E. Study of silica nanoparticles–polysiloxane hydrophobic treatments for stone-based monument protection. J. Cult. Herit. 2011, 12, 356–363. [Google Scholar] [CrossRef]
- Pan, S.; Wang, N.; Xiong, D.; Deng, Y.; Shi, Y. Fabrication of superhydrophobic coating via spraying method and its applications in anti-icing and anti-corrosion. Appl. Surf. Sci. 2016, 389, 547–553. [Google Scholar] [CrossRef]
- Zulkharnay, R.; Ualibek, O.; Toktarbaiuly, O.; May, P.W. Hydrophobic behaviour of reduced graphene oxide thin film fabricated via electrostatic spray deposition. Bull. Mater. Sci. 2021, 44, 112. [Google Scholar] [CrossRef]
- Adotey, E.; Kurbanova, A.; Ospanova, A.; Ardakkyzy, A.; Toktarbay, Z.; Kydyrbay, N.; Zhazitov, M.; Nuraje, N.; Toktarbaiuly, O. Development of superhydrophobic reduced graphene oxide (rGO) for potential applications in advanced materials. Nanomaterials 2025, 15, 363. [Google Scholar] [CrossRef]
- Al-Kheetan, M.J.; Rahman, M.M.; Chamberlain, D.A. Optimum Mix Design for Internally Integrated Concrete with Crystallizing Protective Material. J. Mater. Civ. Eng. 2019, 31, 04019101. [Google Scholar] [CrossRef]
- Liu, W.; Song, J.; Zhao, H.; Cui, Z.; Zhang, S.; Qiao, Y.; Cao, C.; Li, W. Mechanically stable and superhydrophobic nano-SiO2@silane/silicate coating for enhanced impermeability of mortar. Constr. Build. Mater. 2025, 470, 140541. [Google Scholar] [CrossRef]
- Behzadi, A.; Mohammadi, A. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery. J. Nanopart. Res. 2016, 18, 266. [Google Scholar] [CrossRef]
- Weston, J.S.; Jentoft, R.E.; Grady, B.P.; Resasco, D.E.; Harwell, J.H. Silica nanoparticle wettability: Characterization and effects on the emulsion properties. Ind. Eng. Chem. Res. 2015, 54, 4274–4284. [Google Scholar] [CrossRef]
- Huibers, B.M.J.; Pales, A.R.; Bai, L.; Li, C.; Mu, L.; Ladner, D.; Daigle, H.; Darnault, C.J.G. Wettability alteration of sandstones by silica nanoparticle dispersions in light and heavy crude oil. J. Nanopart. Res. 2017, 19, 323. [Google Scholar] [CrossRef]
- Mazur, M.; Wojcieszak, D.; Kaczmarek, D.; Domaradzki, J.; Song, S.; Gibson, D.; Placido, F.; Mazur, P.; Kalisz, M.; Poniedzialek, A. Functional photocatalytically active and scratch resistant antireflective coating based on TiO2 and SiO2. Appl. Surf. Sci. 2016, 380, 165–171. [Google Scholar] [CrossRef]
- Xiong, M.; Ren, Z.; Liu, W. Fabrication of superhydrophobic and UV-resistant surface on cotton fabric via layer-by-layer assembly of silica-based UV absorber. J. Dispers. Sci. Technol. 2019, 41, 1703–1710. [Google Scholar] [CrossRef]
- Yang, C.; Tartaglino, U.; Persson, B.N.J. Influence of surface roughness on superhydrophobicity. Phys. Rev. Lett. 2006, 97, 116103. [Google Scholar] [CrossRef]
- Thomas, T. Characterization of surface roughness. Precis. Eng. 1981, 3, 97–104. [Google Scholar] [CrossRef]
- Patrikar, R.M. Modeling and simulation of surface roughness. Appl. Surf. Sci. 2004, 228, 213–220. [Google Scholar] [CrossRef]
- Kubiak, K.J.; Wilson, M.C.T.; Mathia, T.G.; Carval, P. Wettability versus roughness of engineering surfaces. Wear 2010, 271, 523–528. [Google Scholar] [CrossRef]
- Kydyrbay, N.; Adotey, E.; Zhazitov, M.; Suiindik, Z.; Toktarbay, Z.; Nuraje, N.; Toktarbaiuly, O. Enhancing road durability and Safety: A study on Silica-Based Superhydrophobic coating for cement surfaces in road construction. Eng. Sci. 2024, 30, 1221. [Google Scholar] [CrossRef]
- Li, Y.; Sha, A.; Liu, Z. Wettability and freezing characteristic of pavement surface with macro-scale roughness. Constr. Build. Mater. 2024, 439, 137328. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z. Advances in Wettability and Anti-Icing Property Evaluation for Pavement Superhydrophobic Anti-Icing Coating; CRC Press eBooks: Boca Raton, FL, USA, 2024; pp. 484–491. [Google Scholar] [CrossRef]
- Sobolev, K.; Nosonovsky, M.; Krupenkin, T.; Flores-Vivian, I.; Rao, S.; Kozhukhova, M.; Hejazi, V.; Muzenski, S.; Bosch, B.; Rivero, R. Anti-Icing and De-Icing Superhydrophobic Concrete to Improve the Safety on Critical Elements on Roadway Pavements; CFIRE 07-03; National Center for Freight and Infrastructure Research and Education: Madison, WI, USA, 2013. Available online: https://rosap.ntl.bts.gov/view/dot/26834 (accessed on 18 June 2025).
- Sun, P.; Liang, X.; Ding, Y.; Tingwei, W.; Xiang, S.; Cai, D. Laboratory evaluation on water-based and flexible epoxy/SiO2 nanocomposites to enhance anti-sliding effectiveness of pavement. Mater. Res. Express 2020, 7, 025303. [Google Scholar] [CrossRef]
- Shrestha, S.; Wang, B.; Dutta, P. Nanoparticle processing: Understanding and controlling aggregation. Adv. Colloid Interface Sci. 2020, 279, 102162. [Google Scholar] [CrossRef]
- Yamamoto, E.; Shimojima, A.; Wada, H.; Kuroda, K. Mesoporous Silica Nanoparticles with Dispersibility in Organic Solvents and Their Versatile Surface Modification. Langmuir 2020, 36, 5571–5578. [Google Scholar] [CrossRef]
- Schneid, A.d.C.; Silveira, C.P.; Galdino, F.E.; Ferreira, L.F.; Bouchmella, K.; Cardoso, M.B. Colloidal Stability and Redispersibility of Mesoporous Silica Nanoparticles in Biological Media. Langmuir 2020, 36, 11442–11449. [Google Scholar] [CrossRef]
- Liu, S.; Peng, Y.; Chen, J.; Shi, W.; Yan, T.; Li, B.; Zhang, Y.; Li, J. Engineering Surface Functional Groups On Mesoporous Silica: Towards A Humidity-Resistant Hydrophobic Adsorbent. J. Mater. Chem. A 2018, 6, 13769–13777. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Wan, D.; Sha, A.; Li, Y.; Liu, Z. Preparation and evaluation of a fluorinated nano-silica superhydrophobic coating for cement pavement. Constr. Build. Mater. 2022, 360, 129478. [Google Scholar] [CrossRef]
- Zhao, Y.; Wen, K.; Wang, J.; Yang, Z.; Qin, M. Preparation, characterisation, and anti-icing properties of superhydrophobic coatings on asphalt mixture. Int. J. Pavement Eng. 2022, 24, 2118271. [Google Scholar] [CrossRef]
- Peng, C.; Chen, P.; You, Z.; Lv, S.; Xu, F.; Zhang, W.; Yu, J.; Zhang, H. The anti-icing and mechanical properties of a superhydrophobic coating on asphalt pavement. Constr. Build. Mater. 2018, 190, 83–94. [Google Scholar] [CrossRef]
- Gao, Y.; Qu, L.; He, B.; Dai, K.; Fang, Z.; Zhu, R. Study on effectiveness of anti-icing and deicing performance of super-hydrophobic asphalt concrete. Constr. Build. Mater. 2018, 191, 270–280. [Google Scholar] [CrossRef]
- Yao, X.F.; Yeh, H.Y.; Zhou, D.; Zhang, Y.H. The structural characterization and properties of SiO2-Epoxy nanocomposites. J. Compos. Mater. 2005, 40, 371–381. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, Y.D.; Hui, S.; Xiao, T.D.; Ge, S.; Hines, W.A.; Budnick, J.I. Structure and magnetic properties of SiO2-coated Co nanoparticles. J. Appl. Phys. 2002, 92, 491–495. [Google Scholar] [CrossRef]
- Dubey, R.; Rajesh, Y.; More, M. Synthesis and characterization of SiO2 nanoparticles via Sol-gel method for industrial applications. Mater. Today Proc. 2015, 2, 3575–3579. [Google Scholar] [CrossRef]
- Bagwe, R.P.; Hilliard, L.R.; Tan, W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 2006, 22, 4357–4362. [Google Scholar] [CrossRef]
- Ibrahim, R.K.; Hamid, R.; Taha, M. Fire resistance of high-volume fly ash mortars with nanosilica addition. Constr. Build. Mater. 2012, 36, 779–786. [Google Scholar] [CrossRef]
- Khaloo, A.; Mobini, M.H.; Hosseini, P. Influence of different types of nano-SiO2 particles on properties of high-performance concrete. Constr. Build. Mater. 2016, 113, 188–201. [Google Scholar] [CrossRef]
- Dolatzadeh, F.; Moradian, S.; Jalili, M.M. Influence of various surface treated silica nanoparticles on the electrochemical properties of SiO2/polyurethane nanocoatings. Corros. Sci. 2011, 53, 4248–4257. [Google Scholar] [CrossRef]
- Chen, K.L.; Zhao, Y.H.; Yuan, X.Y. Chemical Modification of silica: Method, Mechanism, and Application. Prog. Chem. 2013, 25, 95–104. [Google Scholar] [CrossRef]
- Fuji, M.; Takei, T.; Watanabe, T.; Chikazawa, M. Wettability of Fine Silica Powder Surfaces Modified with Several Normal Alcohols. Colloids Surf. A 1999, 154, 13–24. [Google Scholar] [CrossRef]
- Hsiao, I.; Fritsch-Decker, S.; Leidner, A.; Al-Rawi, M.; Hug, V.; Diabaté, S.; Grage, S.L.; Meffert, M.; Stoeger, T.; Gerthsen, D.; et al. Biocompatibility of Amine-Functionalized Silica Nanoparticles: The Role of Surface Coverage. Small 2019, 15, 1805400. [Google Scholar] [CrossRef]
- Yang, E.; Ma, B.; Jia, W.; Du, Y.; Yuan, H.; Ding, H.; Di, H.; Yuan, F.; Qiu, Y. Anti-icing properties of superhydrophobic coatings with hierarchical structure surfaces on asphalt pavement. Constr. Build. Mater. 2024, 434, 136685. [Google Scholar] [CrossRef]
- Ye, H.; Zhu, L.; Li, W.; Liu, H.; Chen, H. Constructing Fluorine-Free and Cost-Effective Superhydrophobic Surface with Normal-Alcohol-Modified Hydrophobic SiO2 Nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 858–867. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, Q. Preparation and properties of hydrophobically modified nano-SiO2 with hexadecyltrimethoxysilane. ACS Omega 2021, 6, 9764–9770. [Google Scholar] [CrossRef]
- Karnati, S.R.; Oldham, D.; Fini, E.H.; Zhang, L. Application of surface-modified silica nanoparticles with dual silane coupling agents in bitumen for performance enhancement. Constr. Build. Mater. 2020, 244, 118324. [Google Scholar] [CrossRef]
- Yan, Y.-L.; Cai, Y.-X.; Liu, X.-C.; Ma, G.-W.; Lv, W.; Wang, M.-X. Hydrophobic Modification on the Surface of SiO2 Nanoparticle: Wettability Control. Langmuir 2020, 36, 14924–14932. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; He, S. Highly Durable Superhydrophobic Polydimethylsiloxane/Silica Nanocomposite Surfaces with Good Self-Cleaning Ability. ACS Omega 2020, 5, 4100–4108. [Google Scholar] [CrossRef]
- Lei, S.; Wang, F.; Fang, X.; Ou, J.; Li, W. Icing behavior of water droplets impinging on cold superhydrophobic surface. Surf. Coat. Technol. 2019, 363, 362–368. [Google Scholar] [CrossRef]
- Oliveira, N.M.; Reis, R.L.; Mano, J.F. Superhydrophobic surfaces engineered using diatomaceous earth. ACS Appl. Mater. Interfaces 2013, 5, 4202–4208. [Google Scholar] [CrossRef]
- Arabzadeh, A.; Ceylan, H.; Kim, S.; Gopalakrishnan, K.; Sassani, A.; Sundararajan, S.; Taylor, P.C. Superhydrophobic coatings on Portland cement concrete surfaces. Constr. Build. Mater. 2017, 141, 393–401. [Google Scholar] [CrossRef]
- Arabzadeh, A.; Ceylan, H.; Kim, S.; Gopalakrishnan, K.; Sassani, A. Superhydrophobic coatings on asphalt concrete surfaces: Toward smart solutions for winter pavement maintenance. Transp. Res. Rec. J. Transp. Res. Board 2016, 2551, 10–17. [Google Scholar] [CrossRef]
- Segundo, I.R.; Ferreira, C.; Freitas, E.; Carneiro, J.; Fernandes, F.; Júnior, S.L.; Costa, M. Assessment of photocatalytic, superhydrophobic and self-cleaning properties on hot mix asphalts coated with TiO2 and/or ZnO aqueous solutions. Constr. Build. Mater. 2018, 166, 500–509. [Google Scholar] [CrossRef]
- Wang, H.; He, G.; Tian, Q. Effects of nano-fluorocarbon coating on icing. Appl. Surf. Sci. 2012, 258, 7219–7224. [Google Scholar] [CrossRef]
- Peng, C.; Hu, Y.; You, Z.; Yang, H.; Nie, Y.; Wu, T.; Yang, H.; Ou, R. Preparation and anti-icing performance of acrylic superhydrophobic asphalt pavement coating with microwave heating function. Constr. Build. Mater. 2022, 344, 128289. [Google Scholar] [CrossRef]
- Soleimani, M.; Bagheri, E.; Mosaddegh, P.; Rabiee, T.; Fakhar, A.; Sadeghi, M. Stable waterborne epoxy emulsions and the effect of silica nanoparticles on their coatings properties. Prog. Org. Coat. 2021, 156, 106250. [Google Scholar] [CrossRef]
- Erbil, H.Y. Industrial applications of superhydrophobic coatings: Challenges and prospects. Hacet. J. Biol. Chem. 2020, 48, 447–457. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Z.; Chen, M.; Liu, Z.; Jiang, S.; Wang, L. Preparation of durable superhydrophobic Coatings based on discrete adhesives. Coatings 2024, 14, 463. [Google Scholar] [CrossRef]
- Rasitha, T.; Krishna, N.G.; Anandkumar, B.; Vanithakumari, S.; Philip, J. A comprehensive review on anticorrosive/antifouling superhydrophobic coatings: Fabrication, assessment, applications, challenges and future perspectives. Adv. Colloid Interface Sci. 2024, 324, 103090. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.J.; Ma, J.; Rabbi, K.F.; Yan, X.; Singh, B.P.; Upot, N.V.; Fu, W.; Kohler, J.; Thukral, T.S.; Dewanjee, S.; et al. Perspectives on superhydrophobic surface durability. Appl. Phys. Lett. 2023, 123, 110501. [Google Scholar] [CrossRef]
- Karnati, S.R.; Oldham, D.; Fini, E.H.; Zhang, L. Surface functionalization of silica nanoparticles to enhance aging resistance of asphalt binder. Constr. Build. Mater. 2019, 211, 1065–1072. [Google Scholar] [CrossRef]
- EN 16811-3:2016; Winter Service Equipment and Products—De-Icing Agents—Part 3: Other Solid and Liquid De-Icing Agents—Requirements and Test Methods. European Committee for Standardization (CEN): Brussels, Belgium, 2016.
Purpose of the Research Work | Preparation Method Utilizing SiO2 NPs | Coating Method | Curing Time on Substrate | Substrate | WCA | |
[75] | De-icing and anti-icing effectiveness | Produced by incorporating nano-SiO2 particles at the final stage of the fluoro silane hydrolysis reaction. | Manual or mechanical spraying | - | Asphalt concrete | 150.7° |
[76] | Anti-icing purposes | SiO2 NPs were mixed with silanes (MTMS, DMDS) and coupling agent KH550. | Spraying | Static cultivation for 24 h; dried at 160 °C for 2 h | Asphalt | 154.2° |
[7] | Robustness of the substrate | Formulation of a hydrophobic solution through the hydrolytic polycondensation of PTES. Synthesis of a nanoparticle solution containing SiO2 NPs using the hydrothermal method. | Brushing, spraying | 7 days at 21 °C | Concrete-based materials | 155° |
[77] | Anti-icing and mechanical properties | Functionalization of SiO2 NPs using KH550. Application by spraying onto the RTV surface of partially cured silicone rubber. | Spraying | 10 min | Asphalt | 166.7° |
[78] | Anti-icing performance and pavement durability | Fluorination of nano-silica particles with FSCA mixing fluorinated NPs with epoxy resin, black carbon and curing agent to obtain SHS. | Spraying | 6 days at room temperature | Cement pavement | 156.7° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kydyrbay, N.; Zhazitov, M.; Abdullah, M.; Toktarbay, Z.; Tezekbay, Y.; Duisebayev, T.; Toktarbaiuly, O. Utilization of SiO2 Nanoparticles in Developing Superhydrophobic Coatings for Road Construction: A Short Review. Molecules 2025, 30, 2705. https://doi.org/10.3390/molecules30132705
Kydyrbay N, Zhazitov M, Abdullah M, Toktarbay Z, Tezekbay Y, Duisebayev T, Toktarbaiuly O. Utilization of SiO2 Nanoparticles in Developing Superhydrophobic Coatings for Road Construction: A Short Review. Molecules. 2025; 30(13):2705. https://doi.org/10.3390/molecules30132705
Chicago/Turabian StyleKydyrbay, Nazerke, Mergen Zhazitov, Muhammad Abdullah, Zhexenbek Toktarbay, Yerbolat Tezekbay, Tolagay Duisebayev, and Olzat Toktarbaiuly. 2025. "Utilization of SiO2 Nanoparticles in Developing Superhydrophobic Coatings for Road Construction: A Short Review" Molecules 30, no. 13: 2705. https://doi.org/10.3390/molecules30132705
APA StyleKydyrbay, N., Zhazitov, M., Abdullah, M., Toktarbay, Z., Tezekbay, Y., Duisebayev, T., & Toktarbaiuly, O. (2025). Utilization of SiO2 Nanoparticles in Developing Superhydrophobic Coatings for Road Construction: A Short Review. Molecules, 30(13), 2705. https://doi.org/10.3390/molecules30132705