Application of Response Surface Methodology for the Optimization of Basic Red 46 Dye Degradation in an Electrocoagulation–Ozonation Hybrid System
Abstract
:1. Introduction
2. Results and Discussion
2.1. Regression Model Evaluation
2.2. Model Adequacy and Significance Assessment
2.3. Model Diagnostics and Validation
2.4. Interpretation of Three-Dimensional Response Surfaces
2.4.1. Effect of Current Density on BR46 Removal Efficiency
2.4.2. Effect of Flow Rate on BR46 Removal Efficiency
2.4.3. Effect of Ozone Dose on BR46 Removal Efficiency
2.4.4. Effect of Ozonation Time on BR46 Removal Efficiency
2.4.5. Effect of Initial BR46 Concentration on BR46 Removal Efficiency
2.5. Numerical Optimization of Process Parameters
2.6. Economic Evaluation and Scale-Up Considerations of EC–O System
2.7. Proposed Mechanism of BR46 Removal by Electrocoagulation–Ozonation Hybrid System
3. Materials and Methods
3.1. Chemicals
3.2. Ozone–Electrocoagulation System
3.3. Experimental Design
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rápó, E.; Tonk, S. Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017–2021). Molecules 2021, 26, 5419–5450. [Google Scholar] [CrossRef] [PubMed]
- Karimifard, S.; Alavi Moghaddam, M.R. Application of Response Surface Methodology in Physicochemical Removal of Dyes from Wastewater: A Critical Review. Sci. Total Environ. 2018, 640–641, 772–797. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Gupta, S. Toxicological Impact of Azo Dyes and Their Microbial Degraded Byproducts on Flora and Fauna. In Innovations in Environmental Biotechnology; Springer: Berlin/Heidelberg, Germany, 2022; pp. 319–343. ISBN 9789811644450. [Google Scholar]
- Kataria, J.; Rawat, H.; Tomar, H.; Gaurav, N.; Kumar, A. Azo Dyes Degradation Approaches and Challenges: An Overview. Sci. Temper 2022, 13, 384–400. [Google Scholar] [CrossRef]
- Rawat, D.; Sharma, R.S.; Karmakar, S.; Arora, L.S.; Mishra, V. Ecotoxic Potential of a Presumably Non-Toxic Azo Dye. Ecotoxicol. Environ. Saf. 2018, 148, 528–537. [Google Scholar] [CrossRef]
- Goswami, D.; Mukherjee, J.; Mondal, C.; Bhunia, B. Bioremediation of Azo Dye: A Review on Strategies, Toxicity Assessment, Mechanisms, Bottlenecks and Prospects. Sci. Total Environ. 2024, 954, 176426. [Google Scholar] [CrossRef]
- Sahu, A.; Poler, J.C. Removal and Degradation of Dyes from Textile Industry Wastewater: Benchmarking Recent Advancements, Toxicity Assessment and Cost Analysis of Treatment Processes. J. Environ. Chem. Eng. 2024, 12, 113754. [Google Scholar] [CrossRef]
- Karaca, C.; Karaca, M.; Kıranşan, M.; Karaca, S.; Açışlı, Ö.; Gürses, A. Comparison of the Removal Efficiencies of Basic Red 46 from Aqueous Solutiousing Aşkale Lignite with and without Ultrasound Assisted Processes. Desalination Water Treat. 2023, 315, 111–121. [Google Scholar] [CrossRef]
- Benhalima, T.; Sadi, A.; Dairi, N.; Ferfera-Harrar, H. Multifunctional Carboxymethyl Cellulose-Dextran Sulfate/AgNPs@zeolite Hydrogel Beads for Basic Red 46 and Methylene Blue Dyes Removal and Water Disinfection Control. Sep. Purif. Technol. 2024, 342, 127001. [Google Scholar] [CrossRef]
- Kaci, M.M.; Akkari, I.; Pazos, M.; Atmani, F.; Akkari, H. Recent Trends in Remediating Basic Red 46 Dye as a Persistent Pollutant from Water Bodies Using Promising Adsorbents: A Review. Clean Technol. Environ. Policy 2025, 27, 773–788. [Google Scholar] [CrossRef]
- Bernal-Martínez, L.A.; Barrera-Díaz, C.; Solís-Morelos, C.; Natividad, R. Synergy of Electrochemical and Ozonation Processes in Industrial Wastewater Treatment. Chem. Eng. J. 2010, 165, 71–77. [Google Scholar] [CrossRef]
- Hou, L.; Zhang, H.; Wang, L.; Chen, L.; Xiong, Y.; Xue, X. Removal of Sulfamethoxazole from Aqueous Solution by Sono-Ozonation in the Presence of a Magnetic Catalyst. Sep. Purif. Technol. 2013, 117, 46–52. [Google Scholar] [CrossRef]
- Tizaoui, C.; Grima, N. Kinetics of the Ozone Oxidation of Reactive Orange 16 Azo-Dye in Aqueous Solution. Chem. Eng. J. 2011, 173, 463–473. [Google Scholar] [CrossRef]
- Shen, Y.; Xu, Q.; Wei, R.; Ma, J.; Wang, Y. Mechanism and Dynamic Study of Reactive Red X-3B Dye Degradation by Ultrasonic-Assisted Ozone Oxidation Process. Ultrason. Sonochem. 2017, 38, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Ramos, M.d.M.; Mezcua, M.; Agüera, A.; Fernández-Alba, A.R.; Gonzalo, S.; Rodríguez, A.; Rosal, R. Chemical and Toxicological Evolution of the Antibiotic Sulfamethoxazole under Ozone Treatment in Water Solution. J. Hazard. Mater. 2011, 192, 18–25. [Google Scholar] [CrossRef]
- Bilińska, L.; Blus, K.; Gmurek, M.; Ledakowicz, S. Coupling of Electrocoagulation and Ozone Treatment for Textile Wastewater Reuse. Chem. Eng. J. 2019, 358, 992–1001. [Google Scholar] [CrossRef]
- Amat, A.M.; Arques, A.; Miranda, M.A.; Vincente, R.; Seguí, S. Degradation of Two Commercial Anionic Surfactants by Means of Ozone and/or UV Irradiation. Environ. Eng. Sci. 2007, 24, 790–794. [Google Scholar] [CrossRef]
- Asaithambi, P.; Susree, M.; Saravanathamizhan, R.; Matheswaran, M. Ozone Assisted Electrocoagulation for the Treatment of Distillery Effluent. Desalination 2012, 297, 1–7. [Google Scholar] [CrossRef]
- Aziz, A.R.A.; Asaithambi, P.; Daud, W.M.A.B.W. Combination of Electrocoagulation with Advanced Oxidation Processes for the Treatment of Distillery Industrial Effluent. Process Saf. Environ. Prot. 2016, 99, 227–235. [Google Scholar] [CrossRef]
- Asaithambi, P.; Govindarajan, R.; Busier Yesuf, M.; Selvakumar, P.; Alemayehu, E. Enhanced Treatment of Landfill Leachate Wastewater Using Sono(US)-Ozone(O3)–Electrocoagulation(EC) Process: Role of Process Parameters on Color, COD and Electrical Energy Consumption. Process Saf. Environ. Prot. 2020, 142, 212–218. [Google Scholar] [CrossRef]
- Mehralian, M.; Khashij, M.; Dalvand, A. Treatment of Cardboard Factory Wastewater Using Ozone-Assisted Electrocoagulation Process: Optimization through Response Surface Methodology. Environ. Sci. Pollut. Res. 2021, 28, 45041–45049. [Google Scholar] [CrossRef]
- Hernández-Ortega, M.; Ponziak, T.; Barrera-Díaz, C.; Rodrigo, M.A.; Roa-Morales, G.; Bilyeu, B. Use of a Combined Electrocoagulation-Ozone Process as a Pre-Treatment for Industrial Wastewater. Desalination 2010, 250, 144–149. [Google Scholar] [CrossRef]
- Nghia, N.T.; Tuyen, B.T.K.; Quynh, N.T.; Thuy, N.T.T.; Nguyen, T.N.; Nguyen, V.D.; Tran, T.K.N. Response Methodology Optimization and Artificial Neural Network Modeling for the Removal of Sulfamethoxazole Using an Ozone–Electrocoagulation Hybrid Process. Molecules 2023, 28, 5119. [Google Scholar] [CrossRef] [PubMed]
- Asaithambi, P.; Aziz, A.R.A.; Daud, W.M.A.B.W. Integrated Ozone—Electrocoagulation Process for the Removal of Pollutant from Industrial Effluent: Optimization through Response Surface Methodology. Chem. Eng. Process. Process Intensif. 2016, 105, 92–102. [Google Scholar] [CrossRef]
- Behin, J.; Farhadian, N.; Ahmadi, M.; Parvizi, M. Ozone Assisted Electrocoagulation in a Rectangular Internal-Loop Airlift Reactor: Application to Decolorization of Acid Dye. J. Water Process Eng. 2015, 8, 171–178. [Google Scholar] [CrossRef]
- Song, S.; He, Z.; Qiu, J.; Xu, L.; Chen, J. Ozone Assisted Electrocoagulation for Decolorization of C.I. Reactive Black 5 in Aqueous Solution: An Investigation of the Effect of Operational Parameters. Sep. Purif. Technol. 2007, 55, 238–245. [Google Scholar] [CrossRef]
- Kleijnen, J.P.C. Response Surface Methodology. Int. Ser. Oper. Res. Manag. Sci. 2015, 216, 81–104. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Riquelme, C.; Gómez, G.; Vidal, G.; Neumann, P. Critical Analysis of the Performance of Pilot and Industrial Scale Technologies for Sewage Reuse. J. Environ. Chem. Eng. 2022, 10, 108198. [Google Scholar] [CrossRef]
- Gao, P.; Chen, X.; Shen, F.; Chen, G. Removal of Chromium(VI) from Wastewater by Combined Electrocoagulation- Electroflotation without a Filter. Sep. Purif. Technol. 2005, 43, 117–123. [Google Scholar] [CrossRef]
- Heidmann, I.; Calmano, W. Removal of Cr(VI) from Model Wastewaters by Electrocoagulation with Fe Electrodes. Sep. Purif. Technol. 2008, 61, 15–21. [Google Scholar] [CrossRef]
- El-Shazly, A.H.; Daous, M.A. Kinetics and Performance of Phosphate Removal from Hot Industrial Effluents Using a Continuous Flow Electrocoagulation Reactor. Int. J. Electrochem. Sci. 2013, 8, 184–194. [Google Scholar] [CrossRef]
- Hakizimana, J.N.; Gourich, B.; Chafi, M.; Stiriba, Y.; Vial, C.; Drogui, P.; Naja, J. Electrocoagulation Process in Water Treatment: A Review of Electrocoagulation Modeling Approaches. Desalination 2017, 404, 1–21. [Google Scholar] [CrossRef]
- Yang, L.; Xue, F.; He, D. Removal of Six Pesticide Residues from Vegetables by the Coupled Ultrasonic-Ozonation Process. Food Control 2024, 155, 110109. [Google Scholar] [CrossRef]
- Deniz, F.; Karaman, S. Removal of Basic Red 46 Dye from Aqueous Solution by Pine Tree Leaves. Chem. Eng. J. 2011, 170, 67–74. [Google Scholar] [CrossRef]
- Gözmen, B.; Turabik, M.; Hesenov, A. Photocatalytic Degradation of Basic Red 46 and Basic Yellow 28 in Single and Binary Mixture by UV/TiO2/Periodate System. J. Hazard. Mater. 2009, 164, 1487–1495. [Google Scholar] [CrossRef]
- Sarioglu, M.; Bisgin, T. Decolorization of Basic Red 46 and Methylene Blue by Anaerobic Sludge: Biotic and Abiotic Processes. Desalination Water Treat. 2010, 23, 61–65. [Google Scholar] [CrossRef]
- Tian, Y.; He, W.; Liang, D.; Yang, W.; Logan, B.E.; Ren, N. Effective Phosphate Removal for Advanced Water Treatment Using Low Energy, Migration Electric–Field Assisted Electrocoagulation. Water Res. 2018, 138, 129–136. [Google Scholar] [CrossRef]
- Wang, R.S.; Shan, L.L.; Zhu, Z.B.; Liu, Z.Q.; Liao, Z.M.; Cui, Y.H. Current Status of Electrode Corrosion Passivation and Its Mitigation Strategies in Electrocoagulation. Chem. Eng. Process.—Process Intensif. 2025, 209, 110192. [Google Scholar] [CrossRef]
- Yáñez-Ángeles, M.J.; González-Nava, V.J.; Castro-Fernández, J.A.; García-Estrada, R.; Espejel-Ayala, F.; Reyes-Vidal, Y.; Rivera-Iturbe, F.F.; Cárdenas, J.; Bustos, E. Textile-Washing Wastewater Treatment Using Ozonolysis, Electro-Coagulation, and Electro-Oxidation. Electrochim. Acta 2025, 512, 145473. [Google Scholar] [CrossRef]
- Rakness, K.; Gordon, G.; Langlais, B.; Masschelein, W.; Matsumoto, N.; Richard, Y.; Robson, C.M.; Somiya, I. Guideline for Measurement of Ozone Concentration in the Process Gas from an Ozone Generator. Ozone Sci. Eng. 1996, 18, 209–229. [Google Scholar] [CrossRef]
Source | Sequential p-Value | Lack of Fit p-Value | Adjusted R2 | Predicted R2 |
---|---|---|---|---|
Linear | <0.0001 | 0.1061 | 0.9748 | 0.9705 |
2FI | 0.0083 | 0.2441 | 0.9827 | 0.9781 |
Quadratic | 0.0009 | 0.6174 | 0.9897 | 0.9812 |
Cubic | 0.6139 | 0.5137 | 0.9889 | 0.9547 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 3808.74 | 20 | 190.44 | 237.20 | <0.0001 |
X1-J | 2399.40 | 1 | 2399.40 | 2988.54 | <0.0001 |
X2-Flow rate | 2.21 | 1 | 2.21 | 2.75 | 0.1079 |
X3-Ozone dose | 931.23 | 1 | 931.23 | 1159.87 | <0.0001 |
X4-ozonation time | 129.60 | 1 | 129.60 | 161.42 | <0.0001 |
X5-BR46Concentration | 283.02 | 1 | 283.02 | 352.52 | <0.0001 |
X1X2 | 11.28 | 1 | 11.28 | 14.05 | 0.0008 |
X1X3 | 1.36 | 1 | 1.36 | 1.70 | 0.2031 |
X1X4 | 1.44 | 1 | 1.44 | 1.79 | 0.1914 |
X1X5 | 7.03 | 1 | 7.03 | 8.76 | 0.0061 |
X2X3 | 0.1830 | 1 | 0.1830 | 0.2279 | 0.6366 |
X2X4 | 10.35 | 1 | 10.35 | 12.89 | 0.0012 |
X2X5 | 5.10 | 1 | 5.10 | 6.36 | 0.0174 |
X3X4 | 0.6728 | 1 | 0.6728 | 0.8380 | 0.3675 |
X3X5 | 0.0741 | 1 | 0.0741 | 0.0923 | 0.7634 |
X4X5 | 2.98 | 1 | 2.98 | 3.71 | 0.0640 |
X12 | 3.37 | 1 | 3.37 | 4.19 | 0.0497 |
X22 | 0.5886 | 1 | 0.5886 | 0.7331 | 0.3989 |
X32 | 1.42 | 1 | 1.42 | 1.77 | 0.1940 |
X42 | 14.02 | 1 | 14.02 | 17.46 | 0.0002 |
X52 | 3.42 | 1 | 3.42 | 4.26 | 0.0481 |
Residual | 23.28 | 29 | 0.8029 | ||
Lack of Fit | 17.14 | 22 | 0.7791 | 0.8879 | 0.6174 |
Pure Error | 6.14 | 7 | 0.8775 | ||
Cor Total | 3832.03 | 49 |
Parameters | Goal | Lower Limit | Upper Limit | Lower Weight | Upper Weight | Importance |
---|---|---|---|---|---|---|
J (A/m2) | is in range | 30 | 70 | 1 | 1 | 3 |
Flow rate (L/min) | is in range | 0.8 | 1.6 | 1 | 1 | 3 |
Ozone dose (g/h) | is in range | 1 | 2 | 1 | 1 | 3 |
Ozonation time (min) | is in range | 10 | 20 | 1 | 1 | 3 |
Concentration (mg/L) | 200, 300, 400 | 200 | 400 | 1 | 1 | 3 |
BRE (%) | maximize | 59.28 | 100 | 1 | 1 | 5 |
J (A/m2) | Flow Rate (L/min) | Ozone Dose (g/h) | Ozonation Time (min) | Concentration (mg/L) | Predicted BRE (%) | Experimental BRE (%) |
---|---|---|---|---|---|---|
70.00 | 1.600 | 2 | 18.760 | 200 | 95.31 | 96.15 |
70.00 | 1.600 | 2 | 20.000 | 300 | 91.67 | 91.54 |
69.97 | 1.110 | 2 | 20.000 | 400. | 88.93 | 87.92 |
Methods | BR46 Concentration | Time (min) | BRE (%) | Ref. |
---|---|---|---|---|
Adsorption | 100 mg/L | 120 min | ~90% | [35] |
Photocatalysis | 40 mg/L | 20 min | ~90% | [36] |
Biodegradation | 100 mg/L | 120 h | >90% | [37] |
EC–O | 300 mg/L | 27.5 min | ~91% | This study |
Independent Variables | Range | ||||
---|---|---|---|---|---|
−α | −1 | 0 | +1 | +α | |
Current density (A/m2) | 10 | 30 | 50 | 70 | 90 |
Flow rate (L/min) | 0.4 | 0.8 | 1.2 | 1.6 | 2.0 |
Ozone dose (g/h) | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 |
Ozonation time (min) | 5 | 10 | 15 | 20 | 25 |
BR46 concentration (mg/L) | 100 | 200 | 300 | 400 | 500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nghia, N.T.; Nguyen, V.D. Application of Response Surface Methodology for the Optimization of Basic Red 46 Dye Degradation in an Electrocoagulation–Ozonation Hybrid System. Molecules 2025, 30, 2627. https://doi.org/10.3390/molecules30122627
Nghia NT, Nguyen VD. Application of Response Surface Methodology for the Optimization of Basic Red 46 Dye Degradation in an Electrocoagulation–Ozonation Hybrid System. Molecules. 2025; 30(12):2627. https://doi.org/10.3390/molecules30122627
Chicago/Turabian StyleNghia, Nguyen Trong, and Vinh Dinh Nguyen. 2025. "Application of Response Surface Methodology for the Optimization of Basic Red 46 Dye Degradation in an Electrocoagulation–Ozonation Hybrid System" Molecules 30, no. 12: 2627. https://doi.org/10.3390/molecules30122627
APA StyleNghia, N. T., & Nguyen, V. D. (2025). Application of Response Surface Methodology for the Optimization of Basic Red 46 Dye Degradation in an Electrocoagulation–Ozonation Hybrid System. Molecules, 30(12), 2627. https://doi.org/10.3390/molecules30122627