New Insights and Strategies in the Nutritional Reformulation of Meat Products Toward Healthier Foods
Abstract
:1. Introduction
2. Fat Enrichment and Replacement
2.1. Direct Replacement
2.2. Microencapsulation
2.3. Interesterification
2.4. Emulsions
2.4.1. Emulsion Gels
2.4.2. Oleogels
3. Sodium Reduction
4. Replacement of Additives
4.1. Substitution of Antioxidants
4.2. Substitution of Food Preservatives
4.3. Substitution of Phosphates
4.4. Substitution of Food Colorants
5. Incorporation of Dietary Fiber
5.1. Sensory and Textural Effects of Dietary Fiber in Meat Products
5.2. Addition of Dietary Fiber to Meat Products to Extend Shelf Life
5.3. Health Benefits Derived from the Incorporation of Fiber in Meat Products
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leroy, F.; Smith, N.W.; Adesogan, A.T.; Beal, T.; Iannotti, L.; Moughan, P.J.; Mann, N. The Role of Meat in the Human Diet: Evolutionary Aspects and Nutritional Value. Anim. Front. 2023, 13, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Foster, D.; Haubrick, K. Considering the Impact of Elevated Saturated Fat Intake in the Context of Full Fat Dairy Products and Red Meats on Cardiovascular Health, A Systematic Review. Res. Rev. 2024, 5, 2640–2662. [Google Scholar] [CrossRef]
- Johnston, B.; De Smet, S.; Leroy, F.; Mente, A.; Stanton, A. Non-Communicable Disease Risk Associated with Red and Processed Meat Consumption—Magnitude, Certainty, and Contextuality of Risk? Anim. Front. 2023, 13, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.D.; Luo, M.; Shang, A.; Mao, Q.Q.; Li, B.Y.; Gan, R.Y.; Li, H. Bin Antioxidant Food Components for the Prevention and Treatment of Cardiovascular Diseases: Effects, Mechanisms, and Clinical Studies. Oxid. Med. Cell Longev. 2021, 2021, 6627355. [Google Scholar] [CrossRef]
- Badar, I.H.; Liu, H.; Chen, Q.; Xia, X.; Kong, B. Future Trends of Processed Meat Products Concerning Perceived Healthiness: A Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4739–4778. [Google Scholar] [CrossRef]
- Juárez, M.; Lam, S.; Bohrer, B.M.; Dugan, M.E.R.; Vahmani, P.; Aalhus, J.; Juárez, A.; López-Campos, O.; Prieto, N.; Segura, J. Enhancing the Nutritional Value of Red Meat through Genetic and Feeding Strategies. Foods 2021, 10, 872. [Google Scholar] [CrossRef]
- Young, J.F.; Skrivergaard, S.; Therkildsen, M.; Rasmussen, M.K. Cultured Meat Production—Scale and Quality. Cell Rep. Sustain. 2024, 1, 100012. [Google Scholar] [CrossRef]
- Grigioni, M.; Pordomingo, A.; Arturo Domínguez Vara, I.; Morales Almaráz, E.; Hong, X.; Li, C.; Wang, L.; Wang, M.; Grasso, S.; Monahan, F.J. Consumer Preferences for Processed Meat Reformulation Strategies: A Prototype for Sensory Evaluation Combined with a Choice-Based Conjoint Experiment. Agriculture 2023, 13, 234. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services; U.S. Department of Agriculture. Dietary Guidelines for Americans, 2020–2025; U.S. Department of Health and Human Services: Washington, DC, USA, 2020.
- Jeong, H.Y.; Moon, Y.S.; Cho, K.K. ω-6 and ω-3 Polyunsaturated Fatty Acids: Inflammation, Obesity and Foods of Animal Resources. Food Sci. Anim. Resour. 2024, 44, 988. [Google Scholar] [CrossRef]
- Barros, J.C.; Munekata, P.E.S.; de Carvalho, F.A.L.; Domínguez, R.; Trindade, M.A.; Pateiro, M.; Lorenzo, J.M. Healthy Beef Burgers: Effect of Animal Fat Replacement by Algal and Wheat Germ Oil Emulsions. Meat Sci. 2021, 173, 108396. [Google Scholar] [CrossRef]
- Astrup, A.; Magkos, F.; Bier, D.M.; Brenna, J.T.; de Oliveira Otto, M.C.; Hill, J.O.; King, J.C.; Mente, A.; Ordovas, J.M.; Volek, J.S.; et al. Saturated Fats and Health: A Reassessment and Proposal for Food-Based Recommendations: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 844–857. [Google Scholar] [CrossRef] [PubMed]
- Jayedi, A.; Soltani, S.; Emadi, A.; Ghods, K.; Shab-Bidar, S. Dietary Intake, Biomarkers and Supplementation of Fatty Acids and Risk of Coronary Events: A Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials and Prospective Observational Studies. Crit. Rev. Food Sci. Nutr. 2023, 64, 12363–12382. [Google Scholar] [CrossRef] [PubMed]
- Meyer, N.M.T.; Pohrt, A.; Wernicke, C.; Pletsch-Borba, L.; Apostolopoulou, K.; Haberbosch, L.; Machann, J.; Pfeiffer, A.F.H.; Spranger, J.; Mai, K. Improvement in Visceral Adipose Tissue and LDL Cholesterol by High PUFA Intake: 1-Year Results of the NutriAct Trial. Nutrients 2024, 16, 1057. [Google Scholar] [CrossRef]
- Hooper, L.; Martin, N.; Jimoh, O.F.; Kirk, C.; Foster, E.; Abdelhamid, A.S. Reduction in Saturated Fat Intake for Cardiovascular Disease. Cochrane Database Syst. Rev. 2020, 8, 1–287. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Liu, Y.; Wang, X.; Bai, J.; Lin, L.; Luo, F.; Zhong, H. A Comprehensive Review of Health-Benefiting Components in Rapeseed Oil. Nutrients 2023, 15, 999. [Google Scholar] [CrossRef]
- Nieto, G.; Lorenzo, J.M. Use of Olive Oil as Fat Replacer in Meat Emulsions. Curr. Opin. Food Sci. 2021, 40, 179–186. [Google Scholar] [CrossRef]
- Domínguez, R.; Lorenzo, J.M.; Pateiro, M.; Munekata, P.E.S.; Alves dos Santos, B.; Basso Pinton, M.; Cichoski, A.J.; Bastianello Campagnol, P.C. Main Animal Fat Replacers for the Manufacture of Healthy Processed Meat Products. Crit. Rev. Food Sci. Nutr. 2024, 64, 2513–2532. [Google Scholar] [CrossRef]
- López-Pedrouso, M.; Lorenzo, J.M.; Gullón, B.; Campagnol, P.C.B.; Franco, D. Novel Strategy for Developing Healthy Meat Products Replacing Saturated Fat with Oleogels. Curr. Opin. Food Sci. 2021, 40, 40–45. [Google Scholar] [CrossRef]
- Kawecki, K.; Rezler, R.; Baranowska, H.M.; Stangierski, J. Influence of Fish Oil and Microencapsulated Fish Oil Additives on Water Binding and the Rheological Properties of Poultry Sausage Batters. J. Sci. Food Agric. 2021, 101, 1127–1133. [Google Scholar] [CrossRef]
- Heck, R.T.; Fagundes, M.B.; Cichoski, A.J.; de Menezes, C.R.; Barin, J.S.; Lorenzo, J.M.; Wagner, R.; Campagnol, P.C.B. Volatile Compounds and Sensory Profile of Burgers with 50% Fat Replacement by Microparticles of Chia Oil Enriched with Rosemary. Meat Sci. 2019, 148, 164–170. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Pateiro, M.; Barba, F.J.; Franco, D.; Campagnol, P.C.B.; Munekata, P.E.S.; Tomasevic, I.; Domínguez, R.; Lorenzo, J.M. Microencapsulation of Healthier Oils to Enhance the Physicochemical and Nutritional Properties of Deer Pâté. LWT 2020, 125, 109223. [Google Scholar] [CrossRef]
- Wirkowska-Wojdyła, M.; Chmiel, M.; Ostrowska-Ligęza, E.; Górska, A.; Bryśbryś, J.; Słowí Nski, M.; Czerniszewska, A. The Influence of Interesterification on the Thermal and Technological Properties of Milkfat-Rapeseed Oil Mixture and Its Potential Use in Incorporation of Model Meat Batters. Appl. Sci. 2020, 11, 350. [Google Scholar] [CrossRef]
- Kılıç, B.; Özer, C.O. Potential Use of Interesterified Palm Kernel Oil to Replace Animal Fat in Frankfurters. Meat Sci. 2019, 148, 206–212. [Google Scholar] [CrossRef]
- Kim, T.K.; Yong, H.I.; Jung, S.; Kim, Y.B.; Choi, Y.S. Effects of Replacing Pork Fat with Grape Seed Oil and Gelatine/Alginate for Meat Emulsions. Meat Sci. 2020, 163, 108079. [Google Scholar] [CrossRef]
- Câmara, F.I.; Midori Ozaki, M.; Santos, M.; Silva Vidal, V.A.; Oliveira Ribeiro, W.; de Souza Paglarini, C.; Bernardinelli, O.D.; Sabadini, E.; Rodrigues Pollonio, M.A. Olive Oil-Based Emulsion Gels Containing Chia (Salvia Hispanica L.) Mucilage Delivering Healthy Claims to Low-Saturated Fat Bologna Sausages. Food Struct. 2021, 28, 100187. [Google Scholar] [CrossRef]
- Barros, J.C.; Munekata, P.E.S.; De Carvalho, F.A.L.; Pateiro, M.; Barba, F.J.; Domínguez, R.; Trindade, M.A.; Lorenzo, J.M. Use of Tiger Nut (Cyperus Esculentus L.) Oil Emulsion as Animal Fat Replacement in Beef Burgers. Foods 2020, 9, 44. [Google Scholar] [CrossRef]
- Kim, T.K.; Lee, M.H.; Kim, S.M.; Kim, M.J.; Jung, S.; Yong, H.I.; Choi, Y.S. Physiochemical Properties of Reduced-Fat Duck Meat Emulsion Systems: Effects of Preemulsification with Vegetable Oils and Duck Skin. Poult. Sci. 2021, 100, 1291–1298. [Google Scholar] [CrossRef]
- Ramírez-carrasco, P.; Paredes-toledo, J.; Romero-hasler, P.; Soto-bustamante, E.; Díaz-calderón, P.; Robert, P.; Giménez, B. Effect of Adding Curcumin on the Properties of Linseed Oil Organogels Used as Fat Replacers in Pâtés. Antioxidants 2020, 9, 735. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Estaca, J.; Pintado, T.; Jiménez-Colmenero, F.; Cofrades, S. Assessment of a Healthy Oil Combination Structured in Ethyl Cellulose and Beeswax Oleogels as Animal Fat Replacers in Low-Fat, PUFA-Enriched Pork Burgers. Food Bioprocess Technol. 2019, 12, 1068–1081. [Google Scholar] [CrossRef]
- da Silva, S.L.; Amaral, J.T.; Ribeiro, M.; Sebastião, E.E.; Vargas, C.; de Lima Franzen, F.; Schneider, G.; Lorenzo, J.M.; Fries, L.L.M.; Cichoski, A.J.; et al. Fat Replacement by Oleogel Rich in Oleic Acid and Its Impact on the Technological, Nutritional, Oxidative, and Sensory Properties of Bologna-Type Sausages. Meat Sci. 2019, 149, 141–148. [Google Scholar] [CrossRef]
- Öztürk, T.; Turhan, S. Physicochemical Properties of Pumpkin (Cucurbita Pepo L.) Seed Kernel Flour and Its Utilization in Beef Meatballs as a Fat Replacer and Functional Ingredient. J. Food Process Preserv. 2020, 44, e14695. [Google Scholar] [CrossRef]
- Ding, Y.; Lin, H.W.; Lin, Y.L.; Yang, D.J.; Yu, Y.S.; Chen, J.W.; Wang, S.Y.; Chen, Y.C. Nutritional Composition in the Chia Seed and Its Processing Properties on Restructured Ham-like Products. J. Food Drug Anal. 2018, 26, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Barros, J.C.; Rodrigues, I.; Pires, M.A.; Gonçalves, L.A.; de Carvalho, F.A.L.; Trindade, M.A. Healthier Chicken Nuggets Incorporated with Chia (Salvia Hispanica L.) Flour and Partial Replacement of Sodium Chloride with Calcium Chloride. Emir. J. Food Agric. 2019, 31, 794–803. [Google Scholar] [CrossRef]
- de Oliveira Paula, M.M.; Silva, J.R.G.; de Oliveira, K.L.; Massingue, A.A.; Ramos, E.M.; Júnior, A.A.B.; Silva, M.H.L.; Silva, V.R.O. Technological and Sensory Characteristics of Hamburgers Added with Chia Seed as Fat Replacer. Ciência Rural. 2019, 49, e20190090. [Google Scholar] [CrossRef]
- Antonini, E.; Torri, L.; Piochi, M.; Cabrino, G.; Meli, M.A.; De Bellis, R. Nutritional, Antioxidant and Sensory Properties of Functional Beef Burgers Formulated with Chia Seeds and Goji Puree, before and after in Vitro Digestion. Meat Sci. 2020, 161, 108021. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Munekata, P.E.S.; Gagaoua, M.; Franco, D.; Campagnol, P.C.B.; Pateiro, M.; Barretto, A.C.d.S.; Domínguez, R.; Lorenzo, J.M. Inclusion of Healthy Oils for Improving the Nutritional Characteristics of Dry-Fermented Deer Sausage. Foods 2020, 9, 1487. [Google Scholar] [CrossRef]
- Heck, R.T.; Lorenzo, J.M.; Dos Santos, B.A.; Cichoski, A.J.; de Menezes, C.R.; Campagnol, P.C.B. Microencapsulation of Healthier Oils: An Efficient Strategy to Improve the Lipid Profile of Meat Products. Curr. Opin. Food Sci. 2021, 40, 6–12. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, X.; McClements, D.J.; Zou, L.; Liu, W. PH-, Ion- and Temperature-Dependent Emulsion Gels: Fabricated by Addition of Whey Protein to Gliadin-Nanoparticle Coated Lipid Droplets. Food Hydrocoll. 2018, 77, 870–878. [Google Scholar] [CrossRef]
- Ren, Y.; Huang, L.; Zhang, Y.; Li, H.; Zhao, D.; Cao, J.; Liu, X.; Ren, Y.; Huang, L.; Zhang, Y.; et al. Application of Emulsion Gels as Fat Substitutes in Meat Products. Foods 2022, 11, 1950. [Google Scholar] [CrossRef]
- Lin, D.; Kelly, A.L.; Miao, S. Preparation, Structure-Property Relationships and Applications of Different Emulsion Gels: Bulk Emulsion Gels, Emulsion Gel Particles, and Fluid Emulsion Gels. Trends Food Sci. Technol. 2020, 102, 123–137. [Google Scholar] [CrossRef]
- Paglarini, C.d.S.; Vidal, V.A.S.; Martini, S.; Cunha, R.L.; Pollonio, M.A.R. Protein-Based Hydrogelled Emulsions and Their Application as Fat Replacers in Meat Products: A Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 640–655. [Google Scholar] [CrossRef] [PubMed]
- Bellucci, E.R.B.; Munekata, P.E.S.; Pateiro, M.; Lorenzo, J.M.; da Silva Barretto, A.C. Red Pitaya Extract as Natural Antioxidant in Pork Patties with Total Replacement of Animal Fat. Meat Sci. 2021, 171, 108284. [Google Scholar] [CrossRef]
- Domínguez, R.; Bohrer, B.; Munekata, P.E.S.; Pateiro, M.; Lorenzo, J.M. Recent Discoveries in the Field of Lipid Bio-Based Ingredients for Meat Processing. Molecules 2021, 26, 190. [Google Scholar] [CrossRef] [PubMed]
- Pintado, T.; Herrero, A.M.; Jiménez-Colmenero, F.; Pasqualin Cavalheiro, C.; Ruiz-Capillas, C. Chia and Oat Emulsion Gels as New Animal Fat Replacers and Healthy Bioactive Sources in Fresh Sausage Formulation. Meat Sci. 2018, 135, 6–13. [Google Scholar] [CrossRef]
- Lucas-González, R.; Roldán-Verdu, A.; Sayas-Barberá, E.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Assessment of Emulsion Gels Formulated with Chestnut (Castanea Sativa M.) Flour and Chia (Salvia Hispanica L) Oil as Partial Fat Replacers in Pork Burger Formulation. J. Sci. Food Agric. 2020, 100, 1265–1273. [Google Scholar] [CrossRef]
- Heck, R.T.; Saldaña, E.; Lorenzo, J.M.; Correa, L.P.; Fagundes, M.B.; Cichoski, A.J.; de Menezes, C.R.; Wagner, R.; Campagnol, P.C.B. Hydrogelled Emulsion from Chia and Linseed Oils: A Promising Strategy to Produce Low-Fat Burgers with a Healthier Lipid Profile. Meat Sci. 2019, 156, 174–182. [Google Scholar] [CrossRef]
- Alejandre, M.; Ansorena, D.; Calvo, M.I.; Cavero, R.Y.; Astiasarán, I. Influence of a Gel Emulsion Containing Microalgal Oil and a Blackthorn (Prunus Spinosa L.) Branch Extract on the Antioxidant Capacity and Acceptability of Reduced-Fat Beef Patties. Meat Sci. 2019, 148, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Öztürk-Kerimoğlu, B.; Kavuşan, H.S.; Benzer Gürel, D.; Çağındı, Ö.; Serdaroğlu, M. Cold-Set or Hot-Set Emulsion Gels Consisted of a Healthy Oil Blend to Replace Beef Fat in Heat-Treated Fermented Sausages. Meat Sci. 2021, 176, 108461. [Google Scholar] [CrossRef]
- Lima, T.L.S.; da Costa, G.F.; da Silva Araújo, Í.B.; da Cruz, G.R.B.; Ribeiro, N.L.; Filho, E.M.B.; Domínguez, R.; Lorenzo, J.M. Pre-Emulsioned Linseed Oil as Animal Fat Replacement in Sheep Meat Sausages: Microstructure and Physicochemical Properties. J. Food Process Preserv. 2021, 45, e15051. [Google Scholar] [CrossRef]
- de Souza Paglarini, C.; Vidal, V.A.S.; Ribeiro, W.; Badan Ribeiro, A.P.; Bernardinelli, O.D.; Herrero, A.M.; Ruiz-Capillas, C.; Sabadini, E.; Rodrigues Pollonio, M.A. Using Inulin-Based Emulsion Gels as Fat Substitute in Salt Reduced Bologna Sausage. J. Sci. Food Agric. 2021, 101, 505–517. [Google Scholar] [CrossRef]
- Pintado, T.; Muñoz-González, I.; Salvador, M.; Ruiz-Capillas, C.; Herrero, A.M. Phenolic Compounds in Emulsion Gel-Based Delivery Systems Applied as Animal Fat Replacers in Frankfurters: Physico-Chemical, Structural and Microbiological Approach. Food Chem. 2021, 340, 128095. [Google Scholar] [CrossRef] [PubMed]
- Alejandre, M.; Astiasarán, I.; Ansorena, D.; Barbut, S. Using Canola Oil Hydrogels and Organogels to Reduce Saturated Animal Fat in Meat Batters. Food Res. Int. 2019, 122, 129–136. [Google Scholar] [CrossRef]
- Manzoor, S.; Masoodi, F.A.; Rashid, R.; Naqash, F.; Ahmad, M. Oleogels for the Development of Healthy Meat Products: A Review. Appl. Food Res. 2022, 2, 100212. [Google Scholar] [CrossRef]
- Ferrer-González, B.M.; García-Martínez, I.; Totosaus, A. Textural Properties, Sensory Acceptance and Fatty Acid Profile of Cooked Meat Batters Employing Pumpkin Seed Paste or Soybean Oil Oleogel as Fat Replacers. Grasas Y Aceites 2019, 70, e320. [Google Scholar] [CrossRef]
- Domian, E.; Brynda-Kopytowska, A.; Marzec, A. Functional Properties and Oxidative Stability of Flaxseed Oil Microencapsulated by Spray Drying Using Legume Proteins in Combination with Soluble Fiber or Trehalose. Food Bioprocess Technol. 2017, 10, 1374–1386. [Google Scholar] [CrossRef]
- Xie, X.; Gilbert, M.; Petley-Ragan, L.; Auld, V.J. Loss of focal adhesions in glia disrupts both glial and photoreceptor axon migration in the Drosophila visual system. Development 2014, 141, 3072–3083. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nazarewicz, S.; Kozłowicz, K.; Kobus, Z.; Gładyszewska, B.; Matwijczuk, A.; Ślusarczyk, L.; Skrzypek, T.; Sujka, M.; Kozłowicz, N. The Use of Ultrasound in Shaping the Properties of Ice Cream with Oleogel Based on Oil Extracted from Tomato Seeds. Appl. Sci. 2022, 12, 9165. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Jia, Y.; Yuan, Y.; Li, H.; Cui, W.; Yu, J. Application of whey protein emulsion gel microparticles as fat replacers in low-fat yogurt: Applicability of vegetable oil as the oil phase. J. Dairy Sci. 2022, 105, 9404–9416. [Google Scholar] [CrossRef] [PubMed]
- Oh, I.; Lee, J.H.; Lee, H.G.; Lee, S. Feasibility of Hydroxypropyl Methylcellulose Oleogel as an Animal Fat Replacer for Meat Patties. Food Res. Int. 2019, 122, 566–572. [Google Scholar] [CrossRef]
- Ferro, A.C.; de Souza Paglarini, C.; Rodrigues Pollonio, M.A.; Lopes Cunha, R. Glyceryl Monostearate-Based Oleogels as a New Fat Substitute in Meat Emulsion. Meat Sci. 2021, 174, 108424. [Google Scholar] [CrossRef]
- Shao, L.; Bi, J.; Dai, R.; Li, X. Effects of Fat/Oil Type and Ethylcellulose on the Gel Characteristic of Pork Batter. Food Res. Int. 2020, 138, 109788. [Google Scholar] [CrossRef]
- de Carvalho, F.A.L.; Munekata, P.E.S.; Pateiro, M.; Campagnol, P.C.B.; Domínguez, R.; Trindade, M.A.; Lorenzo, J.M. Effect of Replacing Backfat with Vegetable Oils during the Shelf-Life of Cooked Lamb Sausages. LWT 2020, 122, 109052. [Google Scholar] [CrossRef]
- Martins, A.J.; Lorenzo, J.M.; Franco, D.; Pateiro, M.; Domínguez, R.; Munekata, P.E.S.; Pastrana, L.M.; Vicente, A.A.; Cunha, R.L.; Cerqueira, M.A. Characterization of Enriched Meat-Based Pâté Manufactured with Oleogels as Fat Substitutes. Gels 2020, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Estaca, J.; Pintado, T.; Jiménez-Colmenero, F.; Cofrades, S. The Effect of Household Storage and Cooking Practices on Quality Attributes of Pork Burgers Formulated with PUFA- and Curcumin-Loaded Oleogels as Healthy Fat Substitutes. LWT 2020, 119, 108909. [Google Scholar] [CrossRef]
- Wong, K.M.; Corradini, M.G.; Autio, W.; Kinchla, A.J. Sodium Reduction Strategies through Use of Meat Extenders (White Button Mushrooms vs. Textured Soy) in Beef Patties. Food Sci. Nutr. 2019, 7, 506–518. [Google Scholar] [CrossRef] [PubMed]
- Perez, L.M.; Fang, H.Y.; Ashrafi, S.A.; Burrows, B.T.; King, A.C.; Larsen, R.J.; Sutton, B.P.; Wilund, K.R. Pilot Study to Reduce Interdialytic Weight Gain by Provision of Low-Sodium, Home-Delivered Meals in Hemodialysis Patients. Hemodial. Int. 2021, 25, 265–274. [Google Scholar] [CrossRef]
- Kieneker, L.M.; Eisenga, M.F.; Gansevoort, R.T.; de Boer, R.A.; Navis, G.; Dullaart, R.P.F.; Joosten, M.M.; Bakker, S.J.L. Association of Low Urinary Sodium Excretion With Increased Risk of Stroke. Mayo Clin. Proc. 2018, 93, 1803–1809. [Google Scholar] [CrossRef]
- Teixeira, A.; Domínguez, R.; Ferreira, I.; Pereira, E.; Estevinho, L.; Rodrigues, S.; Lorenzo, J.M. Effect of NaCl Replacement by Other Salts on the Quality of Bísaro Pork Sausages (PGI Chouriça de Vinhais). Foods 2021, 10, 961. [Google Scholar] [CrossRef]
- Nayak, N.K.; Pathak, V. Development and Quality Assessment of Low-Sodium Functional Chevon Patties. Br. Food J. 2022, 124, 2805–2816. [Google Scholar] [CrossRef]
- Bernardo, P.; Fernandes, M.J.; Fernandes, M.H.; Teixeira, M.P.; Alfaia, C.M.; Serrano, C.; Patarata, L.; Fraqueza, M.J. Salt Reduction Strategies for Dry Cured Meat Products: The Use of KCl and Microencapsulated Spices and Aromatic Plant Extracts. Meat Sci. 2025, 221, 109719. [Google Scholar] [CrossRef]
- Głuchowski, A.; Crofton, E.; Inguglia, E.S.; O’Sullivan, M.G.; Kerry, J.P.; Hamill, R.M. Incorporation of Sea Spaghetti (Himanthalia Elongata) in Low-Salt Beef Patties: Effect on Sensory Profile and Consumer Hedonic and Emotional Response. Foods 2024, 13, 1197. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.O.; O’Grady, M.N.; O’Sullivan, M.G.; Kerry, J.P. The Effect of Reducing Fat and Salt on the Quality and Shelf Life of Pork Sausages Containing Brown Seaweeds (Sea Spaghetti and Irish Wakame). Appl. Sci. 2024, 14, 7811. [Google Scholar] [CrossRef]
- Pindi, W.; Qin, L.W.; Sulaiman, N.S.; Mohd Zaini, H.; Munsu, E.; Wahab, N.A.; Mohd Noor, N.Q.I. Effects of Salt Reduction and the Inclusion of Seaweed (Kappaphycus Alvarezii) on the Physicochemical Properties of Chicken Patties. Appl. Sci. 2023, 13, 5447. [Google Scholar] [CrossRef]
- Sellimi, S.; Benslima, A.; Ksouda, G.; Montero, V.B.; Hajji, M.; Nasri, M. Safer and Healthier Reduced Nitrites Turkey Meat Sausages Using Lyophilized Cystoseira Barbata Seaweed Extract. J. Complement. Integr. Med. 2018, 15, 1–14. [Google Scholar] [CrossRef]
- Vilar, E.G.; Ouyang, H.; O’Sullivan, M.G.; Kerry, J.P.; Hamill, R.M.; O’Grady, M.N.; Mohammed, H.O.; Kilcawley, K.N. Effect of Salt Reduction and Inclusion of 1% Edible Seaweeds on the Chemical, Sensory and Volatile Component Profile of Reformulated Frankfurters. Meat Sci. 2020, 161, 108001. [Google Scholar] [CrossRef] [PubMed]
- Cerón-Guevara, M.I.; Rangel-Vargas, E.; Lorenzo, J.M.; Bermúdez, R.; Pateiro, M.; Rodriguez, J.A.; Sanchez-Ortega, I.; Santos, E.M. Effect of the Addition of Edible Mushroom Flours (Agaricus Bisporus and Pleurotus Ostreatus) on Physicochemical and Sensory Properties of Cold-Stored Beef Patties. J. Food Process Preserv. 2020, 44, e14351. [Google Scholar] [CrossRef]
- Botella-Martínez, C.; Muñoz-Tebar, N.; Lucas-González, R.; Pérez-Álvarez, J.A.; Fernández-López, J.; Viuda-Martos, M. Assessment of Chemical, Physico-Chemical and Sensory Properties of Low-Sodium Beef Burgers Formulated with Flours from Different Mushroom Types. Foods 2023, 12, 3591. [Google Scholar] [CrossRef]
- Cerón-Guevara, M.I.; Rangel-Vargas, E.; Lorenzo, J.M.; Bermúdez, R.; Pateiro, M.; Rodríguez, J.A.; Sánchez-Ortega, I.; Santos, E.M. Reduction of Salt and Fat in Frankfurter Sausages by Addition of Agaricus Bisporus and Pleurotus Ostreatus Flour. Foods 2020, 9, 760. [Google Scholar] [CrossRef]
- Kang, Z.L.; Zou, X.L.; Meng, L.; Li, Y. ping Effects of NaCl and Soy Protein Isolate on the Physicochemical, Water Distribution, and Mobility in Frankfurters. Int. J. Food Sci. Technol. 2021, 56, 6572–6579. [Google Scholar] [CrossRef]
- Ortega-Heras, M.; Villarroel, E.; Mateos, S.; García-Lomillo, J.; Rovira, J.; González-Sanjosé, M.L. Application of a Seasoning Obtained from Red Grape Pomace as a Salt Replacer for the Elaboration of Marinated Chicken Breasts: Study of Their Physical-Chemical and Sensory Properties and Microbiological Stability. CyTA J. Food 2020, 18, 122–131. [Google Scholar] [CrossRef]
- García-Lomillo, J.; González-SanJosé, M.a.L.; Del Pino-García, R.; Rivero-Pérez, M.a.D.; Muñiz-Rodríguez, P. Alternative Natural Seasoning to Improve the Microbial Stability of Low-Salt Beef Patties. Food Chem. 2017, 227, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Ponzo, V.; Pellegrini, M.; Costelli, P.; Vázquez-Araújo, L.; Gayoso, L.; D’eusebio, C.; Ghigo, E.; Bo, S. Strategies for Reducing Salt and Sugar Intakes in Individuals at Increased Cardiometabolic Risk. Nutrients 2021, 13, 279. [Google Scholar] [CrossRef] [PubMed]
- Santos Sánchez, G.; Cotas, J.; Tavares, J.O.; Silva, R.; Pereira, L. Seaweed as a Safe Nutraceutical Food: How to Increase Human Welfare? Nutraceuticals 2024, 4, 323–362. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, L.; Ding, Y.; Zhuang, Y. Chemical Composition, Health Benefits, Food Processing Effects and Applications of Boletus: A Review. Crit. Rev. Food Sci. Nutr. 2024, 64, 10812–10834. [Google Scholar] [CrossRef]
- Banerjee, D.K.; Das, A.K.; Banerjee, R.; Pateiro, M.; Nanda, P.K.; Gadekar, Y.P.; Biswas, S.; McClements, D.J.; Lorenzo, J.M. Application of Enoki Mushroom (Flammulina Velutipes) Stem Wastes as Functional Ingredients in Goat Meat Nuggets. Foods 2020, 9, 432. [Google Scholar] [CrossRef]
- Cai, T.; Hai, N.; Guo, P.; Feng, Z.; Zhang, Y.; Wang, J.; Yu, Z.; Liu, H.; Ding, L. Characteristics of Umami Taste of Soy Sauce Using Electronic Tongue, Amino Acid Analyzer, and MALDI−TOF MS. Foods 2024, 13, 2242. [Google Scholar] [CrossRef]
- Román, S.; Sánchez-Siles, L.M.; Siegrist, M. The Importance of Food Naturalness for Consumers: Results of a Systematic Review. Trends Food Sci. Technol. 2017, 67, 44–57. [Google Scholar] [CrossRef]
- Wu, H.; Richards, M.P.; Undeland, I. Lipid Oxidation and Antioxidant Delivery Systems in Muscle Food. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1275–1299. [Google Scholar] [CrossRef]
- Ham, J.; Lim, W.; Park, S.; Bae, H.; You, S.; Song, G. Synthetic Phenolic Antioxidant Propyl Gallate Induces Male Infertility through Disruption of Calcium Homeostasis and Mitochondrial Function. Environ. Pollut. 2019, 248, 845–856. [Google Scholar] [CrossRef]
- Ren, J.; Li, Z.; Li, X.; Yang, L.; Bu, Z.; Wu, Y.; Li, Y.; Zhang, S.; Meng, X. Exploring the Mechanisms of the Antioxidants BHA, BHT, and TBHQ in Hepatotoxicity, Nephrotoxicity, and Neurotoxicity from the Perspective of Network Toxicology. Foods 2025, 14, 1095. [Google Scholar] [CrossRef]
- Khezerlou, A.; pouya Akhlaghi, A.; Alizadeh, A.M.; Dehghan, P.; Maleki, P. Alarming Impact of the Excessive Use of Tert-Butylhydroquinone in Food Products: A Narrative Review. Toxicol. Rep. 2022, 9, 1066–1075. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zha, E.; Zhang, Z.; Zhang, J.; Wang, R.; Li, J.; Sun, J. Effect of Combined Treatment of Curcumin and Sodium Bicarbonate on Quality Characteristics of Refrigerated Beef Meatballs. LWT 2024, 204, 116483. [Google Scholar] [CrossRef]
- de Carvalho, F.A.L.; Munekata, P.E.S.; Lopes de Oliveira, A.; Pateiro, M.; Domínguez, R.; Trindade, M.A.; Lorenzo, J.M. Turmeric (Curcuma Longa L.) Extract on Oxidative Stability, Physicochemical and Sensory Properties of Fresh Lamb Sausage with Fat Replacement by Tiger Nut (Cyperus Esculentus L.) Oil. Food Res. Int. 2020, 136, 109487. [Google Scholar] [CrossRef]
- Ansorena, D.; Astiasaran, I. Natural Antioxidants (Rosemary and Parsley) in Microwaved Ground Meat Patties: Effects of in Vitro Digestion. J. Sci. Food Agric. 2024, 104, 4465–4472. [Google Scholar] [CrossRef]
- Al-Hijazeen, M. The Combination Effect of Adding Rosemary Extract and Oregano Essential Oil on Ground Chicken Meat Quality. Food Sci. Technol. 2021, 42, e57120. [Google Scholar] [CrossRef]
- Vergara, H.; Cózar, A.; Rubio, N. Lamb Meat Burgers Shelf Life: Effect of the Addition of Different Forms of Rosemary (Rosmarinus Officinalis L.). CyTA J. Food 2021, 19, 606–613. [Google Scholar] [CrossRef]
- de Paiva, G.B.; Trindade, M.A.; Romero, J.T.; da Silva-Barretto, A.C. Antioxidant Effect of Acerola Fruit Powder, Rosemary and Licorice Extract in Caiman Meat Nuggets Containing Mechanically Separated Caiman Meat. Meat Sci. 2021, 173, 108406. [Google Scholar] [CrossRef]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus Officinalis, L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- Van Buren, J.B.; Epperson, B.; Jepsen, S.; Heimbuch, M.; Oliver, K.; Nasados, J.; Bass, P.D.; Colle, M.J. Acerola Cherry and Rosemary Extracts Improve Color and Delay Lipid Oxidation in Previously Frozen Beef. Foods 2024, 13, 1476. [Google Scholar] [CrossRef]
- Pateiro, M.; Vargas, F.C.; Chincha, A.A.I.A.; Sant’Ana, A.S.; Strozzi, I.; Rocchetti, G.; Barba, F.J.; Domínguez, R.; Lucini, L.; do Amaral Sobral, P.J.; et al. Guarana Seed Extracts as a Useful Strategy to Extend the Shelf Life of Pork Patties: UHPLC-ESI/QTOF Phenolic Profile and Impact on Microbial Inactivation, Lipid and Protein Oxidation and Antioxidant Capacity. Food Res. Int. 2018, 114, 55–63. [Google Scholar] [CrossRef]
- Martínez-zamora, L.; Ros, G.; Nieto, G. Synthetic vs. Natural Hydroxytyrosol for Clean Label Lamb Burgers. Antioxidants 2020, 9, 851. [Google Scholar] [CrossRef] [PubMed]
- Pateiro, M.; Gómez-Salazar, J.A.; Jaime-Patlán, M.; Sosa-Morales, M.E.; Lorenzo, J.M. Plant Extracts Obtained with Green Solvents as Natural Antioxidants in Fresh Meat Products. Antioxidants 2021, 10, 181. [Google Scholar] [CrossRef] [PubMed]
- Alirezalu, K.; Pateiro, M.; Yaghoubi, M.; Alirezalu, A.; Peighambardoust, S.H.; Lorenzo, J.M. Phytochemical Constituents, Advanced Extraction Technologies and Techno-Functional Properties of Selected Mediterranean Plants for Use in Meat Products. A Comprehensive Review. Trends Food Sci. Technol. 2020, 100, 292–306. [Google Scholar] [CrossRef]
- Stoica, M. Overview of Sodium Nitrite as a Multifunctional Meat-Curing Ingredient. Ann. Univ. Dunarea De. Jos Galati Fascicle VI Food Technol. 2019, 43, 155–167. [Google Scholar] [CrossRef]
- Nicoletti, D.; Yin, B.; Schmidt, J.; Wunch, K.; Gieg, L.; Jenneman, G. Metabolic Stress Induced by Nitrite Enhances Biocide Kill of Sulfate Reducing Bacteria in Oilfield Enrichments. Int. Biodeterior. Biodegrad. 2025, 201, 106067. [Google Scholar] [CrossRef]
- Fraqueza, M.J.; Laranjo, M.; Elias, M.; Patarata, L. Microbiological Hazards Associated with Salt and Nitrite Reduction in Cured Meat Products: Control Strategies Based on Antimicrobial Effect of Natural Ingredients and Protective Microbiota. Curr. Opin. Food Sci. 2021, 38, 32–39. [Google Scholar] [CrossRef]
- Stoica, M.; Antohi, V.M.; Alexe, P.; Ivan, A.S.; Stanciu, S.; Stoica, D.; Zlati, M.L.; Stuparu-Cretu, M. New Strategies for the Total/Partial Replacement of Conventional Sodium Nitrite in Meat Products: A Review. Food Bioprocess Technol. 2022, 15, 514–538. [Google Scholar] [CrossRef]
- Karwowska, M.; Kononiuk, A. Nitrates/Nitrites in Food-Risk for Nitrosative Stress and Benefits. Antioxidants 2020, 9, 241. [Google Scholar] [CrossRef]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; Nebbia, C.S.; Nielsen, E.; et al. Risk Assessment of N-Nitrosamines in Food. Efsa J. 2023, 21, e07884. [Google Scholar] [CrossRef]
- Ansari, F.A.; Ali, S.N.; Arif, H.; Khan, A.A.; Mahmood, R. Acute Oral Dose of Sodium Nitrite Induces Redox Imbalance, DNA Damage, Metabolic and Histological Changes in Rat Intestine. PLoS ONE 2017, 12, e0175196. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, H.; Lin, S.; Liao, L.; Cai, L.; Zhang, X.; Tan, Y.; Shen, M. Study on the Levels of N-Nitrosamine Compounds and Untargeted Metabolomics in Patients with Colorectal Cancer. Anal. Bioanal. Chem. 2022, 414, 3483–3496. [Google Scholar] [CrossRef] [PubMed]
- Gold, S.A.; Margulis, V. Carcinogenic Effects of Nitrosodimethylamine (NDMA) Contamination in Ranitidine: Defining the Relationship With Renal Malignancies. JU Open Plus 2023, 1, e00053. [Google Scholar] [CrossRef]
- Zheng, J.; Daniel, C.R.; Hatia, R.I.; Stuff, J.; Abdelhakeem, A.A.; Rashid, A.; Chun, Y.S.; Jalal, P.K.; Kaseb, A.O.; Li, D.; et al. Dietary N-Nitroso Compounds and Risk of Hepatocellular Carcinoma: A USA-Based Study. Hepatology 2021, 74, 3161–3173. [Google Scholar] [CrossRef]
- Karwowska, M.; Dolatowski, Z.J. Effect of Acid Whey and Freeze-Dried Cranberries on Lipid Oxidation and Fatty Acid Composition of Nitrite-/Nitrate-Free Fermented Sausage Made from Deer Meat. Asian-Australas. J. Anim. Sci. 2017, 30, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Salejda, A.M.; Nawirska-Olszanska, A.; Janiewicz, U.; Krasnowska, G. Effects on Quality Properties of Pork Sausages Enriched with Sea Buckthorn (Hippophae Rhamnoides L.). J. Food Qual. 2017, 2017, 7123960. [Google Scholar] [CrossRef]
- Šojić, B.; Pavlić, B.; Ikonić, P.; Tomović, V.; Ikonić, B.; Zeković, Z.; Kocić-Tanackov, S.; Jokanović, M.; Škaljac, S.; Ivić, M. Coriander Essential Oil as Natural Food Additive Improves Quality and Safety of Cooked Pork Sausages with Different Nitrite Levels. Meat Sci. 2019, 157, 107879. [Google Scholar] [CrossRef] [PubMed]
- Vafania, B.; Fathi, M.; Soleimanian-Zad, S. Nanoencapsulation of Thyme Essential Oil in Chitosan-Gelatin Nanofibers by Nozzle-Less Electrospinning and Their Application to Reduce Nitrite in Sausages. Food Bioprod. Process. 2019, 116, 240–248. [Google Scholar] [CrossRef]
- Golden, M.; Wanless, B.; Glass, K. Comparison of Clean Label Antimicrobials with Nitrite on the Inhibition of Clostridium Perfringens during Extended Cooling of a Model Deli-Style Ham Product; IAFP: Urbandale, IA, USA, 2019. [Google Scholar]
- Kim, T.K.; Hwang, K.E.; Lee, M.A.; Paik, H.D.; Kim, Y.B.; Choi, Y.S. Quality Characteristics of Pork Loin Cured with Green Nitrite Source and Some Organic Acids. Meat Sci. 2019, 152, 141–145. [Google Scholar] [CrossRef]
- Hong, J.H.; Lee, S.H.; Kim, H.Y. Effect of Cherry Tomato Paste for Nitrite Replacement on Emulsion-Type Pork Sausage. J. Korean Soc. Food Sci. Nutr. 2021, 50, 506–514. [Google Scholar] [CrossRef]
- Cadariu, A.I.; Cocan, I.; Negrea, M.; Alexa, E.; Obistioiu, D.; Hotea, I.; Radulov, I.; Poiana, M.A. Exploring the Potential of Tomato Processing Byproduct as a Natural Antioxidant in Reformulated Nitrite-Free Sausages. Sustainability 2022, 14, 11802. [Google Scholar] [CrossRef]
- Hosseini, M.J.; Dezhangah, S.; Esmi, F.; Gharavi-nakhjavani, M.S.; Hashempour-baltork, F.; Mirza Alizadeh, A. A Worldwide Systematic Review, Meta-Analysis and Meta-Regression of Nitrate and Nitrite in Vegetables and Fruits. Ecotoxicol. Environ. Saf. 2023, 257, 114934. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Zamora, L.; Peñalver, R.; Ros, G.; Nieto, G. Substitution of Synthetic Nitrates and Antioxidants by Spices, Fruits and Vegetables in Clean Label Spanish Chorizo. Food Res. Int. 2021, 139, 109835. [Google Scholar] [CrossRef]
- Riel, G.; Boulaaba, A.; Popp, J.; Klein, G. Effects of Parsley Extract Powder as an Alternative for the Direct Addition of Sodium Nitrite in the Production of Mortadella-Type Sausages—Impact on Microbiological, Physicochemical and Sensory Aspects. Meat Sci. 2017, 131, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G.; Martínez-Zamora, L.; Peñalver, R.; Marín-Iniesta, F.; Taboada-Rodríguez, A.; López-Gómez, A.; Martínez-Hernández, G.B. Applications of Plant Bioactive Compounds as Replacers of Synthetic Additives in the Food Industry. Foods 2023, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- D’Amore, T.; Di Taranto, A.; Berardi, G.; Vita, V.; Marchesani, G.; Chiaravalle, A.E.; Iammarino, M. Sulfites in Meat: Occurrence, Activity, Toxicity, Regulation, and Detection. A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2701–2720. [Google Scholar] [CrossRef]
- Bellés, M.; Alonso, V.; Roncalés, P.; Beltrán, J.A. Sulfite-Free Lamb Burger Meat: Antimicrobial and Antioxidant Properties of Green Tea and Carvacrol. J. Sci. Food Agric. 2019, 99, 464–472. [Google Scholar] [CrossRef]
- Hernández-Hernández, E.; Lira-Moreno, C.Y.; Guerrero-Legarreta, I.; Wild-Padua, G.; Di Pierro, P.; García-Almendárez, B.E.; Regalado-González, C. Effect of Nanoemulsified and Microencapsulated Mexican Oregano (Lippia Graveolens Kunth) Essential Oil Coatings on Quality of Fresh Pork Meat. J. Food Sci. 2017, 82, 1423–1432. [Google Scholar] [CrossRef]
- Thangavelu, K.P.; Kerry, J.P.; Tiwari, B.K.; McDonnell, C.K. Novel Processing Technologies and Ingredient Strategies for the Reduction of Phosphate Additives in Processed Meat. Trends Food Sci. Technol. 2019, 94, 43–53. [Google Scholar] [CrossRef]
- Rubio-Aliaga, I.; Krapf, R. Phosphate Intake, Hyperphosphatemia, and Kidney Function. Pflügers Arch. Eur. J. Physiol. 2022, 474, 935–947. [Google Scholar] [CrossRef]
- Younes, M.; Aquilina, G.; Castle, L.; Engel, K.H.; Fowler, P.; Frutos Fernandez, M.J.; Fürst, P.; Gürtler, R.; Husøy, T.; Mennes, W.; et al. Re-Evaluation of Phosphoric Acid–Phosphates—Di-, Tri- and Polyphosphates (E 338–341, E 343, E 450–452) as Food Additives and the Safety of Proposed Extension of Use. EFSA J. 2019, 17, e05674. [Google Scholar] [CrossRef]
- Yuan, D.; Liang, X.; Kong, B.; Xia, X.; Cao, C.; Zhang, H.; Liu, Q.; Li, X. Influence of Seaweed Dietary Fibre as a Potential Alternative to Phosphates on the Quality Profiles and Flavour Attributes of Frankfurters. Meat Sci. 2024, 213, 109511. [Google Scholar] [CrossRef] [PubMed]
- Oztürk, B.; Serdarolu, M. Effects of Jerusalem Artichoke Powder and Sodium Carbonate as Phosphate Replacers on the Quality Characteristics of Emulsified Chicken Meatballs. Food Sci. Anim. Resour. 2018, 38, 26–42. [Google Scholar] [CrossRef]
- Powell, M.J.; Sebranek, J.G.; Prusa, K.J.; Tarté, R. Evaluation of Citrus Fiber as a Natural Replacer of Sodium Phosphate in Alternatively-Cured All-Pork Bologna Sausage. Meat Sci. 2019, 157, 107883. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.T.; Pires, M.A.; Baldin, J.C.; Munekata, P.E.S.; de Carvalho, F.A.L.; Rodrigues, I.; Polizer, Y.J.; de Mello, J.L.M.; Lapa-Guimarães, J.; Trindade, M.A. Partial Replacement of Meat and Fat with Hydrated Wheat Fiber in Beef Burgers Decreases Caloric Value without Reducing the Feeling of Satiety after Consumption. Meat Sci. 2019, 147, 53–59. [Google Scholar] [CrossRef]
- Guan, H.; Diao, X.; Liu, D.; Han, J.; Kong, B.; Liu, D.; Gao, C.; Zhang, L. Effect of High-Pressure Processing Enzymatic Hydrolysates of Soy Protein Isolate on the Emulsifying and Oxidative Stability of Myofibrillar Protein-Prepared Oil-in-Water Emulsions. J. Sci. Food Agric. 2020, 100, 3910–3919. [Google Scholar] [CrossRef]
- Kurt, A.; Gençcelep, H. Enrichment of Meat Emulsion with Mushroom (Agaricus Bisporus) Powder: Impact on Rheological and Structural Characteristics. J. Food Eng. 2018, 237, 128–136. [Google Scholar] [CrossRef]
- Lise, C.C.; Marques, C.; da Cunha, M.A.A.; Mitterer-Daltoé, M.L. Alternative Protein from Pereskia Aculeata Miller Leaf Mucilage: Technological Potential as an Emulsifier and Fat Replacement in Processed Mortadella Meat. Eur. Food Res. Technol. 2021, 247, 851–863. [Google Scholar] [CrossRef]
- de Carvalho, F.A.L.; Lorenzo, J.M.; Pateiro, M.; Bermúdez, R.; Purriños, L.; Trindade, M.A. Effect of Guarana (Paullinia Cupana) Seed and Pitanga (Eugenia Uniflora L.) Leaf Extracts on Lamb Burgers with Fat Replacement by Chia Oil Emulsion during Shelf Life Storage at 2 °C. Food Res. Int. 2019, 125, 108554. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Fraqueza, M.J.; Fernandes, M.H.; Moldão-Martins, M.; Alves, V.D. Application of Edible Alginate Films with Pineapple Peel Active Compounds on Beef Meat Preservation. Antioxidants 2020, 9, 667. [Google Scholar] [CrossRef]
- Feifei, S.; Kryzhska, T.A.; Yan, L.; Zhenhua, D.; Danylenko, S.H.; Stepanova, T.M.; Koshel, O.Y. Effects Of Different Natural Food Coloring Additions On The Quality Of Chicken Sausage. J. Chem. Technol. 2022, 30, 265–274. [Google Scholar] [CrossRef]
- Öztürk-Kerimoğlu, B.; Serdaroğlu, M. Powder/Gelled Inulin and Sodium Carbonate as Novel Phosphate Replacers in Restructured Chicken Steaks. J. Food Process Preserv. 2019, 43, e14243. [Google Scholar] [CrossRef]
- Ayuso, P.; Peñalver, R.; Quizhpe, J.; Rosell, M.d.L.Á.; Nieto, G. Broccoli, Artichoke, Carob and Apple By-Products as a Source of Soluble Fiber: How It Can Be Affected by Enzymatic Treatment with Pectinex® Ultra SP-L, Viscozyme® L and Celluclast® 1.5 L. Foods 2024, 14, 10. [Google Scholar] [CrossRef]
- Tahiri, M.; Johnsrud, C.; Steffensen, I.L. Evidence and Hypotheses on Adverse Effects of the Food Additives Carrageenan (E 407)/Processed Eucheuma Seaweed (E 407a) and Carboxymethylcellulose (E 466) on the Intestines: A Scoping Review. Crit. Rev. Toxicol. 2023, 53, 521–571. [Google Scholar] [CrossRef]
- Tomasevic, I.; Djekic, I.; Font-i-Furnols, M.; Terjung, N.; Lorenzo, J.M. Recent Advances in Meat Color Research. Curr. Opin. Food Sci. 2021, 41, 81–87. [Google Scholar] [CrossRef]
- Ramesh, M.; Muthuraman, A. Flavoring and Coloring Agents: Health Risks and Potential Problems. In Natural and Artificial Flavoring Agents and Food Dyes; Academic Press: Cambridge, MA, USA, 2018; pp. 1–28. [Google Scholar] [CrossRef]
- Baldin, J.C.; Michelin, E.C.; Polizer, Y.J.; Rodrigues, I.; de Godoy, S.H.S.; Fregonesi, R.P.; Pires, M.A.; Carvalho, L.T.; Fávaro-Trindade, C.S.; de Lima, C.G.; et al. Microencapsulated Jabuticaba (Myrciaria Cauliflora) Extract Added to Fresh Sausage as Natural Dye with Antioxidant and Antimicrobial Activity. Meat Sci. 2016, 118, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Orădan, A.C.; Tocai, A.C.; Rosan, C.A.; Vicas, S.I. Fruit Extracts Incorporated into Meat Products as Natural Antioxidants, Preservatives, and Colorants. Processes 2024, 12, 2756. [Google Scholar] [CrossRef]
- He, Y.; Wang, B.; Wen, L.; Wang, F.; Yu, H.; Chen, D.; Su, X.; Zhang, C. Effects of Dietary Fiber on Human Health. Food Sci. Hum. Wellness 2022, 11, 1–10. [Google Scholar] [CrossRef]
- Pathania, S.; Kaur, N. Utilization of Fruits and Vegetable By-Products for Isolation of Dietary Fibres and Its Potential Application as Functional Ingredients. Bioact. Carbohydr. Diet. Fibre 2022, 27, 100295. [Google Scholar] [CrossRef]
- Reynolds, A.N.; Akerman, A.; Kumar, S.; Diep Pham, H.T.; Coffey, S.; Mann, J. Dietary Fibre in Hypertension and Cardiovascular Disease Management: Systematic Review and Meta-Analyses. BMC Med. 2022, 20, 139. [Google Scholar] [CrossRef]
- Costabile, G.; Griffo, E.; Cipriano, P.; Vetrani, C.; Vitale, M.; Mamone, G.; Rivellese, A.A.; Riccardi, G.; Giacco, R. Subjective Satiety and Plasma PYY Concentration after Wholemeal Pasta. Appetite 2018, 125, 172–181. [Google Scholar] [CrossRef]
- Du, Y.; He, C.; An, Y.; Huang, Y.; Zhang, H.; Fu, W.; Wang, M.; Shan, Z.; Xie, J.; Yang, Y.; et al. The Role of Short Chain Fatty Acids in Inflammation and Body Health. Int. J. Mol. Sci. 2024, 25, 7379. [Google Scholar] [CrossRef] [PubMed]
- Alvandi, E.; Wong, W.K.M.; Joglekar, M.V.; Spring, K.J.; Hardikar, A.A. Short-Chain Fatty Acid Concentrations in the Incidence and Risk-Stratification of Colorectal Cancer: A Systematic Review and Meta-Analysis. BMC Med. 2022, 20, 323. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.; Ahlawat, S.; Sharma, D.; Yadav, S.; Krishnakanth, M. Development of Dietary Fiber Rich Chicken Meat Rolls and Patties Using Rice Bran. Fleischwirtsch. Int. J. Meat Prod. Meat Process. 2018, 5, 41–48. [Google Scholar]
- Jovanovichs, M.R.C.; Pinton, M.B.; Correa, L.P.; Pedro, D.; Mallmann, C.A.; Wagner, R.; Cichoski, A.J.; Lorenzo, J.M.; Teixeira, A.J.C.; Campagnol, P.C.B.; et al. Replacing Animal Fat with Gels of Psyllium Fiber and Combined Linseed Oil–Psyllium Fiber in Salamis: Impacts on Technological, Nutritional, Oxidative, and Sensory Properties. Foods 2023, 12, 2439. [Google Scholar] [CrossRef]
- Salejda, A.M.; Olender, K.; Zielińska-Dawidziak, M.; Mazur, M.; Szperlik, J.; Miedzianka, J.; Zawiślak, I.; Kolniak-Ostek, J.; Szmaja, A. Frankfurter-Type Sausage Enriched with Buckwheat By-Product as a Source of Bioactive Compounds. Foods 2022, 11, 674. [Google Scholar] [CrossRef] [PubMed]
- Savadkoohi, S.; Hoogenkamp, H.; Shamsi, K.; Farahnaky, A. Color, Sensory and Textural Attributes of Beef Frankfurter, Beef Ham and Meat-Free Sausage Containing Tomato Pomace. Meat Sci. 2014, 97, 410–418. [Google Scholar] [CrossRef]
- D’Ambra, K.; Minelli, G.; Lo Fiego, D. Pietro Effect of Hazelnut Skin and Dry Tomato Peel on the Oxidative Stability, Chemical and Sensory Properties of Pork Burgers during Refrigerated Storage. Food Packag. Shelf Life 2023, 38, 101107. [Google Scholar] [CrossRef]
- Tarasevičienė, Ž.; Čechovičienė, I.; Paulauskienė, A.; Gumbytė, M.; Blinstrubienė, A.; Burbulis, N. The Effect of Berry Pomace on Quality Changes of Beef Patties during Refrigerated Storage. Foods 2022, 11, 2180. [Google Scholar] [CrossRef]
- Babaoğlu, A.S.; Unal, K.; Dilek, N.M.; Poçan, H.B.; Karakaya, M. Antioxidant and Antimicrobial Effects of Blackberry, Black Chokeberry, Blueberry, and Red Currant Pomace Extracts on Beef Patties Subject to Refrigerated Storage. Meat Sci. 2022, 187, 108765. [Google Scholar] [CrossRef]
- Ayuso, P.; Quizhpe, J.; Yepes, F.; Miranzo, D.; Avellaneda, A.; Nieto, G.; Ros, G. Improving the Nutritional Quality of Protein and Microbiota Effects in Additive- and Allergen-Free Cooked Meat Products. Foods 2024, 13, 1792. [Google Scholar] [CrossRef]
- Fernández, J.; Ledesma, E.; Monte, J.; Millán, E.; Costa, P.; de la Fuente, V.G.; García, M.T.F.; Martínez-Camblor, P.; Villar, C.J.; Lombó, F. Traditional Processed Meat Products Re-Designed Towards Inulin-Rich Functional Foods Reduce Polyps in Two Colorectal Cancer Animal Models. Sci. Rep. 2019, 9, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Chatli, M.K.; Mehta, N.; Kumar, P.; Malav, O.P. Effect of Carrot Powder on the Quality Attributes of Fibre-Enriched Spent Hen Meat Cutlets. J. Anim. Res. 2015, 5, 737. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Z.; Wu, J.; Lu, J.; Liu, D.; Huang, Y.; Lv, G. Effects of Adding Citrus Fiber with Different Chemical Compositions and Physicochemical Properties on the Cooking Yield of Spiced Beef. LWT 2023, 176, 114486. [Google Scholar] [CrossRef]
- Powell, M.J.; Sebranek, J.G.; Prusa, K.J.; Tarté, R.; Powell, M.J.; Sebranek, J.G.; Prusa, K.J.; Tarté, R. Effect of Citrus Fiber Addition on Quality Attributes of Fully Cooked Deli-Style Turkey Breast. Meat Muscle Biol. 2021, 5, 35–36. [Google Scholar] [CrossRef]
- Pérez-Burillo, S.; Mehta, T.; Pastoriza, S.; Kramer, D.L.; Paliy, O.; Rufián-Henares, J.Á. Potential Probiotic Salami with Dietary Fiber Modulates Antioxidant Capacity, Short Chain Fatty Acid Production and Gut Microbiota Community Structure. LWT 2019, 105, 355–362. [Google Scholar] [CrossRef]
- Zaki, E.F. Impact of Adding Chia Seeds (Salvia Hispanica) on the Quality Properties of Camel Burger “Camburger” during Cold Storage. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1356–1363. [Google Scholar] [CrossRef]
- Kim, C.J.; Kim, H.W.; Hwang, K.E.; Song, D.H.; Ham, Y.K.; Choi, J.H.; Kim, Y.B.; Choi, Y.S. Effects of Dietary Fiber Extracted from Pumpkin (Cucurbita Maxima Duch.) on the Physico-Chemical and Sensory Characteristics of Reduced-Fat Frankfurters. Korean J. Food Sci. Anim. Resour. 2016, 36, 309. [Google Scholar] [CrossRef]
- Lobiuc, A.; Pavăl, N.E.; Mangalagiu, I.I.; Gheorghiță, R.; Teliban, G.C.; Amăriucăi-Mantu, D.; Stoleru, V. Future Antimicrobials: Natural and Functionalized Phenolics. Molecules 2023, 28, 1114. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Ericson, U.; Dekkers, K.F.; Arage, G.; Rašo, L.M.; Sayols-Baixeras, S.; Hammar, U.; Baldanzi, G.; Nguyen, D.; Nielsen, H.B.; et al. Meat Intake in Relation to Composition and Function of Gut Microbiota. Clin. Nutr. 2025, 45, 124–133. [Google Scholar] [CrossRef]
- Thøgersen, R.; Castro-Mejía, J.L.; Sundekilde, U.K.; Hansen, L.H.; Hansen, A.K.; Nielsen, D.S.; Bertram, H.C. Ingestion of an Inulin-Enriched Pork Sausage Product Positively Modulates the Gut Microbiome and Metabolome of Healthy Rats. Mol. Nutr. Food Res. 2018, 62, 1800608. [Google Scholar] [CrossRef]
- Thøgersen, R.; Gray, N.; Kuhnle, G.; Van Hecke, T.; De Smet, S.; Young, J.F.; Sundekilde, U.K.; Hansen, A.K.; Bertram, H.C. Inulin-Fortification of a Processed Meat Product Attenuates Formation of Nitroso Compounds in the Gut of Healthy Rats. Food Chem. 2020, 302, 125339. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Burillo, S.; Pastoriza, S.; Gironés, A.; Avellaneda, A.; Pilar Francino, M.; Rufián-Henares, J.A. Potential Probiotic Salami with Dietary Fiber Modulates Metabolism and Gut Microbiota in a Human Intervention Study. J. Funct. Foods 2020, 66, 103790. [Google Scholar] [CrossRef]
- Nieto, G. Incorporation of by-products of rosemary and thyme in the diet of ewes: Effect on the fatty acid profile of lamb. Eur. Food Res. Technol. 2013, 236, 379–389. [Google Scholar] [CrossRef]
- Nieto, G.; Banón, S.; Garrido, M. Administration of distillate thyme leaves into the diet of Segureña ewes: Effect on lamb meat quality. Animal 2012, 6, 2048–2056. [Google Scholar] [CrossRef]
- Banón, S.; Díaz, P.; Nieto, G.; Castillo, M.; Álvarez, D. Modelling the Yield and Texture of Comminuted Pork Products Using Color and Temperature. Effect of Fat/Lean Ratio and Starch. Meat Sci. 2008, 80, 649–655. [Google Scholar] [CrossRef]
Fat Substitute | Meat Product | Replacement | Outcomes | Ref. | |
---|---|---|---|---|---|
Microencapsulation | Microencapsulated fish oil | Poultry sausage batters | 30% | Reduction in pH and water activity value in the meat batter | [20] |
Improved elastic properties and dynamic viscosity | |||||
Chia microparticles enriched with rosemary | Beef patties | 50% | Decrease in volatiles from lipid and protein oxidation and an increase in terpenes at the beginning and at the end of storage | [21] | |
Positive sensory scores | |||||
Microencapsulated tiger nut, chia, and linseed oils | Deer pâté | 50 and 100% | Modification of color parameters, especially tiger nut oil | [22] | |
Decreasing the total amount of SFAs and increasing PUFAs of chia and linseed pâtés | |||||
Higher TBARS values due to vegetable oils incorporation | |||||
Interstification | Milkfat-rapeseed oil | Meat batters | 100% | Higher content of unsaturated fatty acids in meat batters | [23] |
Significantly lower apparent viscosity of reformulated meat batter | |||||
Palm kernel oil | Beef frankfurters | 25, 50, 75 and 100% | 75% and 100% beef fat replacement significantly lower hardness values | [24] | |
Higher TBARS values in frankfurters manufactured with kernel oil | |||||
Emulsion gel | Grape seed oil | Pork emulsions | 50% | Increase in moisture, lightness, viscosity and emulsion stability | [25] |
Decreased TBARS values | |||||
Chia oil | Bologna-type sausages | 100% | Higher levels of PUFAs in treatments with emulsion gel | [26] | |
Similar purchase intention, taste, color and aroma | |||||
Tiger nut oil | Beef patties | 50 and 100% | Inhibition of lipid oxidation after reformulation of 50 and 100% of fat | [27] | |
Decrease in SFAs and enhancement of unsaturated fatty acids | |||||
Corn, grape seed, soybean, olive, and coconut oil | Duck meat emulsion | 100% | Improvement of cooking loss and emulsion stability | [28] | |
Decrease of TBARS values in reformulated emulsions | |||||
Oleogel | Linseed oil | Pork pâté | 60 and 100% | No impact in mechanical, thermal, or rheological properties | [29] |
Improved the oxidative stability of the organogels and pâtés in partially or totally replace pork backfat | |||||
Olive, linseed, and fish oil mixture | Pork burgers | 100% | Improved PUFA/SFA ratio | [30] | |
Softer texture and no important changes in optical properties | |||||
Sunflower oil | Bologna-type sausages | 25, 50, 75 and 100% | Increase of oleic acid and decrease of linoleic acid | [31] | |
Emulsion stability increased and cooking loss decreased with increasing the pork back fat replacement by oleogel | |||||
No effect of the sensory quality up to 50% fat replacement |
Meat Product | Formulation | Outcomes | Ref. | |
---|---|---|---|---|
Chloride salts | Pork sausages | Replacement of 2% NaCl with three different formulations (NaCl + KCl, NaCl + Sub4Salt®, and KCl + Sub4Salt®) in pork sausages | No effect on lipid oxidation (TBARS) due to reformulation | [69] |
No significant differences in sensory and microbiological analysis between the different formulations | ||||
Similar effect of odor intensity, color, and bitterness, but less saltiness, in the partially reformulated products | ||||
Goat patties | Development of low sodium goat patties by applying a mixture of salts consisting of 1% NaCl, 0.4% KCl, and 0.2% CaCl2 | Increase in hardness, gumminess, and chewiness of reformulated patties | [70] | |
Flavor and saltiness decrease of partially replaced patties compared to control | ||||
Dry-cured meat sausages | Replacement of the 33% NaCl of dry-cured meat sausage with KCl and aromatic plant extracts | The formulations did not affect the growth of lactic acid bacteria, enterococci, and coagulase-negative staphylococci | [71] | |
No changes in color and lipid oxidation parameters between formulations | ||||
Formualtion with 1% NaCl and 0.5% KCl was considered with the ideal saltiness by 54% consumers | ||||
Seafoods | Beef patties | Substitution of salt by sea spaghetti (0–5%) in beef patties | 1% added algae could replace NaCl in patties without deteriorating their appeal among regular consumers | [72] |
Inclusion of >2.5% sea spaghetti resulted in significantly lower overall liking and reduced purchase intention | ||||
Pork sausages | Incorporation of 2.5% sea spaghetti and Irish wakame as NaCl substitutes in the formulation of low-fat sausages | Darkening of fat and salt-reduced sausages containing seaweed in their formulation | [73] | |
High acceptance of sausages with 2.5% sea spaghetti and 0.5% salt and sausages with 2.5% wakame and 1% salt | ||||
Chicken patties | Addition of seaweed (Kappaphycus alvarezii) (2% and 4%) as a salt replacer (1% and 1.5%) in chicken patties | Darker color of chicken patties with seaweeds, lower L* | [74] | |
Chicken patties with 2–4% algae showed higher WHC | ||||
Highest overall acceptability of chicken patties with 1.5% salt and 4% seaweed | ||||
Turkey sausages | Addition of lyophilized aqueous extract of Cystoseira barbata (0.01–0.4%) in turkey meat sausage. | Reduction of lipid oxidation of meat by approximately 36% | [75] | |
Improvement of meat color stability during 15 days of refrigeration | ||||
Pork frankfurters | Salt replacement by 1% of red (Porphyra umbilicalis and Palmaria palmata) and brown (Himanthalia elongata and Undaria pinnatifida) edible seaweeds in pork frankfurters | Darker color of pork frankfurters with seaweeds | [76] | |
Significant changes in the overall acceptability of reformulated frankfurters, H. elongata extract being the most widely accepted | ||||
Fungi | Beef patties | Addition of 2.5 and 5.0% edible mushroom flours (Agaricus bisporus and Pleurotus ostreatus) during cold storage in beef patties. | Improvement of dietary fiber and protein content with 5% of A. bisporus flour | [77] |
Color and flavor modification due to reformulation, but acceptable sensory palatability | ||||
Beef burgers | Replacement of NaCl with 1.35% of different mushroom flour (Pleurotus ostreatus, Agaricus bisporus, and Agaricus brunnescen) in beef burgers. | Higher lipid oxidation values (0.18–0.20 mg MDA/kg sample) than the control sample | [78] | |
No difference in sensory aspects due to reformulation with mushroom flours. | ||||
Pork frankfurters | Salt reduction in Frankfurter sausages by the addition of 2.5 and 5% Agaricus bisporus and Pleurotus ostreatus flour | Inhibition of lipid oxidation after reformulation similar to control frankfurters | [79] | |
Modification of color and texture, with the A. bisporus samples being darker | ||||
Plants and fruits | Pork frankfurters | NaCl replacement with 3 and 6% soy protein isolate in pork frankfurters | Increase in cooking yield, a* value and hardness of reformulated frankfurter sausage | [80] |
Decrease in elasticity and cohesiveness of sausages with 6% soy protein isolate | ||||
Marinated chicken breast | Addition of 2% seasoning obtained from red grape skins to marinated low-salt chicken breasts | Reformulation with 0.5% salt and 2% grape had the same shelf life as the 2% salt formulation | [81] | |
Color of the marinated chicken breasts was less accepted than the control | ||||
Beef patties | Application of wine pomace (2% w/w) as a salt substitute in beef patties with different salt levels | Higher levels of K, Ca, fiber, and phenols in reformulated patties | [82] | |
Improvement of the microbial stability of patties, delaying the total growth of mesophilic aerobic and lactic aerobic bacteria |
Fiber | Meat Product | Outcomes | Ref. |
---|---|---|---|
Psyllium | Chicken patties, salami |
| [156] |
| [157] | ||
Buckwheat husk | Pork Frankfurters |
| [158] |
Tomato pomace | Minced meat, beef burgers |
| [159] |
| [160] | ||
Berry pomace | Beef patties |
| [161] |
| [162] | ||
Inulin | Cooked ham, turkey breast, chorizo sausages |
| [163] |
| [164] | ||
Carrot | Chicken cutlets |
| [165] |
Citrus fiber | Beef patties, turkey breast, salami |
| [166] |
| [167] | ||
| [168] | ||
Chia seeds | Camel patties |
| [169] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayuso, P.; García-Pérez, P.; Nieto, G. New Insights and Strategies in the Nutritional Reformulation of Meat Products Toward Healthier Foods. Molecules 2025, 30, 2565. https://doi.org/10.3390/molecules30122565
Ayuso P, García-Pérez P, Nieto G. New Insights and Strategies in the Nutritional Reformulation of Meat Products Toward Healthier Foods. Molecules. 2025; 30(12):2565. https://doi.org/10.3390/molecules30122565
Chicago/Turabian StyleAyuso, Pablo, Pascual García-Pérez, and Gema Nieto. 2025. "New Insights and Strategies in the Nutritional Reformulation of Meat Products Toward Healthier Foods" Molecules 30, no. 12: 2565. https://doi.org/10.3390/molecules30122565
APA StyleAyuso, P., García-Pérez, P., & Nieto, G. (2025). New Insights and Strategies in the Nutritional Reformulation of Meat Products Toward Healthier Foods. Molecules, 30(12), 2565. https://doi.org/10.3390/molecules30122565