Effects of Resveratrol on Adipocytes: Evidence from In Vitro and In Vivo Studies
Abstract
1. Introduction
2. The Effects of Resveratrol on Adipose Tissue
2.1. The Effects of Resveratrol on Adipocytes: In Vitro Evidence
2.2. The Effects of Resveratrol on Adipose Tissue: In Vivo Evidence
2.3. The Effects of Resveratrol on Adipose Tissue: Evidence from Human In Vivo Studies
3. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Congdon, P.; Amugsi, D. Editorial: The Obesity Epidemic: Causes, Context, Prevention. Front. Public Health 2022, 10, 1030180. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.P.; Mesidor, M.; Winters, K.; Dubbert, P.M.; Wyatt, S.B. Overweight and Obesity: Prevalence, Consequences, and Causes of a Growing Public Health Problem. Curr. Obes. Rep. 2015, 4, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Reaven, G. Obesity and Insulin Resistance: An Ongoing Saga. Diabetes 2010, 59, 2105–2106. [Google Scholar] [CrossRef] [PubMed]
- Haslam, D.W.; James, W.P.T. Obesity. Lancet 2005, 366, 1197–1209. [Google Scholar] [CrossRef]
- Lean, M.E.J.; Astrup, A.; Roberts, S.B. Making Progress on the Global Crisis of Obesity and Weight Management. BMJ 2018, 361, k2538. [Google Scholar] [CrossRef]
- Koenen, M.; Hill, M.A.; Cohen, P.; Sowers, J.R. Obesity, Adipose Tissue and Vascular Dysfunction. Circ. Res. 2021, 128, 951–968. [Google Scholar] [CrossRef]
- Romacho, T.; Elsen, M.; Röhrborn, D.; Eckel, J. Adipose Tissue and Its Role in Organ Crosstalk. Acta Physiol. 2014, 210, 733–753. [Google Scholar] [CrossRef]
- Shi, Y.; Burn, P. Lipid Metabolic Enzymes: Emerging Drug Targets for the Treatment of Obesity. Nat. Rev. Drug Discov. 2004, 3, 695–710. [Google Scholar] [CrossRef]
- Morigny, P.; Boucher, J.; Arner, P.; Langin, D. Lipid and Glucose Metabolism in White Adipocytes: Pathways, Dysfunction and Therapeutics. Nat. Rev. Endocrinol. 2021, 17, 276–295. [Google Scholar] [CrossRef]
- Mohamed-Ali, V.; Pinkney, J.; Coppack, S. Adipose Tissue as an Endocrine and Paracrine Organ. Int. J. Obes. 1998, 22, 1145–1158. [Google Scholar] [CrossRef]
- Cohen, P.; Kajimura, S. The Cellular and Functional Complexity of Thermogenic Fat. Nat. Rev. Mol. Cell Biol. 2021, 22, 393–409. [Google Scholar] [CrossRef] [PubMed]
- Bartelt, A.; Heeren, J. Adipose Tissue Browning and Metabolic Health. Nat. Rev. Endocrinol. 2014, 10, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Harms, M.; Seale, P. Brown and Beige Fat: Development, Function and Therapeutic Potential. Nat. Med. 2013, 19, 1252–1263. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.J.; Crozier, A. Plant Foods and Herbal Sources of Resveratrol. J. Agric. Food Chem. 2002, 50, 3337–3340. [Google Scholar] [CrossRef]
- Stervbo, U.; Vang, O.; Bonnesen, C. A Review of the Content of the Putative Chemopreventive Phytoalexin Resveratrol in Red Wine. Food Chem. 2007, 101, 449–457. [Google Scholar] [CrossRef]
- Thapa, S.B.; Pandey, R.P.; Park, Y.I.; Sohng, J.K. Biotechnological Advances in Resveratrol Production and Its Chemical Diversity. Molecules 2019, 24, 2571. [Google Scholar] [CrossRef]
- Sadruddin, S.; Arora, R. Resveratrol: Biologic and Therapeutic Implications. J. Cardiometab. Synd. 2009, 4, 102–106. [Google Scholar] [CrossRef]
- Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; et al. Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxidative Med. Cell. Longev. 2015, 2015, 837042. [Google Scholar] [CrossRef]
- Carrizzo, A.; Forte, M.; Damato, A.; Trimarco, V.; Salzano, F.; Bartolo, M.; Maciag, A.; Puca, A.A.; Vecchione, C. Antioxidant Effects of Resveratrol in Cardiovascular, Cerebral and Metabolic Diseases. Food Chem. Toxicol. 2013, 61, 215–226. [Google Scholar] [CrossRef]
- Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules 2021, 26, 229. [Google Scholar] [CrossRef]
- Nadile, M.; Retsidou, M.I.; Gioti, K.; Beloukas, A.; Tsiani, E. Resveratrol against Cervical Cancer: Evidence from In Vitro and In Vivo Studies. Nutrients 2022, 14, 5273. [Google Scholar] [CrossRef] [PubMed]
- Yousef, M.; Vlachogiannis, I.; Tsiani, E. Effects of Resveratrol against Lung Cancer: In Vitro and In Vivo Studies. Nutrients 2017, 9, 1231. [Google Scholar] [CrossRef] [PubMed]
- Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; et al. Resveratrol Improves Health and Survival of Mice on a High-Calorie Diet. Nature 2006, 444, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Den Hartogh, D.J.; Tsiani, E. Health Benefits of Resveratrol in Kidney Disease: Evidence from In Vitro and In Vivo Studies. Nutrients 2019, 11, 1624. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, L.; Fernández-Quintela, A.; Arias, N.; Portillo, M. Resveratrol: Anti-Obesity Mechanisms of Action. Molecules 2014, 19, 18632–18655. [Google Scholar] [CrossRef]
- Baile, C.A.; Yang, J.; Rayalam, S.; Hartzell, D.L.; Lai, C.; Andersen, C.; Della-Fera, M.A. Effect of Resveratrol on Fat Mobilization. Ann. N. Y. Acad. Sci. 2011, 1215, 40–47. [Google Scholar] [CrossRef]
- Pan, M.; Wu, J.; Ho, C.; Lai, C. Antiobesity Molecular Mechanisms of Action: Resveratrol and Pterostilbene. BioFactors 2018, 44, 50–60. [Google Scholar] [CrossRef]
- Kang, N.E.; Ha, A.W.; Kim, J.Y.; Kim, W.K. Resveratrol Inhibits the Protein Expression of Transcription Factors Related Adipocyte Differentiation and the Activity of Matrix Metalloproteinase in Mouse Fibroblast 3T3-L1 Preadipocytes. Nutr. Res. Pract. 2012, 6, 499. [Google Scholar] [CrossRef]
- Jimenez-Gomez, Y.; Mattison, J.A.; Pearson, K.J.; Martin-Montalvo, A.; Palacios, H.H.; Sossong, A.M.; Ward, T.M.; Younts, C.M.; Lewis, K.; Allard, J.S.; et al. Resveratrol Improves Adipose Insulin Signaling and Reduces the Inflammatory Response in Adipose Tissue of Rhesus Monkeys on High-Fat, High-Sugar Diet. Cell Metab. 2013, 18, 533–545. [Google Scholar] [CrossRef]
- Liang, Y.; Tian, W.; Ma, X. Inhibitory Effects of Grape Skin Extract and Resveratrol on Fatty Acid Synthase. BMC Complement. Altern. Med. 2013, 13, 361. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Wang, L.; Li, A.; Qiu, Z.; Qi, L.; Kou, J.; Liu, K.; Liu, B.; Huang, F. The Role of Metformin and Resveratrol in the Prevention of Hypoxia-inducible Factor 1α Accumulation and Fibrosis in Hypoxic Adipose Tissue. Br. J. Pharmacol. 2016, 173, 2001–2015. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liang, X.; Yang, Q.; Fu, X.; Rogers, C.J.; Zhu, M.; Rodgers, B.D.; Jiang, Q.; Dodson, M.V.; Du, M. Resveratrol Induces Brown-like Adipocyte Formation in White Fat through Activation of AMP-Activated Protein Kinase (AMPK) A1. Int. J. Obes. 2015, 39, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Lin, K.-Y.; Peng, K.-Y.; Day, Y.-J.; Hung, L.-M. Resveratrol Exerts Anti-Obesity Effects in High-Fat Diet Obese Mice and Displays Differential Dosage Effects on Cytotoxicity, Differentiation, and Lipolysis in 3T3-L1 Cells. Endocr. J. 2016, 63, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Bouzar, C.; Cottet-Rousselle, C.; Zagotta, I.; Lamarche, F.; Wabitsch, M.; Tokarska-Schlattner, M.; Fischer-Posovszky, P.; Schlattner, U.; Rousseau, D. Resveratrol Inhibits Lipogenesis of 3T3-L1 and SGBS Cells by Inhibition of Insulin Signaling and Mitochondrial Mass Increase. Biochim. Biophys. Acta (BBA)-Bioenergetics 2016, 1857, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Nøhr, M.K.; Kroager, T.P.; Sanggaard, K.W.; Knudsen, A.D.; Stensballe, A.; Enghild, J.J.; Ølholm, J.; Richelsen, B.; Pedersen, S.B. SILAC-MS Based Characterization of LPS and Resveratrol Induced Changes in Adipocyte Proteomics—Resveratrol as Ameliorating Factor on LPS Induced Changes. PLoS ONE 2016, 11, e0159747. [Google Scholar] [CrossRef]
- Imamura, H.; Nagayama, D.; Ishihara, N.; Tanaka, S.; Watanabe, R.; Watanabe, Y.; Sato, Y.; Yamaguchi, T.; Ban, N.; Kawana, H.; et al. Resveratrol Attenuates Triglyceride Accumulation Associated with Upregulation of Sirt1 and Lipoprotein Lipase in 3T3-L1 Adipocytes. Mol. Genet. Metab. Rep. 2017, 12, 44–50. [Google Scholar] [CrossRef]
- Chen, L.; Wang, T.; Chen, G.; Wang, N.; Gui, L.; Dai, F.; Fang, Z.; Zhang, Q.; Lu, Y. Influence of Resveratrol on Endoplasmic Reticulum Stress and Expression of Adipokines in Adipose Tissues/Adipocytes Induced by High-Calorie Diet or Palmitic Acid. Endocrine 2017, 55, 773–785. [Google Scholar] [CrossRef]
- Asnani-Kishnani, M.; Rodríguez, A.M.; Serrano, A.; Palou, A.; Bonet, M.L.; Ribot, J. Neonatal Resveratrol and Nicotinamide Riboside Supplementations Sex-Dependently Affect Beige Transcriptional Programming of Preadipocytes in Mouse Adipose Tissue. Front. Physiol. 2019, 10, 83. [Google Scholar] [CrossRef]
- Andrade, J.M.O.; Barcala-Jorge, A.S.; Batista-Jorge, G.C.; Paraíso, A.F.; Freitas, K.M.D.; Lelis, D.D.F.; Guimarães, A.L.S.; De Paula, A.M.B.; Santos, S.H.S. Effect of Resveratrol on Expression of Genes Involved Thermogenesis in Mice and Humans. Biomed. Pharmacother. 2019, 112, 108634. [Google Scholar] [CrossRef]
- Gong, L.; Guo, S.; Zou, Z. Resveratrol Ameliorates Metabolic Disorders and Insulin Resistance in High-Fat Diet-Fed Mice. Life Sci. 2020, 242, 117212. [Google Scholar] [CrossRef]
- Liu, Z.; Liao, W.; Yin, X.; Zheng, X.; Li, Q.; Zhang, H.; Zheng, L.; Feng, X. Resveratrol-Induced Brown Fat-like Phenotype in 3T3-L1 Adipocytes Partly via mTOR Pathway. Food Nutr. Res. 2020, 64. [Google Scholar] [CrossRef] [PubMed]
- Shih, M.-K.; Hsieh, S.-L.; Huang, Y.-W.; Patel, A.K.; Dong, C.; Hou, C.-Y. Resveratrol Butyrate Esters Inhibit Lipid Biosynthesis in 3T3-L1 Cells by AMP-Activated Protein Kinase Phosphorylation. J. Food Sci. Technol. 2023, 60, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Lasa, A.; Churruca, I.; Eseberri, I.; Andrés-Lacueva, C.; Portillo, M.P. Delipidating Effect of Resveratrol Metabolites in 3 T 3- L 1 Adipocytes. Mol. Nutr. Food Res. 2012, 56, 1559–1568. [Google Scholar] [CrossRef] [PubMed]
- Eseberri, I.; Lasa, A.; Churruca, I.; Portillo, M.P. Resveratrol Metabolites Modify Adipokine Expression and Secretion in 3T3-L1 Pre-Adipocytes and Mature Adipocytes. PLoS ONE 2013, 8, e63918. [Google Scholar] [CrossRef] [PubMed]
- Eseberri, I.; Lasa, A.; Miranda, J.; Gracia, A.; Portillo, M.P. Potential miRNA Involvement in the Anti-Adipogenic Effect of Resveratrol and Its Metabolites. PLoS ONE 2017, 12, e0184875. [Google Scholar] [CrossRef]
- Lam, C.-S.; Xia, Y.-X.; Chen, B.-S.; Du, Y.-X.; Liu, K.-L.; Zhang, H.-J. Dihydro-Resveratrol Attenuates Oxidative Stress, Adipogenesis and Insulin Resistance in In Vitro Models and High-Fat Diet-Induced Mouse Model via AMPK Activation. Nutrients 2023, 15, 3006. [Google Scholar] [CrossRef]
- Ku, C.R.; Cho, Y.H.; Hong, Z.-Y.; Lee, H.; Lee, S.J.; Hong, S.; Lee, E.J. The Effects of High Fat Diet and Resveratrol on Mitochondrial Activity of Brown Adipocytes. Endocrinol. Metab. 2016, 31, 328. [Google Scholar] [CrossRef]
- Kennedy, A.; Overman, A.; LaPoint, K.; Hopkins, R.; West, T.; Chuang, C.-C.; Martinez, K.; Bell, D.; McIntosh, M. Conjugated Linoleic Acid-Mediated Inflammation and Insulin Resistance in Human Adipocytes Are Attenuated by Resveratrol. J. Lipid Res. 2009, 50, 225–232. [Google Scholar] [CrossRef]
- Fischer-Posovszky, P.; Kukulus, V.; Tews, D.; Unterkircher, T.; Debatin, K.-M.; Fulda, S.; Wabitsch, M. Resveratrol Regulates Human Adipocyte Number and Function in a Sirt1-Dependent Manner. Am. J. Clin. Nutr. 2010, 92, 5–15. [Google Scholar] [CrossRef]
- Zagotta, I.; Dimova, E.Y.; Funcke, J.-B.; Wabitsch, M.; Kietzmann, T.; Fischer-Posovszky, P. Resveratrol Suppresses PAI-1 Gene Expression in a Human In Vitro Model of Inflamed Adipose Tissue. Oxidative Med. Cell. Longev. 2013, 2013, 793525. [Google Scholar] [CrossRef]
- Zagotta, I.; Dimova, E.Y.; Debatin, K.-M.; Wabitsch, M.; Kietzmann, T.; Fischer-Posovszky, P. Obesity and Inflammation: Reduced Cytokine Expression Due to Resveratrol in a Human in Vitro Model of Inflamed Adipose Tissue. Front. Pharmacol. 2015, 6, 79. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.T.; Liong, S.; Lim, R.; Barker, G.; Lappas, M. Resveratrol Ameliorates the Chemical and Microbial Induction of Inflammation and Insulin Resistance in Human Placenta, Adipose Tissue and Skeletal Muscle. PLoS ONE 2017, 12, e0173373. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jin, Y.; Choi, Y.; Park, T. Resveratrol Exerts Anti-Obesity Effects via Mechanisms Involving down-Regulation of Adipogenic and Inflammatory Processes in Mice. Biochem. Pharmacol. 2011, 81, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.M.O.; Frade, A.C.M.; Guimarães, J.B.; Freitas, K.M.; Lopes, M.T.P.; Guimarães, A.L.S.; De Paula, A.M.B.; Coimbra, C.C.; Santos, S.H.S. Resveratrol Increases Brown Adipose Tissue Thermogenesis Markers by Increasing SIRT1 and Energy Expenditure and Decreasing Fat Accumulation in Adipose Tissue of Mice Fed a Standard Diet. Eur. J. Nutr. 2014, 53, 1503–1510. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.-M.; Lee, S.-A.; Choi, M.-S. Antiobesity and Vasoprotective Effects of Resveratrol in ApoE-Deficient Mice. J. Med. Food 2014, 17, 310–316. [Google Scholar] [CrossRef]
- Wang, S.; Liang, X.; Yang, Q.; Fu, X.; Zhu, M.; Rodgers, B.D.; Jiang, Q.; Dodson, M.V.; Du, M. Resveratrol Enhances Brown Adipocyte Formation and Function by Activating AMP-activated Protein Kinase (AMPK) A1 in Mice Fed High-fat Diet. Mol. Nutr. Food Res. 2017, 61, 1600746. [Google Scholar] [CrossRef]
- Zou, T.; Chen, D.; Yang, Q.; Wang, B.; Zhu, M.; Nathanielsz, P.W.; Du, M. Resveratrol Supplementation of High-fat Diet-fed Pregnant Mice Promotes Brown and Beige Adipocyte Development and Prevents Obesity in Male Offspring. J. Physiol. 2017, 595, 1547–1562. [Google Scholar] [CrossRef]
- Ding, S.; Jiang, J.; Wang, Z.; Zhang, G.; Yin, J.; Wang, X.; Wang, S.; Yu, Z. Resveratrol Reduces the Inflammatory Response in Adipose Tissue and Improves Adipose Insulin Signaling in High-Fat Diet-Fed Mice. PeerJ 2018, 6, e5173. [Google Scholar] [CrossRef]
- Liao, W.; Yin, X.; Li, Q.; Zhang, H.; Liu, Z.; Zheng, X.; Zheng, L.; Feng, X. Resveratrol-Induced White Adipose Tissue Browning in Obese Mice by Remodeling Fecal Microbiota. Molecules 2018, 23, 3356. [Google Scholar] [CrossRef]
- Gimeno-Mallench, L.; Mas-Bargues, C.; Inglés, M.; Olaso, G.; Borras, C.; Gambini, J.; Vina, J. Resveratrol Shifts Energy Metabolism to Increase Lipid Oxidation in Healthy Old Mice. Biomed. Pharmacother. 2019, 118, 109130. [Google Scholar] [CrossRef]
- Hui, S.; Liu, Y.; Huang, L.; Zheng, L.; Zhou, M.; Lang, H.; Wang, X.; Yi, L.; Mi, M. Resveratrol Enhances Brown Adipose Tissue Activity and White Adipose Tissue Browning in Part by Regulating Bile Acid Metabolism via Gut Microbiota Remodeling. Int. J. Obes. 2020, 44, 1678–1690. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Li, D.; Ke, W.; Liang, D.; Hu, X.; Chen, F. Resveratrol-Induced Gut Microbiota Reduces Obesity in High-Fat Diet-Fed Mice. Int. J. Obes. 2020, 44, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Macarulla, M.T.; Alberdi, G.; Gómez, S.; Tueros, I.; Bald, C.; Rodríguez, V.M.; Martínez, J.A.; Portillo, M.P. Effects of Different Doses of Resveratrol on Body Fat and Serum Parameters in Rats Fed a Hypercaloric Diet. J. Physiol. Biochem. 2009, 65, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Alberdi, G.; Rodríguez, V.M.; Miranda, J.; Macarulla, M.T.; Arias, N.; Andrés-Lacueva, C.; Portillo, M.P. Changes in White Adipose Tissue Metabolism Induced by Resveratrol in Rats. Nutr. Metab. 2011, 8, 29. [Google Scholar] [CrossRef]
- Alberdi, G.; Rodríguez, V.M.; Miranda, J.; Macarulla, M.T.; Churruca, I.; Portillo, M.P. Thermogenesis Is Involved in the Body-Fat Lowering Effects of Resveratrol in Rats. Food Chem. 2013, 141, 1530–1535. [Google Scholar] [CrossRef]
- Pektas, M.B.; Koca, H.B.; Sadi, G.; Akar, F. Dietary Fructose Activates Insulin Signaling and Inflammation in Adipose Tissue: Modulatory Role of Resveratrol. BioMed Res. Int. 2016, 2016, 8014252. [Google Scholar] [CrossRef]
- Asadi, S.; Rahimi, Z.; Sadijam, M.; Shabab, N.; Goodarzi, M.T. Effects of Resveratrol on FOXO1 and FOXO3a Genes Expression in Adipose Tissue, Serum Insulin, Insulin Resistance and Serum SOD Activity in Type 2 Diabetic Rats. Int. J. Mol. Cell Med. 2018, 7, 176. [Google Scholar] [CrossRef]
- Ardid-Ruiz, A.; Ibars, M.; Mena, P.; Del Rio, D.; Muguerza, B.; Bladé, C.; Arola, L.; Aragonès, G.; Suárez, M. Potential Involvement of Peripheral Leptin/STAT3 Signaling in the Effects of Resveratrol and Its Metabolites on Reducing Body Fat Accumulation. Nutrients 2018, 10, 1757. [Google Scholar] [CrossRef]
- Trepiana, J.; Gómez-Zorita, S.; Fernández-Quintela, A.; González, M.; Portillo, M.P. Effects of Resveratrol and Its Analogue Pterostilbene, on NOV/CCN3 Adipokine in Adipose Tissue from Rats Fed a High-Fat High-Sucrose Diet. J. Physiol. Biochem. 2019, 75, 275–283. [Google Scholar] [CrossRef]
- Zu, Y.; Zhao, L.; Hao, L.; Mechref, Y.; Zabet-Moghaddam, M.; Keyel, P.A.; Abbasi, M.; Wu, D.; Dawson, J.A.; Zhang, R.; et al. Browning White Adipose Tissue Using Adipose Stromal Cell-Targeted Resveratrol-Loaded Nanoparticles for Combating Obesity. J. Control. Release 2021, 333, 339–351. [Google Scholar] [CrossRef]
- De Ligt, M.; Bruls, Y.M.H.; Hansen, J.; Habets, M.-F.; Havekes, B.; Nascimento, E.B.M.; Moonen-Kornips, E.; Schaart, G.; Schrauwen-Hinderling, V.B.; Van Marken Lichtenbelt, W.; et al. Resveratrol Improves Ex Vivo Mitochondrial Function but Does Not Affect Insulin Sensitivity or Brown Adipose Tissue in First Degree Relatives of Patients with Type 2 Diabetes. Mol. Metab. 2018, 12, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, J.; Conte, C.; Fontana, L.; Mittendorfer, B.; Imai, S.; Schechtman, K.B.; Gu, C.; Kunz, I.; Fanelli, F.R.; Patterson, B.W.; et al. Resveratrol Supplementation Does Not Improve Metabolic Function in Nonobese Women with Normal Glucose Tolerance. Cell Metab. 2012, 16, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.; Eckardt, P.; Aleman, J.; Corrae, J.; Liang, Y.; Lizumi, T.; Etheve, S.; Blaser, M.J.; Breslow, J.L.; Holt, P. The Effects of Trans-Resveratrol on Insulin Resistance, Inflammation, and Microbiota in Men with the Metabolic Syndrome: A Pilot Randomized, Placebo Controlled Clinical Trial. J. Clin. Transl. Res. 2018, 4, 122. [Google Scholar] [CrossRef] [PubMed]
- Batista-Jorge, G.C.; Barcala-Jorge, A.S.; Silveira, M.F.; Lelis, D.F.; Andrade, J.M.O.; De Paula, A.M.B.; Guimarães, A.L.S.; Santos, S.H.S. Oral Resveratrol Supplementation Improves Metabolic Syndrome Features in Obese Patients Submitted to a Lifestyle-Changing Program. Life Sci. 2020, 256, 117962. [Google Scholar] [CrossRef] [PubMed]
- Walle, T. Bioavailability of Resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 9–15. [Google Scholar] [CrossRef]
- Wenzel, E.; Somoza, V. Metabolism and Bioavailability Oftrans-Resveratrol. Mol. Nutr. Food Res. 2005, 49, 472–481. [Google Scholar] [CrossRef]
- Cottart, C.; Nivet-Antoine, V.; Laguillier-Morizot, C.; Beaudeux, J. Resveratrol Bioavailability and Toxicity in Humans. Mol. Nutr. Food Res. 2010, 54, 7–16. [Google Scholar] [CrossRef]
- Almeida, L.; Vaz-da-Silva, M.; Falcão, A.; Soares, E.; Costa, R.; Loureiro, A.I.; Fernandes-Lopes, C.; Rocha, J.; Nunes, T.; Wright, L.; et al. Pharmacokinetic and Safety Profile of Trans -resveratrol in a Rising Multiple-dose Study in Healthy Volunteers. Mol. Nutr. Food Res. 2009, 53, S7–S15. [Google Scholar] [CrossRef]
- Boocock, D.J.; Faust, G.E.S.; Patel, K.R.; Schinas, A.M.; Brown, V.A.; Ducharme, M.P.; Booth, T.D.; Crowell, J.A.; Perloff, M.; Gescher, A.J.; et al. Phase I Dose Escalation Pharmacokinetic Study in Healthy Volunteers of Resveratrol, a Potential Cancer Chemopreventive Agent. Cancer Epidemiol. Biomark. Prev. 2007, 16, 1246–1252. [Google Scholar] [CrossRef]
Study | Cell Line | Treatment | Effects |
---|---|---|---|
Mouse-derived Adipocytes | |||
[28] (2012) | 3T3-L1 Adipocytes | RSV 10, 20, and 40 µM (4 Days During Differentiation) | ↓ Proliferation ↓ Lipid Accumulation and Triglyceride Content ↓ C/EBPβ, CEBPα, FABP4, MMP-2, MMP-9, and PPARγ |
[29] (2013) | 3T3-L1 Adipocytes | Monkey Serum HFD-RSV (24 h) | ↓ NFκB protein, and IL-6 mRNA levels ↑ SIRT-1 ↑ GLUT-4 on Cell Surface |
[30] (2013) | 3T3-L1 Adipocytes | RSV 3.1, 6.2, and 9.3 µM During Differentiation | → Cytotoxicity ↓ Lipid Accumulation ↓ FASN |
[31] (2015) | Primary Mouse eWAT Adipocytes | RSV (10 µM, 24 h) PA (100 µM, 24 h) | ↓ HIF-1α Accumulation ↑ SIRT-1 |
[32] (2015) | Primary Mouse SVC Adipocytes from iBAT | RSV 20 and 40 µM | ↓ Lipid Accumulation ↓ PPARγ and aP2 Protein Levels |
RSV 10 µM | ↑ p-AMPK ↑ PRDM16, UCP1, PGC1α, Cyto C, and PDH Protein Levels ↑ Oxygen Consumption | ||
[33] (2016) | 3T3-L1 Pre- and mature Adipocytes | RSV 0.03 to 10 µM 8 days | → Cytotoxicity ↓ Lipid Accumulation ↓ Adipocyte Maturity and Differentiation ↓ PPARγ and Perilipin Protein ↓ Glycerol Release (Lipolysis) |
[34] (2016) | 3T3-L1 Adipocytes | RSV 25, 50, 100, and 200 µM 12 days (differentiation period) | ↓ Lipid Accumulation and Droplet Formation ↓ Citrate Synthase Activity (Mitochondrial Mass) ↓ ATAD3, VDAC, ATP5a, UQCR, SDHB, and MTCO1 Protein ↓ p-Akt and 4E-BP1 Protein ↑ p-ACC Protein |
[35] (2016) | 3T3-L1 Adipocytes | RSV 25 µM 24 h | ↑ Mitochondrial ETC-Associated Proteins (Cyto C and NADH Dehydrogenase) ↓ Lipid Metabolism-Related Proteins (SCD1, EBP, and DGAT1) Attenuated LPS-Induced increase in protein glycoprotein Attenuated LPS-Induced Reduction in Adiponectin Protein Attenuated LPS-Induced Pro-inflammatory (STAT1 and IFIT1) Proteins |
[36] (2017) | 3T3-L1 Adipocytes | RSV 25 or 50 µM 3 days | ↓ Triglyceride Accumulation ↑ SIRT-1, PPARγ, CPT1a, and PGC-1α mRNA and Protein Levels Attenuation of Effects in SIRT-1 KO Model |
[37] (2017) | 3T3-L1 Adipocytes | RSV 200 µM 0.6 mM PA | ↓ ATF6, PERK, IRE1α, GRP78, and CHOP mRNA ↓ IRE1, CHOP, and GRP78 Protein Levels ↑ Adiponectin, SIRT-1, and PPARα ↓ PA-induced Leptin, Resistin, TNF-α, IL-1β, PPARγ, and SREBP1c mRNA |
[38] (2019) | Primary Mouse SVC Adipocytes from iBAT | RSV Maternal | No Change in UCP1, CPT1B, PPARGC1α, PPARGC1B, PPARA, PRDM16 mRNA levels |
Primary Mouse SVC Adipocytes from iWAT | ↑ PPARGC1α in SVC iBAT No change in UCP1, CPT1B, PPARGC1B, PPARA, PRDM16 mRNA levels | ||
[39] (2019) | Primary Mouse Adipocytes | RSV 50 µM 12 h | ↑ UCP1, PGC-1α, FNDC5, and SIRT-1 mRNA in Brown Adipocytes ↑ UCP1, FNDC5, SIRT-1 mRNA in sWAT ↑ SIR-1 in vWAT SIRT-1 dependency |
[40] (2020) | 3T3-L1 Adipocytes | RSV 20 µM 12 h PA 0.75 mM 24 h | ↓ Lipid Accumulation and TG Content ↑ Glucose Uptake ↓ ROS |
[41] (2020) | 3T3-L1 Adipocytes | RSV 10, 20, and 40 µM | ↓ Lipid Accumulation ↑ UCP1, PPARγ, and PGC-1α Protein Levels ↑ p-mTOR and p-p70S6K Protein Levels |
[42] (2023) | 3T3-L1 Adipocytes | RSV 1, 2, 5, and 10 µM | ↓ Proliferation, Lipid Accumulation TG Content ↓ PPARγ, C/EBP, FABP4, FASN mRNA ↓ p-AMPK protein |
[43] (2012) | 3T3-L1 Adipocytes | RSV 25 µM | ↓ Lipid Accumulation ↓ Adipocyte Maturation ↓ C/EBPβ (In Pre-adipocyte) ↑ ATGL, CPT-1, SIRT-1, PGC1-α (In Mature Adipocyte) |
R3G | ↓ Lipid Accumulation (In Mature Adipocyte) ↓ C/EBPβ (In Pre-Adipocyte) ↓ FASN (In Mature Adipocyte) | ||
R4G | ↓ Lipid Accumulation ↓ C/EBPβ (In Pre-adipocyte) ↑ HSL (In Mature Adipocyte) | ||
R3S | ↓ Lipid accumulation (In Pre-adipocyte) ↓ C/EBPβ, CEBPα, PPARγ, and LPL (In Pre-adipocyte) | ||
[44] (2013) | 3T3-L1 Adipocytes | RSV 10 and 25 µM | ↑ Adiponectin mRNA (10 and 25 µM) ↓ Leptin mRNA and Secretion (10 and 25 µM) ↑ Visfatin mRNA (25 µM) ↑ Apelin mRNA (25 µM) |
R3G 10 and 25 µM | ↑ Adiponectin mRNA (25 µM) ↑ Leptin mRNA (10 µM), ↓ Leptin secretion (10 µM) ↑ Visfatin mRNA (10 and 25 µM) ↑ Apelin mRNA (10 and 25 µM) | ||
R4G 10 and 25 µM | ↑ Adiponectin mRNA (25 µM) ↓ Leptin mRNA and Aecretion (10 µM) ↑ Visfatin mRNA (10 and 25 µM) ↑ Apelin mRNA (10 and 25 µM) | ||
R3S 10 and 25 µM | ↑ Adiponectin mRNA (25 µM) ↓ Leptin mRNA and secretion (10 µM) ↑ Visfatin mRNA (10 µM) ↓ Apelin mRNA (25 µM), ↑ Apelin mRNA (10 µM) | ||
[45] (2017) | 3T3-L1 Adipocytes | RSV 25 µM | ↑ miR-155 ↓ CREB1, KLF5 mRNA ↓ CEBPβ Protein and mRNA |
R3G 25 µM | ↑ miR-155 | ||
R4G 25 µM | ↑ miR-155 ↓ CREB1 and KLF5 mRNA | ||
R3S 25 µM | ↓ SREBF1 mRNA ↓ IXRα mRNA No Change: miR-155, miR-27b, miR-27a, miR-130b, miR-31, miR-326, miR-144, miR-205, and miR-244 | ||
[46] (2023) | 3T3-L1 Adipocytes | RSV 40 µM DR2 20/40/80 µM | DR2 Cytotoxicity ≤ 502.5 µM|RSV Cytotoxicity ≤ 162.6 µM ↓ Lipid Accumulation and Adipocyte Maturation ↓ PPARγ, C/EBP1α, and FASN ↓ p-p38 and SIRT-1 ↑ p-AMPK |
Rat-derived Adipocytes | |||
[47] (2016) | iBAT brown preadipocytes from Male Sprague Dawley rats | RSV 10, 50, and 100 µM During Differentiation | ↑ UCP-1, p-AMPK, and ER-α Protein Content |
Human-derived Adipocytes | |||
[48] (2009) | Human SVC Adipocytes From Abdominal WAT | RSV 50 µM (12 h) CLA 10 and 12 µM (12 h) | → Cytotoxicity ≥ 99 µM ↑ Glucose Uptake ↓ Lipid Accumulation and Free Fatty Acid Uptake ↓ p-JNK, p-ERK, ATF3, and SOCS-3, ↓ p-PLA2, COX-2, and PGF2α ↑ PPARγ, SIRT-1, Adiponectin, and SIRT-1 ↓ IL-6, IL-8, IL-1b, IL-6, IL-8, and IL-1b ↓ ROS |
[49] (2010) | SGBS Human Premature Adipocytes | RSV 50 and 100 µM | → Cytotoxicity ≥ 99 µM ↓ Thymidine Incorporation (Proliferation), and Survival |
SGBS Human Mature Adipocytes | RSV 50 µM | ↓ Lipid Accumulation and Glucose to Lipid Incorporation ↑ Glucose Uptake ↓ GLUT4, FASN, PPARγ, and ACC ↓ IL-6 and IL-8 mRNA and Secretion ↑ SIRT-1 and Abolished Effects in SIRT-1 KO Model | |
[50] (2013) | SGBS Human Adipocytes | RSV 100 µM MCM 48 h | ↓ PAI-1 mRNA and Protein Levels ↓ PAI-1 independent of AMPK, and PI3K |
[51] (2015) | SGBS Human Adipocytes and THP-1 Monocytes | RSV 0, 10, 30, 100 µM MCM 0, 5, 10, 20% 48 h | ↓ IL-6, IL-8, MCP-1 PI3K Inhibitor Prevented RSV-Induced ↓ MCP-1 |
[52] (2017) | Human Placenta, Adipose and Muscle | 200 µM RSV 10 ng/mL TNF-α, 10 μg/mL LPS or 50 μg/mL 20 h | ↓ IL-1α, IL-1β, IL-6, IL-8, MCP-1 (induced by TNF-α, IL-6, IL-1β) ↑ Insulin-Stimulated Glucose Uptake ↑ p-IRS-1 and GLUT-4 |
Study | Cell Line | Treatment | Effects |
---|---|---|---|
Mouse Adipose Tissue | |||
[53] (2011) | C57BL/6J Male Mice | RSV 0.4% (ad libitum) 10 weeks HFD | ↓ Total body weight and visceral fat ↓ Plasma triglyceride, glucose, TNFα, and MCP1 levels ↓ GalR1/2, PKCδ, Cyclin-D, E2F1, p-ERK ↓ PPARγ2, C/EBPα, SREBP-1c, FASN, LPL, aP2, and leptin ↓ Pro-inflammatory cytokines (TNFa, IFNa, IFNb, and IL-6) ↓ Pro-inflammatory signaling (TLR2/4, MyD88, Tirap, TRIF, TRAF6, IRF5, p-IRF3, and NF-kB) |
[54] (2014) | Male Swiss Mice | RSV 4 g/kg 8 weeks | ↓ eWAT and rWAT → Lean mass, food intake, iBAT mass, and total mass Improved serum lipid profile (↓Total-C, and → HDL-C) ↓ Plasma glucose levels ↑ Oxygen consumption ↑ UCP1, SIRT-1, PTEN, and BMP-7 mRNA in BAT |
[55] (2014) | Homozygous ApoE-Deficient Mice | RSV 0.02% (w/w) | ↓ body weight gain ↓ Plasma total cholesterol and LDL-cholesterol, triglycerides, and ApoB, ApoB/ApoA-I ratio ↑ HDL-C |
[32] (2015) | CD1 Mice | 0.1% (w/w) RSV orally 4 weeks HFD (45% kcal fat) | ↓ Body mass, WAT index (mass/body weight) ↑ UCP1, PRDM16, Cyto C, and p-AMPK Protein and mRNA in iWAT ↓ Adipocyte size in iWAT ↑ O2 consumption and ↓ RER |
[33] (2016) | C57BL/6C Male Mice | RSV 1, 10, and 30 mg/kg 10 weeks | ↓ Total body weight gain ↓ Epididymal and subcutaneous adipose tissue gain ↓ Hepatic mass (at 30 mg/kg dosage) ↓ Adipocyte size, ↑ number of adipocytes in subcutaneous and epididymal adipose tissue |
[31] (2016) | ICR Male Mice | RSV 50 mg/kg | ↓ Hypoxia adducts ↓ HIF-1α mRNA and protein ↓ IRE1α, EIF2α mRNA ↓ Col3α/6α, elastin, LOX mRNA ↓ TNFα, MCP-1, IL-6 F4/80 mRNA ↓ p-IREα and eIF2α protein |
[56] (2017) | CD1 Female Mice | RSV 0.1% (w/w) HFD (45% kcal fat) | ↓ Average daily weight gain Daily food intake and BAT mass (No Change) ↑ Metabolic inefficiency ↑ Brown adipocytes (number of nuclei) ↑ AMPK, UCP1, PRDM16, and Cyto C protein |
[57] (2017) | Maternal C57BL/6J Female Mice | 0.2% (w/w) RSV Orally HFD (45% kcal fat) | ↓ Body mass, iWAT, and eWAT ↓ Serum triglyceride and insulin |
Offspring C57BL/6J Male Mice | RSV from lactation RSV 0.2% (w/w) (orally) for 11 weeks post-weaning | ↓ Body mass, iWAT, and eWAT ↓ Adipocyte (white) size ↑ UCP1, PRDM16, PGC-1α, Elov13, and CD137 mRNA ↑ UCP1, PRDM16, Cyto C, SIRT-1, and p-AMPK protein ↑ O2 consumption, heat production | |
[58] (2018) | C57BL/6 Male Mice | RSV 200 or 400 mg/kg/day | ↓ sAT and vAT mass (mass/body weight) ↑ Insulin sensitivity HOMA and glucose tolerance ↓ Plasma TC, TG, and LDL-C, ↑ plasma HDL-C ↑ GLUT4, IRS-1, and p-Akt mRNA and protein (sAT) ↓ Serum MCP-1, TNF-α, and IL-6 ↓ F4/80 protein content and mRNA ↓ IL-6 (sAT) |
[59] (2018) | C57BL/6J Male Mice STZ and NA T2D Mice | RSV 0.4% HFD (60% kcal fat) | ↓ Body weight gain, visceral and iWAT ↑ Insulin and glucose sensitivity, OGTT and IPITT ↓ Adipocyte size, ↑ number of adipocytes ↓ Alpha diversity, Bacteroidetes and Proteobacteria phyla ↑ Firmicutes phylum |
RSV (FMT) HFD (60% kcal fat) | ↓ Body weight gain, iWAT ↑ Glucose tolerance (reduced OGTT AUC) ↓ Alpha diversity, ↑ SIRT-1 mRNAin vWAT and iWAT | ||
[37] (2019) | C57BL/6J Mice | RSV (400 mg/kg/d) HFSD (20% lard and 20% sucrose) | ↓ Body mass, SAT, and VAT ↑ Insulin sensitivity and glucose tolerance ↓ Serum LDL-C, total-cholesterol, FFA, and PA levels ↓ Serum IL-6, Adiponectin, TNF-α, and MCP-1 levels ↑ PPARα and SIRT-1 mRNA levels ↓ Leptin, GRP78, ATF6, PERK, IRE1α, and CHOP mRNA levels in sAT and vAT ↓ Adipocyte size |
[60] (2019) | C57/Bl6 Mice | RSV 2.3 μg/kg/day 2 days intraperitoneal injection | ↓ Mean respiratory quotient (VCO2/VO2) ↑ AMPK and ACC1 mRNA in WAT ↑ CACT protein in WAT ↓ Malonyl protein in WAT |
[39] (2019) | FVB/N Male Mice | RSV (400 mg/kg) orally HFD (60% kcal fat) 8 weeks | ↓ vWAT and sWAT weight ↑ BAT mass ↑ Glucose tolerance, insulin sensitivity ↓ Total cholesterol, and triglyceride plasma levels HDL-cholesterol (no change) ↑ FNDC5, UCP1, and PRDM16, mRNA in sWAT, and vWAT ↑ SIRT-1, UCP1, PGC-1α, and PRDM16 mRNA in BAT |
[61] (2020) | db/db (Diabetic) Mice | RSV 0.4% (in the diet) 10 weeks | ↑ Glucose tolerance ↓ iWAT and eWAT mass and ↑ BAT mass ↑ UCP1 mRNA and protein in iWAT and BAT ↑ Cidea, Ppara, Pparg, and PRDM16 mRNA in iWAT ↑ Cidea, PRDM16, Ppargc1a, and Dio2 mRNA in BAT altered plasma gut microbiota ↑ Plasma and feces level of Lithocholic Acid ↓ Firmicutes/Bacteroidetes (F/B) ratio |
RSV 0.4% (in the diet) 10 weeks + antibiotics (Atx) | Abolished RSV-induced effects → Thermogenic genes in iWAT and BAT → Glucose tolerance | ||
Transplantation (FMT) of RSV-treated mouse feces | ↑ Glucose tolerance ↓ iWAT and eWAT mass and ↑ BAT mass ↑ UCP1 mRNA and protein in iWAT and BAT ↑ Cidea, Ppara, Pparg, and PRDM16 mRNA in iWAT ↑ Cidea, PRDM16, Ppargc1a, and Dio2 mRNA in BAT | ||
[40] (2020) | C57BL/6J Mice | RSV (15 mg/kg) IP injection for 10 weeks HFD (60% kcal fat) | ↓ Weight gain ↓ iWAT mass and adipocyte size ↓ FFA and glycerol levels in iWAT |
[62] (2020) | C57BL/6J Mice | RSV 100 mg/kg/day oral gavage 16 Weeks | Altered microbiome (↑ Bacteroidetes, and ↓ Firmicutes) |
RSV transplantation (FMT) | ↓ Daily weight gain, WAT mass, ↑ BAT mass ↓ White adipocyte size ↑ CPT-1α, PDK4, and PPARa in iBAT ↑ UCP1, PRDM16, PGC-1a, and SIRT-1 in iBAT ↓ SREBP-1c, FASN, and SCD1 in iBAT | ||
[46] (2023) | C57BL/6J Mice | DR2 40 and 80 mg/kg 3 weeks HFD 60% of kcal 9 weeks | ↓ Daily weight gain in HFD No changes to food consumption ↓ MCP1 mRNA in iWAT ↑ AMPK Protein in iWAT |
Rat Adipose Tissue | |||
[63] (2009) | Sprague Dawley Male Rats | RSV 30, and 60 mg/kg/day 6 weeks HCD | ↓ eWAT, perirenal, mesenteric, and subcutaneous adipose tissue mass → Gastrocnemius muscle or liver mass → Serum lipid profile |
[64] (2011) | Sprague Dawley rats | RSV (30 mg/kg) HFD (20% sucrose, 22.5% fat) | No effect on body mass or weight gain ↓ Perirenal, subcutaneous, and eWAT mass ↓ G6PDH, FASN, ACC, and HSL mRNA Levels |
[65] (2013) | Sprague Dawley Male Rats | RSV 30 mg/kg/day (in the diet) 6 weeks HFSD | ↑ Mitochondrial biogenesis (TFAM, COX2, PPARα/β, and PGC-1α) mRNA in iBAT ↑ SIRT-1 mRNA in iBAT ↑ UCP1 protein levels in iBAT |
[66] (2016) | Wistar Male Rats | RSV 500 mg/kg (added to chow) | ↓ Body weight gain ↓ Omental fat mass ↓ Plasma insulin, TG levels ↓ Adipose insulin levels ↓ Adipose MDA, IL-6, IL-10, IL-18 ↓ Adipose PI3K, iNOS mRNA ↓ Nrf2 |
Female Wistar Rats | RSV 500 mg/kg (added to chow) | ↓ Omental fat mass ↓ Plasma insulin, TG levels ↓ Adipose insulin levels ↓ Adipose TNF-α, ALT, AST ↓ Adipose MDA, IL-6, IL-10, IL-18 ↓ Adipose PI3K, iNOS mRNA ↓ Adipose Akt, eNOS, PPARγ mRNA | |
[67] (2018) | Wistar Male Rats STZ and NA | RSV (5 and 10 mg/kg) 30 days | ↓ Blood glucose, plasma insulin levels, and HOMA ↑ SOD activity ↓ FOXO1 and FOXO3 mRNA levels |
[68] (2018) | Wistar Male Rats | RSV 200 mg/kg (orally) 9 weeks | ↓ Body weight, fat accumulation ↓ Total levels of lipids in liver, muscle, and eWAT ↓ Serum leptin, glucose, insulin, and triglycerides ↓ Activity of ACC, SCD1, FAS, and leptin mRNA levels ↑ SIRT-1 levels in liver and muscle, but not eWAT ↑ SIRT protein levels in isolated tissue samples |
[69] (2019) | Wistar Male Rats | RSV 30 mg/kg/day 6 weeks HFSD | ↓ WAT mass gain ↑ NOV/CCN3 mRNA levels in eWAT |
[70] (2021) | Wistar Male Rats | RSV ligand-coated 200 mg/kg encapsulated nanoparticles (biweekly) | ↓ Body weight, total fat mass, gWAT and iWAT ↑ Insulin sensitivity ↓ Fasting plasma insulin and glucose concentrations ↓ Adipocyte size in iWAT, ↑ UCP1 protein in iWAT ↓ Plasma leptin concentrations, total cholesterol, and LDL cholesterol ↑ Detection of phase II conjugates and glucuronides metabolites |
Monkey Adipose Tissue | |||
[29] (2013) | Rhesus Male Monkeys | RSV 40 mg twice daily 12 months 240 mg twice daily 12 months HFSD (27% sucrose, 42.3% fat) 24 months | ↓ Adipocyte size, ↑ Adipocyte number in vWAT ↓ NF-kB, IL-6 and IL-1β mRNA in vfat ↑ IRS1, p-Akt, Glut-4, and SIRT-1 protein ↓ Serum LDL-Cholesterol |
Study | Subjects | Treatment | Effects |
---|---|---|---|
[72] (2012) | Humans (n = 45) Female Postmenopausal Non-obese Normal Glucose Tolerance | RSV 75 mg/kg (Orally) 12 Weeks | → Body composition, metabolic and inflammatory markers → SIRT-1, NAMPT, PPARGC1A, and UCP3 mRNA levels in muscle → p-AMPK protein levels |
[71] (2018) | Humans (n = 13) Male With T2D | RSV 150 mg/kg (Orally) 30 Days | ↑ Plasma RSV ~300 ng/mL ↑ Plasma dihydro-resveratrol ~600 ng/mL → Insulin sensitivity ↑ Mitochondrial function in muscle → Ectopic fat accumulation, and cardiac function → Brown adipose tissue activation and function |
[73] (2018) | Human (n = 28) Obese Males Aged 30–70 Years Old (BMI ≥ 30 kg/m2) | Trans-RSV 1 g (Orally, Twice Daily) 30 Days | ↓ Glucose level in GTT (Cauc. pts.) ↑ Insulin sensitivity (Cauc. pts.) ↑ Relative abundance of Akkermansia muciniphila, Barnesiella, and Odoribacter (Cauc. pts.) |
[39] (2019) | Human (n = 20) Males Aged 30–55 Years Old (BMI ≥ 30 kg/m2) | Trans-RSV 500 mg (Orally) 4-Weeks | ↑ UCP1, PRDM16, and SIRT-1 mRNA in subcutaneous adipose tissue |
[74] (2020) | Human Mixed-Gender Study Aged 30–60 Years Old (BMI ≥ 30 kg/m2) | RSV 250 mg/day (Orally) 3 Months | ↓ Body weight, BMI, waist circumference, fat mass ↓ Systolic and diastolic blood pressure ↓ LDL cholesterol, triglycerides ↑ HDL cholesterol ↓ Fasting glucose level ↑ Insulin sensitivity (HOMA-IR) ↓ Inflammatory markers (TNF-α, CRP, IL-6) ↓ Oxidative stress markers (MDA) ↑ Anti-oxidant activity (SOD, GPx) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terzo, M.; Iantomasi, M.; Tsiani, E. Effects of Resveratrol on Adipocytes: Evidence from In Vitro and In Vivo Studies. Molecules 2024, 29, 5359. https://doi.org/10.3390/molecules29225359
Terzo M, Iantomasi M, Tsiani E. Effects of Resveratrol on Adipocytes: Evidence from In Vitro and In Vivo Studies. Molecules. 2024; 29(22):5359. https://doi.org/10.3390/molecules29225359
Chicago/Turabian StyleTerzo, Matthew, Michael Iantomasi, and Evangelia Tsiani. 2024. "Effects of Resveratrol on Adipocytes: Evidence from In Vitro and In Vivo Studies" Molecules 29, no. 22: 5359. https://doi.org/10.3390/molecules29225359
APA StyleTerzo, M., Iantomasi, M., & Tsiani, E. (2024). Effects of Resveratrol on Adipocytes: Evidence from In Vitro and In Vivo Studies. Molecules, 29(22), 5359. https://doi.org/10.3390/molecules29225359