Polyether Demulsifier Complexes for Efficient Demulsification of Water-in-Heavy Oil Emulsions
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Samples
2.2. Characterizations of Demulsifiers
2.3. Demulsification Performance Test
2.4. Molecular Dynamics Simulation
3. Results and Discussion
3.1. Characterization and Analysis of Demulsifiers
3.2. Demulsification Performance of PDC in Water-in-Heavy Oil Emulsions
3.3. Demulsification Mechanism of PDC in W/HO Emulsions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, T.; Li, Z.; Wang, H.; Gu, Z.; Du, L. Reducing CO2 emissions and improving oil recovery through silica aerogel for heavy oil thermal production. J. Clean Prod. 2023, 423, 138794. [Google Scholar] [CrossRef]
- Zhao, F.; Tian, Z.; Yu, Z.; Shang, H.; Wu, Y.; Zhang, Y. Research status and analysis of stabilization mechanisms and demulsification methods of heavy oil emulsions. Energy Sci. Eng. 2020, 8, 4158–4177. [Google Scholar] [CrossRef]
- Qiao, P.; Harbottle, D.; Tchoukov, P.; Wang, X.; Xu, Z. Asphaltene subfractions responsible for stabilizing water-in-crude oil emulsions. Part 3. Effect of solvent aromaticity. Energy Fuels 2017, 31, 9179–9187. [Google Scholar] [CrossRef]
- Fakher, S.; Ahdaya, M.; Elturki, M.; Imqam, A. Critical review of asphaltene properties and factors impacting its stability in crude oil. J. Pet. Explor. Prod. Technol. 2020, 10, 1183–1200. [Google Scholar] [CrossRef]
- Sun, N.; Hu, J.; Ma, Y.; Dong, H. Study on the effect of polymer-modified magnetic nanoparticles on viscosity reduction of heavy oil emulsion. ACS Omega 2024, 9, 5002–5013. [Google Scholar] [CrossRef]
- Martinez-Palou, R.; Mosqueira, M.d.L.; Zapata-Rendon, B.; Mar-Juarez, E.; Bernal-Huicochea, C.; de la Cruz Clavel-Lopez, J.; Aburto, J. Transportation of heavy and extra-heavy crude oil by pipeline: A review. J. Pet. Sci. Eng. 2011, 75, 274–282. [Google Scholar] [CrossRef]
- Kovalenko, E.Y.; Sagachenko, T.A.; Cherednichenko, K.A.; Gerasimova, N.N.; Cheshkova, T.V.; Min, R.S. Structural organization of asphaltenes and resins and composition of low polar components of heavy oils. Energy Fuels 2023, 37, 8976–8987. [Google Scholar] [CrossRef]
- Yang, F.; Tchoukov, P.; Pensini, E.; Dabros, T.; Czarnecki, J.; Masliyah, J.; Xu, Z. Asphaltene subfractions responsible for stabilizing water-in-crude oil emulsions. Part 1: Interfacial behaviors. Energy Fuels 2014, 28, 6897–6904. [Google Scholar] [CrossRef]
- He, C.; Zhang, X.; He, L.; Sui, H.; Li, X. Revealing the non-covalent interactions between oxygen-containing demulsifiers and interfacially active asphaltenes: A multi-level computational simulation. Fuel 2022, 329, 125375. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Zhang, X.; He, L.; Sui, H.; Li, X. Stability of asphaltene-mircoparticles co-stabilized emulsions by oxygen-enriched nonionic demulsifier. J. Mol. Liq. 2023, 381, 121819. [Google Scholar] [CrossRef]
- Ma, J.; Yao, M.; Yang, Y.; Zhang, X. Comprehensive review on stability and demulsification of unconventional heavy oil-water emulsions. J. Mol. Liq. 2022, 350, 118510. [Google Scholar] [CrossRef]
- Hassanshahi, N.; Hu, G.; Li, J. Application of ionic liquids for chemical demulsification: A review. Molecules 2020, 25, 4519. [Google Scholar] [CrossRef]
- Li, X.; Ma, J.; Bian, R.; Cheng, J.; Sui, H.; He, L. Novel polyether for efficient demulsification of interfacially active asphaltene-stabilized water-in-oil emulsions. Energy Fuels 2020, 34, 3591–3600. [Google Scholar] [CrossRef]
- Ma, J.; Li, X.; Zhang, X.; Sui, H.; He, L.; Wang, S. A novel oxygen-containing demulsifier for efficient breaking of water-in-oil emulsions. Chem. Eng. J. 2020, 385, 123826. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, L.; Shi, L.; Dai, X.; Guo, S.; Jia, X.; Liu, C. Synthesis and characterization of a novel reticulated multi-branched fluorinated polyether demulsifier for w/o emulsion demulsification. J. Polym. Res. 2022, 29, 164. [Google Scholar] [CrossRef]
- Ma, G.; Wang, J.; He, L.; Li, X.; Sui, H. The nature of the Indonesian carbonate asphalt rocks and its insights into the separation processes. J. Pet. Sci. Eng. 2020, 195, 107752. [Google Scholar] [CrossRef]
- Sui, H.; Ma, G.; He, L.; Zhang, Z.; Li, X. Recovery of heavy hydrocarbons from Indonesian carbonate asphalt rocks. Part 1: Solvent extraction, particle sedimentation, and solvent recycling. Energy Fuels 2016, 30, 9242–9249. [Google Scholar] [CrossRef]
- Wu, J.; Xu, Y.; Dabros, T.; Hamza, H. Effect of demulsifier properties on destabilization of water-in-oil emulsion. Energy Fuels 2003, 17, 1554–1559. [Google Scholar] [CrossRef]
- Song, X.; Shi, P.; Duan, M.; Fang, S.; Ma, Y. Investigation of demulsification efficiency in water-in-crude oil emulsions using dissipative particle dynamics. RSC Adv. 2015, 5, 62971–62981. [Google Scholar] [CrossRef]
- Hu, C.; Liu, S.; Fang, S.; Xiang, W.; Duan, M. Dissipative particle dynamics investigation of demulsification process and mechanism of comb-like block polyether. Polym. Adv. Technol. 2018, 29, 3171–3180. [Google Scholar] [CrossRef]
- Wang, S.; Yang, S.; Wang, R.; Tian, R.; Zhang, X.; Sun, Q.; Liu, L. Dissipative particle dynamics study on the temperature dependent interfacial tension in surfactant-oil-water mixtures. J. Pet. Sci. Eng. 2018, 169, 81–95. [Google Scholar] [CrossRef]
- Ma, J.; Yang, Y.; Li, X.; Sui, H.; He, L. Mechanisms on the stability and instability of water-in-oil emulsion stabilized by interfacially active asphaltenes: Role of hydrogen bonding reconstructing. Fuel 2021, 297, 120763. [Google Scholar] [CrossRef]
- Wang, D.; Lin, M.; Dong, Z.; Li, L.; Jin, S.; Pan, D.; Yang, Z. Mechanism of high stability of water-in-oil emulsions at high temperature. Energy Fuels 2016, 30, 1947–1957. [Google Scholar] [CrossRef]
- Qu, Q.; Li, H.; Li, S.; Hu, Z.; Zhu, M.; Chen, J.; Sun, X.; Tang, Y.; Zhang, Z.; Mi, Y.; et al. Synthesis and demulsification mechanism of an ionic liquid with four hydrophobic branches and four ionic centers. Chemosphere 2023, 340, 139802. [Google Scholar] [CrossRef]
- Zhang, X.; He, C.; Zhou, J.; Tian, Y.; He, L.; Sui, H.; Li, X. Demulsification of water-in-heavy oil emulsions by oxygen-enriched non-ionic demulsifier: Synthesis, characterization and mechanisms. Fuel 2023, 338, 127274. [Google Scholar] [CrossRef]
- Lei, M.; Huang, H.; Liu, J.; Peng, F. A gemini ionic liquid and its low-temperature demulsification performance in water-in-crude oil emulsions. Colloid Surf. A-Physicochem. Eng. Asp. 2023, 671, 131696. [Google Scholar] [CrossRef]
- Zhang, Z.; Ai, G.; Zeng, G.; Yuan, H.; Yang, Y.; Shen, L.; Feng, X.; Ye, F.; Mi, Y. Demulsification of water-in-crude oil emulsion driven by a three-branch structure demulsifier. J. Mol. Liq. 2022, 354, 118822. [Google Scholar] [CrossRef]
- Tian, Y.; He, C.; He, L.; Xu, Z.; Sui, H.; Li, X. Doping heteroatoms to form multiple hydrogen bond sites for enhanced interfacial reconstruction and separations. J. Hazard. Mater. 2024, 472, 134477. [Google Scholar] [CrossRef]
- Geng, X.; Li, C.; Zhang, L.; Guo, H.; Shan, C.; Jia, X.; Wei, L.; Cai, Y.; Han, L. Screening and demulsification mechanism of fluorinated demulsifier based on molecular dynamics simulation. Molecules 2022, 27, 1799. [Google Scholar] [CrossRef]
Demulsifiers | Mw (g/mol) | Mn (g/mol) | Mw/Mn |
---|---|---|---|
FAP | 5215 | 3754 | 1.39 |
PFPEA | 1264 | 985 | 1.28 |
Demulsifiers | Emulsions | Dosage/ppm | Temperature/°C | Time | Demulsification Efficiency/% | [Ref] |
---|---|---|---|---|---|---|
JMNP | water/heavy oil | 400 | 60 | 30 min | 100 | [13] |
MJTJU-2 | water/heavy oil | 400 | 60 | 15 min | 97 | [14] |
TJU-3 | water/crude oil | 400 | 60 | 25 min | 100 | [25] |
PPBH | water/crude oil | 250 | 40 | 2 h | 96.34 | [24] |
RBF | water/crude oil | 50 | 60 | 2 h | 95.64 | [15] |
PGE-TFA | water/crude oil | 500 | 40 | 90 min | 95.53 | [26] |
GTE-DDA | water/crude oil | 400 | 50 | 30 min | 87.55 | [27] |
PDC | water/heavy oil | 400 | 40 | 6 min | 100 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Xia, X.; Gao, J.; Chen, H.; Ma, J. Polyether Demulsifier Complexes for Efficient Demulsification of Water-in-Heavy Oil Emulsions. Molecules 2025, 30, 2550. https://doi.org/10.3390/molecules30122550
Li J, Xia X, Gao J, Chen H, Ma J. Polyether Demulsifier Complexes for Efficient Demulsification of Water-in-Heavy Oil Emulsions. Molecules. 2025; 30(12):2550. https://doi.org/10.3390/molecules30122550
Chicago/Turabian StyleLi, Jing, Xiao Xia, Jinlong Gao, Hao Chen, and Jun Ma. 2025. "Polyether Demulsifier Complexes for Efficient Demulsification of Water-in-Heavy Oil Emulsions" Molecules 30, no. 12: 2550. https://doi.org/10.3390/molecules30122550
APA StyleLi, J., Xia, X., Gao, J., Chen, H., & Ma, J. (2025). Polyether Demulsifier Complexes for Efficient Demulsification of Water-in-Heavy Oil Emulsions. Molecules, 30(12), 2550. https://doi.org/10.3390/molecules30122550