New Terpenoids and Polyphenolic Profile of Carpesium cernuum L. of European Origin
Abstract
:1. Introduction
2. Results
2.1. Caffeic Acid Derivatives in Roots and Aerial Parts of C. cernuum
2.2. Terpenoids from the Aerial Parts and Roots of C. cernuum
Structure Elucidation
2.3. The Cytotoxic and Neuroprotective Activity of 8-Hydroxy-9,10-Diisobutyryloxythymol (9)
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. General Methods
4.3. Materials and Solvents
4.4. Total Phenolic Content (TPC) and Chlorogenic Acid (5-CQA) Content Estimation
4.5. Characterization of C. cernuum Hydroalcoholic Extracts Using HPLC-DAD- MSn Method
4.6. Isolation and Identification of Terpenoids from Roots and Aerial Parts of C. cernuum
4.6.1. Fractionation of the Extract from C. cernuum Aerial Parts
4.6.2. Fractionation of the Extract from C. cernuum Roots
4.6.3. Characterization of Compounds 1, 4, and 11
4.7. SH-SY5Y Cell Culture
4.8. Cell Treatment
4.9. Cell Viability (MTT) and Cytotoxicity (LDH Release) Assays
4.10. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Z.; Chang, L. Asteraceae. In Identification and Control of Common Weeds, 1st ed.; Zhejiang University Press: Hangzhou, China; Springer Nature: Singapore, 2017; Volume 3, pp. 654–656. [Google Scholar]
- eFloras. 2025. Available online: http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=200023620 (accessed on 6 March 2025).
- Malarz, J.; Michalska, K.; Stojakowska, A. Polyphenols of the Inuleae-Inulinae and their biological activities: A review. Molecules 2024, 29, 2014. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-P.; Wang, G.-W.; Tian, X.-H.; Yang, Y.-X.; Liu, Q.-X.; Chen, L.-P.; Li, H.-L.; Zhang, W.-D. The genus Carpesium: A review of its ethnopharmacology, phytochemistry and pharmacology. J. Ethnopharmacol. 2015, 163, 173–191. [Google Scholar] [CrossRef] [PubMed]
- Seal, T.; Chaudhuri, K.; Pillai, B. Evaluation of proximate and mineral composition of wild edible leaves, traditionally used by the local people of Meghalaya State in India. Asian J. Plant Sci. 2013, 12, 171–175. [Google Scholar] [CrossRef]
- Geng, Y.; Zhang, Y.; Ranjitkar, S.; Huai, H.; Wang, Y. Traditional knowledge and its transmission of wild edibles used by the Naxi in Baidi Village, northwest Yunnan province. J. Ethnobiol. Ethnomed. 2016, 12, 10. [Google Scholar] [CrossRef]
- Hong, L.; Zhuo, J.; Lei, Q.; Zhou, J.; Ahmed, S.; Wang, C.; Long, Y.; Li, F.; Long, C. Ethnobotany of wild plants used for starting fermented beverages in Shui communities of southwest China. J. Ethnobiol. Ethnomed. 2015, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, B.; Zhou, J.; Lei, Q.; Fang, Q.; Kennelly, E.J.; Long, C. Herbal plants traded at the Kaili medicinal market, Guizhou, China. J. Ethnobiol. Ethnomed. 2021, 17, 67. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, Q.; He, X.; Wang, H.; Li, W.; Zhu, J.; Meng, Y.; Long, C. An ethnobotanical study on medicinal plants of Shexian Dryland Stone Terraced System in northern China. J. Ethnobiol. Ethnomed. 2022, 18, 62. [Google Scholar] [CrossRef]
- Farooq, A.; Amjad, M.S.; Ahmad, K.; Altaf, M.; Umair, M.; Abbasi, A.M. Ethnomedicinal knowledge of the rural communities of Dhirkot, Azad Jammu and Kashmir, Pakistan. J. Ethnobiol. Ethnomed. 2019, 15, 45. [Google Scholar] [CrossRef]
- Dang, H.; Li, H.; Ma, C.; Wang, Y.; Tian, J.; Deng, L.; Wang, D.; Jing, X.; Luo, K.; Xing, W.; et al. Identification of Carpesium cernuum extract as a tumor migration inhibitor based on its biological response profiling in breast cancer cells. Phytomedicine 2019, 64, 153072. [Google Scholar] [CrossRef]
- Park, Y.-J.; Cheon, S.-Y.; Lee, D.-S.; Cominguez, D.C.; Zhang, Z.; Lee, S.; An, H.-J. Anti-inflammatory and antioxidant effects of Carpesium cernuum L. methanolic extract in LPS-stimulated RAW 264.7 macrophages. Mediat. Inflamm. 2020, 2020, 3164239. [Google Scholar] [CrossRef]
- Chen, X.; Song, J.; Yuan, D.; Rao, Q.; Jiang, K.; Feng, S.; Zhu, G.; Yan, C.; Li, Y.; Zhu, J. Incaspitolide A extracted from Carpesium cernuum induces apoptosis in vitro via the PI3K/AKT pathway in benign prostatic hyperplasia. Biosci. Rep. 2021, 41, BSR20210477. [Google Scholar] [CrossRef]
- Huang, Y.; Mao, J.; Zhang, L.; Guo, H.; Yan, C.; Chen, M. Incaspitolide A isolated from Carpesium cernuum L. inhibits the growth of prostate cancer cells and induces apoptosis via regulation of the PI3K/Akt/xIAP pathway. Oncol. Lett. 2021, 21, 477. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Long, Q.; Zhang, Y.-D.; Babu, G.; Krishnapriya, M.V.; Qiu, J.-F.; Song, J.-R.; Rao, Q.; Yi, P.; Sun, M.; et al. Germacranolide sesquiterpenes from Carpesium cernuum and their anti-leukemia activity. Chin. J. Nat. Med. 2021, 19, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Song, J.; Rao, Q.; Huang, Y.; Liu, Q.; Song, J.; Liang, W.; Feng, S.; Yan, C.; Li, Y. TMJ-105, an extract of Carpesium cernuum, induced G2/M phase arrest and apoptosis via the JAK2/STAT3 axis and MAPKs signaling pathway in leukemia HEL cells. Heliyon 2024, 10, e34115. [Google Scholar] [CrossRef]
- Zheng, Y.-D.; Zhang, Y.; Ma, J.-Y.; Sang, C.-Y.; Yang, J.-L. A carabrane-type sesquiterpenolide carabrone from Carpesium cernuum inhibits SW1990 pancreatic cancer cells by inducing ferroptosis. Molecules 2022, 27, 5841. [Google Scholar] [CrossRef]
- Liu, Q.-X.; Yang, Y.-X.; Zhang, J.-P.; Chen, L.-P.; Shen, Y.-H.; Li, H.-L.; Zhang, W.-D. Isolation, structure elucidation, and absolute configuration of highly oxygenated germacranolides from Carpesium cernuum. J. Nat. Prod. 2016, 79, 2479–2486. [Google Scholar] [CrossRef]
- Yan, C.; Zhang, W.-Q.; Sun, M.; Liang, W.; Wang, T.-Y.; Zhang, Y.-D.; Ding, X. Carpescernolides A and B, rare oxygen bridge-containing sesquiterpene lactones from Carpesium cernuum. Tetrahedron Lett. 2018, 59, 4063–4066. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, W.; Sun, M.; Guo, H.; Sun, G.; Zhu, C.; Wang, T.; Yan, C. Chemical constituents in Carpesium cernuum and their cytotoxic activity. Nat. Prod. Res. Dev. 2022, 34, 383–389. [Google Scholar]
- Feng, S.; Zhang, W.; Liang, W.; Yan, C. Three new diterpenoids from whole herb of Carpesium cernuum. Zhongguo Zhong Yao Za Zhi 2023, 48, 5244–5249. [Google Scholar] [CrossRef]
- Wajs-Bonikowska, A.; Malarz, J.; Szoka, Ł.; Kwiatkowski, P.; Stojakowska, A. Composition of essential oils from roots and aerial parts of Carpesium cernuum and their antibacterial and cytotoxic activities. Molecules 2021, 26, 1883. [Google Scholar] [CrossRef]
- Clifford, M.N.; Knight, S.; Kuhnert, N. Discriminating between the six isomers of dicaffeoylquinic acid by LC-MSn. J. Agric. Food Chem. 2005, 53, 3821–3832. [Google Scholar] [CrossRef] [PubMed]
- Willems, J.L.; Khamis, M.M.; Saeid, W.M.; Purves, R.W.; Katselis, G.; Low, N.H.; El-Aneed, A. Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry. Anal. Chim. Acta 2016, 933, 164–174. [Google Scholar] [CrossRef]
- Stefanova, A.; Gevrenova, R.; Balabanova, V.; Lozanova, V.; Alexova, R.; Zheleva-Dimitrova, D. Caffeoylhexaric acids in Inuleae: A case study of Geigeria alata, Inula helenium, and Telekia speciosa. Biochem. Syst. Ecol. 2024, 116, 104873. [Google Scholar] [CrossRef]
- Kłeczek, N.; Michalak, B.; Malarz, J.; Kiss, A.K.; Stojakowska, A. Carpesium divaricatum Sieb. & Zucc. revisited: Newly identified constituents from aerial parts of the plant and their possible contribution to the biological activity of the plant. Molecules 2019, 24, 1614. [Google Scholar] [CrossRef]
- Kłeczek, N.; Malarz, J.; Gierlikowska, B.; Kiss, A.K.; Stojakowska, A. Constituents of Xerolekia speciosissima (L.) Anderb. (Inuleae), and anti-inflammatory activity of 7,10-diisobutyryloxy-8,9-epoxythymyl isobutyrate. Molecules 2020, 25, 4913. [Google Scholar] [CrossRef] [PubMed]
- Malarz, J.; Michalska, K.; Galanty, A.; Kiss, A.K.; Stojakowska, A. Constituents of Pulicaria inuloides and cytotoxic activities of two methoxylated flavonols. Molecules 2023, 28, 480. [Google Scholar] [CrossRef]
- Bohlmann, F.; Singh, P.; Jakupovic, J. Further ineupatorolide-like germacranolides from Inula cuspidata. Phytochemistry 1982, 21, 157–160. [Google Scholar] [CrossRef]
- Zhang, T.; Si, J.-G.; Zhang, Q.-B.; Ding, G.; Zou, Z.-M. New highly oxygenated germacranolides from Carpesium divaricatum and their cytotoxic activity. Sci. Rep. 2016, 6, 27237. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Lin, C.-J.; Jia, Z.-J. Cytotoxic germacranolides and acyclic diterpenoides from the seeds of Carpesium triste. J. Nat. Prod. 2007, 70, 830–834. [Google Scholar] [CrossRef]
- Zhang, T.; Si, J.-G.; Zhang, Q.-B.; Chen, J.-H.; Ding, G.; Zhang, H.-W.; Jia, H.-M.; Zou, Z.-M. Three new highly oxygenated germacranolides from Carpesium divaricatum and their cytotoxic activity. Molecules 2018, 23, 1078. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, J.-H.; Si, J.-G.; Ding, G.; Zhang, Q.-B.; Zhang, H.-W.; Jia, H.-M.; Zou, Z.-M. Isolation, structure elucidation, and absolute configuration of germacrane isomers from Carpesium divaricatum. Sci. Rep. 2018, 8, 12418. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.G.; Bermejo Barrera, J.; Triana Méndez, J.; Eiroa Martinez, J.; López Sánchez, M. Germacranolides from Allagopappus viscosissimus. Phytochemistry 1992, 31, 330–331. [Google Scholar] [CrossRef]
- Sung, P.J.; Chen, B.-Y.; Chen, Y.-H.; Chiang, M.Y.; Lin, M.-R. Loliolide: Occurrence of a carotenoid metabolite in the octocoral Briareum excavatum (Briareidae). Biochem. Syst. Ecol. 2010, 38, 116–118. [Google Scholar] [CrossRef]
- Chen, J.-J.; Tsai, Y.-C.; Hwang, T.-L.; Wang, T.-C. Thymol, benzofuranoid, and phenylpropanoid derivatives: Anti-inflammatory constituents from Eupatorium cannabinum. J. Nat. Prod. 2011, 74, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, X.; Wei, P.; Cheng, X.; Ren, J.; Yan, S.; Zhang, W.; Jin, H. Chemical constituents from Inula wissmanniana and their anti-inflammatory activities. Arch. Pharm. Res. 2013, 36, 1516–1524. [Google Scholar] [CrossRef]
- Gonzalez, A.G.; Bermejo, J.; Triana, J.; Eiroa, J.L.; Lopez, M. Sesquiterpene lactones and other constituents of Allagopappus species. J. Nat. Prod. 1995, 58, 432–437. [Google Scholar] [CrossRef]
- Bohlmann, F.; Grenz, M.; Jakupovic, J.; King, R.M.; Robinson, H. Four heliangolides and other sesquiterpenes from Brasilia sickii. Phytochemistry 1983, 22, 1213–1218. [Google Scholar] [CrossRef]
- Zee, O.P.; Kim, D.K.; Lee, K.R. Thymol derivatives from Carpesium divaricatum. Arch. Pharm. Res. 1998, 21, 618–621. [Google Scholar] [CrossRef] [PubMed]
- Forgo, P.; Kövér, K.E. Gradient enhanced selective experiments in the 1H NMR chemical shift assignment of the skeleton and side-chain resonances of stigmasterol, a phytosterol derivative. Steroids 2004, 69, 43–50. [Google Scholar] [CrossRef]
- De Brito-Filho, S.G.; da Silva Maciel, J.K.; Ferreira Teles, Y.C.; de Souza Fernandes, M.M.M.; Souza Chaves, O.; Leite Ferreira, M.D.; Dantas Fernandes, P.; Felix, L.P.; da Silva Cirino, I.C.; Siqueira-Jứnior, J.P.; et al. Phytochemical study of Pilosocereus pachycladus and antibiotic-resistance modifying activity of syringaldehyde. Rev. Bras. Farmacogn. 2017, 27, 453–458. [Google Scholar] [CrossRef]
- Shi, N.-N.; Hou, C.-C.; Liu, Y.; Li, K.-Y.; Mi, S.-D.; Tong, B.-L.; Zhang, M.-L. Chemical constituents of plants from the genus Carpesium. Heterocycl. Commun. 2022, 28, 95–123. [Google Scholar] [CrossRef]
- Liu, L.-L.; Wang, R.; Yang, J.-L.; Shi, Y.-P. Diversity of sesquiterpenoids from Carpesium cernuum. Helv. Chim. Acta 2010, 93, 595–601. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Q.-B.; Fu, L.; Li, L.-Y.; Ma, L.-Y.; Si, J.-G.; Zhang, H.-W.; Wei, J.-H.; Yu, S.-S.; Zou, Z.-M. New antiproliferative germacranolides from Carpesium divaricatum. RSC Adv. 2019, 9, 11493–11502. [Google Scholar] [CrossRef]
- Kłeczek, N.; Malarz, J.; Gierlikowska, B.; Skalniak, Ł.; Galanty, A.; Kiss, A.K.; Stojakowska, A. Germacranolides from Carpesium divaricatum: Some new data on cytotoxic and anti-inflammatory activity. Molecules 2021, 26, 4644. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.-P.; Tan, C.-H.; Zhu, D.-Y. Glycosidic constituents from Carpesium cernuum L. J. Asian Nat. Prod. Res. 2008, 10, 565–569. [Google Scholar] [CrossRef]
- Gong, H.; An, J.; Dong, Q.; Li, J.; Yang, W.; Sun, W.; Su, Z.; Zhang, S. Discovery of SCY45, a natural small-molecule MDM2-p53 interaction inhibitor. Chem. Biodiv. 2019, 16, e1900081. [Google Scholar] [CrossRef]
- Dürr, L.; Hell, T.; Dobrzyński, M.; Mattei, A.; John, A.; Augsburger, N.; Bradanini, G.; Reinhardt, J.K.; Rossberg, F.; Drobnjakovic, M.; et al. High-content screening pipeline for natural products targeting oncogenic signaling in melanoma. J. Nat. Prod. 2022, 85, 1006–1017. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.-R.; Tu, P.-H.; Dong, W.-L.; Yu, B.-T.; Xia, S.-F.; Muskat, M.N.; Guan, B. Electrophilic thymol isobutyrate from Inula nervosa Wall. (Xiaoheiyao) ameliorates steatosis in HepG2 cells via Nrf2 activation. J. Funct. Foods 2022, 88, 104895. [Google Scholar] [CrossRef]
- Jantas, D.; Chwastek, J.; Malarz, J.; Stojakowska, A.; Lasoń, W. Neuroprotective effects of methyl caffeate against hydrogen peroxide-induced cell damage: Involvement of caspase 3 and cathepsin D inhibition. Biomolecules 2020, 10, 1530. [Google Scholar] [CrossRef]
- Jantas, D.; Malarz, J.; Le, T.N.; Stojakowska, A. Neuroprotective properties of kempferol derivatives from Maesa membranacea against oxidative stress-induced cell damage: An association with cathepsin D inhibition and PI3K/Akt activation. Int. J. Mol. Sci. 2021, 22, 10363. [Google Scholar] [CrossRef]
- Cheung, Y.T.; Lau, W.K.; Yu, M.S.; Lai, C.S.; Yeung, S.C.; So, K.F.; Chang, R.C. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology 2009, 30, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Chwastek, J.; Jantas, D.; Lasoń, W. The ATM kinase inhibitor KU-55933 provides neuroprotection against hydrogen peroxide-induced cell damage via a γH2AX/p-p53/caspase-3-independent mechanism: Inhibition of calpain and cathepsin D. Int. J. Biochem. Cell Biol. 2017, 87, 38–53. [Google Scholar] [CrossRef] [PubMed]
Compound | tR [min] | UV [nm] | [M−H]− m/z | Productions Main Peak(s) m/z 1 | Roots | Aerial Parts | |
---|---|---|---|---|---|---|---|
1 | Caffeoylhexaric acid (I) | 5.2 | 325 | 371 | 353, 209, 191 | + | − |
2 | Caffeoylhexaric acid (II) | 7.7 | 325 | 371 | 353, 209, 191 | + | − |
3 | Caffeoylhexaric acid (III) | 9.7 | 325 | 371 | 353, 209, 191 | + | − |
4 | Caffeoylhexaric acid (IV) | 12.5 | 325 | 371 | 353, 209, 191 | + | − |
5 | 5-O-Caffeoylquinic acid | 17.3 | 325 | 353 | 191 | + | + |
6 | Dicaffeoylhexaric acid (I) | 21.4 | 323 | 533 | 353, 371, 209, 191 | + | + |
7 | Dicaffeoylhexaric acid (II) | 23.8 | 326 | 533 | 353, 371, 209, 191 | + | + |
8 | Dicaffeoylhexaric acid (III) | 27.6 | 327 | 533 | 353, 371, 209, 191 | + | + |
9 | Unidentified caffeoylglucose derivative | 28.3 | 319 | 509 | 428, 341, 323, 179 | + | + |
10 | Dicaffeoylhexaric acid (IV) | 28.9 | 327 | 533 | 353, 371, 209, 191 | + | + |
11 | 3,4-Di-O-caffeoylquinic acid | 33.1 | 325 | 515 | 353, 335, 299, 255, 203, 179, 173 | − | + |
12 | 1,5-Di-O-caffeoylquinic acid | 34.6 | 328 | 515 | 353, 335, 191 | + | + |
13 | 3,5-Di-O-caffeoylquinic acid | 34.7 | 327 | 515 | 353, 191, 179 | − | + |
14 | Tricaffeoylhexaric acid (I) | 35.6 | 327 | 695 | 533, 371, 209 | + | + |
15 | 4,5-Di-O-caffeoylquinic acid | 37.0 | 327 | 515 | 353, 317, 299, 255, 203, 191, 179,173 | − | + |
16 | Tricaffeoylhexaric acid (II) | 38.5 | 328 | 695 | 533, 371, 353, 209 | + | + |
17 | Isobutyryl-dicaffeoylhexaric acid | 43.4 | 328 | 603 | 441, 423, 353, 335, 279, 191 | + | − |
18 | Isobutyryl-tetracaffeoylhexaric acid | 46.0 | 324 | 927 | 765, 603, 441, 423, 341 | + | − |
19 | Tetracaffeoylhexaric acid | 46.6 | 329 | 857 | 695, 533 | + | + |
20 | Isobutyryl-tricaffeoylhexaric acid (I) | 51.6 | 328 | 765 | 603, 441, 423, 353, 279 | + | + |
21 | Isobutyryl-tricaffeoylhexaric acid (II) | 53.3 | 328 | 765 | 603, 441, 423, 353, 279 | + | − |
22 | Isobutyryl-tricaffeoylhexaric acid (III) | 54.4 | 328 | 765 | 603, 441, 423, 353, 279 | + | − |
23 | 2-Methylbutyryl/isovaleryl-tricaffeoylhexaric acid (I) | 55.4 | 328 | 779 | 617, 445, 353, 293, 191 | + | + |
24 | 2-Methylbutyryl/isovaleryl-tricaffeoylhexaric acid (II) | 55.7 | 328 | 779 | 617, 445, 353, 293, 191 | + | + |
Position | δH (ppm), J (Hz) (CDCl3) | δH (ppm), J (Hz) (CD3OD) | δC (ppm) | HMBC (H → C) |
---|---|---|---|---|
1 | 1.47–1.80 m b | 1.26 m, 1.71 m | 21.4 | C-2, C-10, C-14 |
2 | 1.47–1.80 m b | 1.48 m, 1.57 m | 36.2 | C-1, C-3 |
3 | 1.47–1.80 m b | 1.70 m, 1.70 m | 33.1 | C-1, C-2 |
4 | - | - | 72.4 | - |
5 | 4.64 d (6.1) | 4.72 d (6.3) | 77.3 | C-6, C-7, C-15, C-1′ |
6 | 4.68 dd (6.1, 1.7) | 4.63 dd (6.3, 1.6) | 72.0 | C-4, C-5, C-7, C-8, C-11, C-12 |
7 | 3.50 br d (11.3) | 3.87 dd (11.3, 1.6) | 44.9 | C-5, C-8, C-11, C-12 |
8 | 4.99 d (11.3) | 4.95 d (11.3) | 78.4 | C-6, C-7, C-10, C-11, C-1” |
9 | - | - | 212.1 | - |
10 | 3.07 m | 3.31 m | 41.3 | C-3, C-14 |
11 | - | - | 133.5 | - |
12 | - | - | 169.4 | - |
13 | 6.38 s 5.90 s | 6.29 d (1.5) 5.98 d (1.2) | 126.0 | C-7, C-8, C-11, C-12 |
14 | 1.04 d (6.7) | 1.03 d (6.7) | 19.5 | C-1, C-10 |
15 | 1.14 s | 1.16 s | 23.5 | C-3, C-4, C-5 |
1′ | - | - | 173.4 | - |
2′ | 2.31 m | 2.30 m | 42.2 | C-1′, C-3′, C-4′, C-5′ |
3′ | 2.10 m | 2.10 m | 25.1 | C-2′, C4′, C-5′ |
4′ | 0.96 d (6.3) a | 0.97 d (6.6) | 21.4 | C-2′, C-3′, C-5′ |
5′ | 0.97 d (6.3) a | 0.97 d (6.6) | 21.4 | C-2′, C-3′, C-4′ |
1” | - | - | 165.7 | - |
2” | - | - | 126.0 | - |
3” | 6.24 qq (7.2, 1.0) | 6.33 m | 141.7 | C-4”, C-5” |
4” | 1.97 brs | 2.01 d (1.4) b | 19.2 | - |
5” | 2.01 dq (7.2, 1.0) | 2.03 dq (7.2, 1.4) b | 14.7 | C-3” |
Position | δH (ppm), J (Hz) | δC (ppm) | HMBC (H → C) |
---|---|---|---|
1 | 1.88 m, 1.74 m | 25.4 | |
2 | 3.85 m, 2.24 m b | 33.0 | |
3 | - | 217.7 | |
4 | - | 80.4 | |
5 | 5.41 d (11.6) | 78.2 | C-6, C-1′ |
6 | 4.67 dd (11.6, 6.4) | 79.9 | C-5, C-8 |
7 | 3.05 m | 41.7 | C-5 |
8 | 4.45 d (10.2) | 70.6 | |
9 | 5.26 d (10.2) | 78.5 | C-8, C-1′′ |
10 | 2.24 m b | 30.0 | |
11 | - | 132.8 | |
12 | - | 169.6 | |
13 | 6.34 d (3.0), 5.70 d (2.5) | 123.9 | C-7, C-12 |
14 | 0.98 d (6.9) | 20.0 | C-1, C-9, C-10 |
15 | 1.24 s | 23.5 | C-4, C-5 |
1′ | - | 172.4 | |
2′ | 2.35 m | 42.8 | C-1′, C-3′, C-4′, C-5′ |
3′ | 2.16 m | 25.4 | C-1′, C-4′, C-5′ |
4′ | 1.01 d (6.6) a | 21.4 | C-2′, C-3′, C-5′ |
5′ | 1.02 d (6.6) a | 21.4 | C-2′, C-3′, C-4′ |
1″ | - | 167.8 | |
2″ | - | 127.9 | |
3″ | 6.16 qq (7.2, 1.4) | 137.7 | |
4″ | 1.95 q (1.4) | 19.5 | C-1″, C-2″, C-3″ |
5″ | 1.99 dq (7.2, 1.4) | 14.7 | C-1″, C-2″, C-3″ |
Position | δH (ppm), J (Hz) | δC (ppm) | HMBC (H → C) |
---|---|---|---|
2 | 6.52 s | 104.9 | C-1′, C-7a |
3 | - | 79.8 | - |
4 | 7.24 d (7.6) | 122.7 | C-6, C-7a |
5 | 6.87 br d (7.6) | 123.1 | C-3a |
6 | - | 141.0 | - |
7 | 6.78 brs | 111.7 | C-5 |
3a | - | 127.6 | - |
7a | - | 158.5 | - |
Me-3 | 1.65 s | 20.1 | C-2, C-3, C-3a |
Me-6 | 2.37 s | 21.7 | C-5, C-6, C-7, C-7a |
1′ | - | 175.7 | - |
2′ | 2.61 m (7.0) | 34.1 | C-1′ |
3′ | 1.22 d (6.8) a | 18.8 a | C-1′, C-2′, C-4′ |
4′ | 1.20 d (6.8) a | 18.5 a | C-1′, C-2′, C-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malarz, J.; Jantas, D.; Jakubowska, K.; Bugno, R.; Kiss, A.K.; Stojakowska, A. New Terpenoids and Polyphenolic Profile of Carpesium cernuum L. of European Origin. Molecules 2025, 30, 2506. https://doi.org/10.3390/molecules30122506
Malarz J, Jantas D, Jakubowska K, Bugno R, Kiss AK, Stojakowska A. New Terpenoids and Polyphenolic Profile of Carpesium cernuum L. of European Origin. Molecules. 2025; 30(12):2506. https://doi.org/10.3390/molecules30122506
Chicago/Turabian StyleMalarz, Janusz, Danuta Jantas, Klaudia Jakubowska, Ryszard Bugno, Anna K. Kiss, and Anna Stojakowska. 2025. "New Terpenoids and Polyphenolic Profile of Carpesium cernuum L. of European Origin" Molecules 30, no. 12: 2506. https://doi.org/10.3390/molecules30122506
APA StyleMalarz, J., Jantas, D., Jakubowska, K., Bugno, R., Kiss, A. K., & Stojakowska, A. (2025). New Terpenoids and Polyphenolic Profile of Carpesium cernuum L. of European Origin. Molecules, 30(12), 2506. https://doi.org/10.3390/molecules30122506