Optimization of Textural and Structural Properties of Carbon Materials for Sodium Dual-Ion Battery Electrodes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural, Morphological and Textural Properties of the Carbon Materials
2.2. Carbon Materials: Performance as Cathodes
2.3. Carbon Materials: Performance as Anodes
3. Materials and Methods
3.1. Carbon Materials
3.2. Characterization Techniques
3.3. Electrode Preparation, Cells Assembly and Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCullough, F.P.; Levine, C.A.; Snelgrove, R.V. Secondary battery. USA Patent 4830938, 16 May 1989. [Google Scholar]
- Zhang, L.; Wang, H.; Zhang, X.; Tang, Y. A Review of Emerging Dual-Ion Batteries: Fundamentals and Recent Advances. Adv. Funct. Mater. 2021, 31, 2010958. [Google Scholar] [CrossRef]
- Sanjaykumar, C.; Soni, C.B.; Mishr, K.K.; Sungjemmenla; Vineeth, S.K.; Singh, R.; Vipin Kumar, V. Design considerations for sodium dual ion batteries: Insights into electrolyte, anode, and cathode materials. J. Energy Storage 2024, 102, 114025. [Google Scholar] [CrossRef]
- Placke, T.; Heckman, A.; Schmuch, R.; Meister, P.; Beltrop, K.; Winter, M. Perspective on Performance, Cost, and Technical Challenges for Practical Dual-Ion Batteries. Joule 2018, 2, 2528–2550. [Google Scholar] [CrossRef]
- Guo, Z.; Cheng, G.; Xu, Z.; Xie, F.; Hu, Y.-S.; Mattevi, C.; Titirici, M.-M.; Ribadeneyra, M.C. Sodium Dual-Ion Batteries with Concentrated Electrolytes. ChemSusChem 2023, 16, e202201583. [Google Scholar] [CrossRef]
- Schmuch, R.; Wagner, R.; Horpel, G.; Placke, T.; Winter, M. Performance and cost of materials for lithium-base rechargeable automotive batteries. Nat. Energy 2018, 3, 267–278. [Google Scholar] [CrossRef]
- Wang, G.; Yu, M.; Feng, X. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem. Soc. Rev. 2021, 50, 2388–2443. [Google Scholar] [CrossRef]
- Cameán, I.; Cuesta, N.; García, A.B. On the PF6− anion intercalation in graphite from sodium salt-based electrolytes containing different mixtures of organic carbonates. Electrochim. Acta 2021, 384, 138360. [Google Scholar] [CrossRef]
- Aladinli, S.; Bordet, F.; Ahlbrecht, K.; Tübke, J.; Holzapel, M. Anion intercalation into a graphite cathode from various sodium-based electrolyte mixtures for dual-ion battery. Electrochim. Acta 2017, 231, 468–478. [Google Scholar] [CrossRef]
- Kravchyk, K.V.; Kovalenko, M.V. Rechargeable Dual-Ion Batteries with Graphite as a cathode: Key Challenges and Opportunities. Adv. Energy Mater. 2019, 9, 1901749. [Google Scholar] [CrossRef]
- Cameán, I.; Lobato, B.; Cuesta, N.; García, A.B. Analysis of PF6− Anion Intercalation/De-Intercalation Mechanisms in Graphite Cathodes of Sodium Dual-Ion Batteries. Batter. Supercaps 2024, 7, e202300508. [Google Scholar] [CrossRef]
- Wang, W.; Huang, H.; Wang, B.; Qian, C.; Li, P.; Zhou, J.; Liang, Z.; Yang, C.; Guo, S. A new dual-ion battery based on amorphous carbon. Sci. Bull. 2019, 64, 1634–1642. [Google Scholar] [CrossRef] [PubMed]
- Cameán, I.; Lobato, B.; Cuesta, N.; García, A.B. Graphitic biogas-derived nanofibers as cathodes for sodium dual-ion batteries; Intercalation of PF6− anions. Electrochem. Commun. 2021, 128, 107075. [Google Scholar] [CrossRef]
- Cameán, I.; Lobato, B.; Rey-Raap, N.; dos Santos-Gómez, L.; Flores-López, S.; Arenillas, A.; García, A.B. Optimizing the Performance of a Graphitized Carbon Xerogel as Cathode for Sodium Dual-Ion Batteries. ChemElectroChem 2023, 10, e202201069. [Google Scholar] [CrossRef]
- Miyoshi, S.; Akbay, T.; Kurihara, T.; Fukuda, T.; Staykov, A.T.; Ida, S.; Ishihara, T. Fast diffusivity of PF6− Anions in Graphitic Carbon for a Dual-Carbon Rechargeable Battery with Superior Rate Property. J. Phys. Chem. C 2016, 120, 22887–22894. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, Y.S.; Liang, H.; Zhang, W.; Zhu, Y. Synthesis strategies of hard carbon anodes for sodium-ion batteries. Mater. Rep. Energy 2024, 4, 100268. [Google Scholar] [CrossRef]
- Wang, J.; Xi, L.; Peng, C.; Song, X.; Wan, X.; Sun, L.; Liu, M.; Liu, J. Recent Progress in Hard Carbon Anodes for Sodium-Ion Batteries. Adv. Eng. Mater. 2024, 26, 2302063. [Google Scholar] [CrossRef]
- Cuesta, N.; Cameán, I.; Arenillas, A.; García, A.B. Exploring the application of carbon xerogeles as anodes for sodium-ion batteries. Micropor. Mesopor. Mat. 2020, 208, 110542. [Google Scholar] [CrossRef]
- Lobato, B.; Cuesta, N.; Cameán, I.; Martínez-Tarazona, M.R.; García, R.; Arenillas, A.; García, A.B. Sustainable carbon materials from sucrose as anodes for sodium-ion batteries. Molecules 2025, 30, 1003. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Q.; Zhang, K.; Zhou, L.; Li, L.; Chen, M.; Tao, Z.; Kang, Y.-M.; Mai, L.; Chou, S.-L.; et al. All Carbon Dual Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 35978–35983. [Google Scholar] [CrossRef]
- Zheng, C.; Jian, B.; Xu, X.; Zhong, J.; Yang, H.; Huang, S. Regulating microstructure of walnut shell-derived hard carbon for high-rate and long cycling sodium-ion batteries. Chem. Eng. J. 2023, 455, 140434. [Google Scholar] [CrossRef]
- Hunter, R.D.; Ramírez-Rico, J.; Schnepp, Z. Iron-catalyzed graphitization for the synthesis of nanostructured graphitic carbons. J. Mater. Chem. A 2022, 10, 4489. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Li, K.; Zhang, J.; Sun, M.; Su, B. Catalytic graphitization of coke carbon by iron: Understanding the evolution of carbon Structure, morphology and lattice fringes. Fuel 2020, 279, 118531. [Google Scholar] [CrossRef]
- Franklin, R.E. The structure of graphitic carbons. Acta Crystallogr. 1951, 4, 253–261. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Seel, J.A.; Dahn, J.R. Electrochemical Intercalation of PF6− into Graphite. J. Electrochem. Soc. 2000, 147, 892–898. [Google Scholar] [CrossRef]
- Bordet, F.; Ahlbrecht, K.; Tübke, J.; Ufheil, J.; Hoes, T.; Oetken, M.; Holzapfel, M. Anion intercalation into graphite from a sodium-containing electrolyte. Electrochim. Acta 2015, 174, 1317–1323. [Google Scholar] [CrossRef]
- Aladinli, S.; Bordet, F.; Ahlbrecht, K.; Tübke, J.; Holzapfel, M. Compositional graphitic cathode investigation and structural characterization tests for Na-based dual-ion battery applications using ethylene carbonate:ethyl methyl carbonate-based electrolyte. Electrochim. Acta 2017, 228, 503–512. [Google Scholar] [CrossRef]
- Ishihara, T.; Yokoyama, Y.; Kozono, F.; Hayashi, H. Intercalation of PF6− anion into graphitic carbon with nano pore dual carbon cell with high capacity. J. Power Sources 2011, 196, 6956–6959. [Google Scholar] [CrossRef]
- Chen, X.; Liu, C.; Fang, Y.; Ai, X.; Zhong, F.; Yang, H.; Cao, Y. Understanding of the sodium storage mechanism in hard carbon anodes. Carbon Energy 2022, 4, 1133–1150. [Google Scholar] [CrossRef]
- Sun, N.; Qiu, J.; Xu, B. Understanding of Sodium storage mechanism in hard carbons: Ongoing development under debate. Adv. Energy Mater. 2022, 12, 2200715. [Google Scholar] [CrossRef]
- Cao, Y.; Xiao, L.; Sushko, M.L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L.V.; Yang, Z.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787. [Google Scholar] [CrossRef]
- Nobuhara, K.; Nakayama, H.; Nose, M.; Nakanishi, S.; Iba, H. First-principles study of alkali metal-graphite intercalation Compounds. J. Power Sources 2013, 243, 585–587. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. Catalytic graphitization of templated mesoporous carbons. Carbon 2006, 44, 468–474. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Dubinin, M.M. Fundamentals of the theory of adsorption in micropores of carbon adsorbents: Characteristics of their adsorption properties and microporous structures. Carbon 1989, 27, 457–467. [Google Scholar] [CrossRef]
- Rodríguez-García, J.; Cameán, I.; Ramos, A.; Rodríguez, E.; García, A.B. Graphitic carbon foams as anodes for sodium-ion batteries in glyme-based electrolytes. Electrochim. Acta 2018, 270, 236–244. [Google Scholar] [CrossRef]
- Biscoe, J.; Warren, B.E. An X-Ray study of carbon black. J. Appl. Phys. 1942, 13, 364–371. [Google Scholar] [CrossRef]
- Lobato, B.; Cuesta, N.; Flores-López, S.L.; Rey-Raap, N.; Arenillas, A.; Ana, B. García. Performance of carbon xerogels as anodes for sodium dual ion-batteries. Electrochim. Acta 2024, 489, 144234. [Google Scholar] [CrossRef]
Material | d002 (nm) | Lc (nm) | N | Classification |
---|---|---|---|---|
PC-0-800 | 0.3777 | 2.1 | 5.6 | Non-graphitic |
PC-0-1000 | 0.3737 | 1.5 | 4.0 | Non-graphitic |
PC-0-1200 | 0.3663 | 1.5 | 4.1 | Non-graphitic |
PC-3-800 | 0.3417 | 6.0 | 17.6 | Low graphitic |
PC-3-1000 | 0.3417 | 6.7 | 19.6 | Low graphitic |
PC-3-1200 | 0.3397 | 9.0 | 26.5 | Graphitic |
PC-15-800 | 0.3388 | 9.9 | 29.2 | Graphitic |
PC-15-1000 | 0.3371 | 18.3 | 54.3 | Graphitic |
PC-15-1200 | 0.3366 | 24.3 | 72.2 | Graphitic |
Material | SBET (m2 g−1) | Vmeso (cm3 g−1) | Vmicro (cm3 g−1) | Vp (cm3 g−1) |
---|---|---|---|---|
PC | 1560 | 0.21 | 0.62 | 0.82 |
PC-0-800 | 1591 | 0.16 | 0.65 | 0.81 |
PC-0-1000 | 1332 | 0.21 | 0.48 | 0.69 |
PC-0-1200 | 991 | 0.15 | 0.36 | 0.51 |
PC-3-800 | 771 | 0.36 | 0.28 | 0.64 |
PC-3-1000 | 336 | 0.44 | 0.13 | 0.57 |
PC-3-1200 | 213 | 0.55 | 0.08 | 0.47 |
PC-15-800 | 216 | 0.39 | 0.10 | 0.54 |
PC-15-1000 | 94 | 0.24 | 0.03 | 0.27 |
PC-15-1200 | 94 | 0.26 | 0.04 | 0.30 |
Cycle | PC-0-800 (mAh g−1) | PC-0-1000 (mAh g−1) | PC-0-1200 (mAh g−1) | PC-3-800 (mAh g−1) | ||||
---|---|---|---|---|---|---|---|---|
>0.1 V | <0.1 V | >0.1 V | <0.1 V | >0.1 V | <0.1 V | >0.1 V | <0.1 V | |
10 | 114 | 28 | 97 | 29 | 89 | 43 | 35 | 14 |
25 | 126 | 27 | 106 | 26 | 89 | 44 | 37 | 13 |
50 | 92 | 19 | 97 | 23 | 81 | 38 | 40 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cameán, I.; Lobato, B.; Omnée, R.; Raymundo-Piñero, E.; García, A.B. Optimization of Textural and Structural Properties of Carbon Materials for Sodium Dual-Ion Battery Electrodes. Molecules 2025, 30, 2439. https://doi.org/10.3390/molecules30112439
Cameán I, Lobato B, Omnée R, Raymundo-Piñero E, García AB. Optimization of Textural and Structural Properties of Carbon Materials for Sodium Dual-Ion Battery Electrodes. Molecules. 2025; 30(11):2439. https://doi.org/10.3390/molecules30112439
Chicago/Turabian StyleCameán, Ignacio, Belén Lobato, Rachelle Omnée, Encarnación Raymundo-Piñero, and Ana B. García. 2025. "Optimization of Textural and Structural Properties of Carbon Materials for Sodium Dual-Ion Battery Electrodes" Molecules 30, no. 11: 2439. https://doi.org/10.3390/molecules30112439
APA StyleCameán, I., Lobato, B., Omnée, R., Raymundo-Piñero, E., & García, A. B. (2025). Optimization of Textural and Structural Properties of Carbon Materials for Sodium Dual-Ion Battery Electrodes. Molecules, 30(11), 2439. https://doi.org/10.3390/molecules30112439